The Electrochemical Gradient of Protons and Its Relationship to Active Transport in Escherichia Coli Membrane Vesicles

Total Page:16

File Type:pdf, Size:1020Kb

The Electrochemical Gradient of Protons and Its Relationship to Active Transport in Escherichia Coli Membrane Vesicles Proc. Natl. Acad. Sci. USA Vol. 73, No. 6, pp. 1892-1896, June 1976 Biochemistry The electrochemical gradient of protons and its relationship to active transport in Escherichia coli membrane vesicles (flow dialysis/membrane potential/energy transduction/lipophilic cations/weak acids) SOFIA RAMOS, SHIMON SCHULDINER*, AND H. RONALD KABACK The Roche Institute of Molecular Biology, Nutley, New Jersey 07110 Communicated by B. L. Horecker, March 17, 1976 ABSTRACT Membrane vesicles isolated from E. coli gen- presence of valinomycin), a respiration-dependent membrane erate a trans-membrane proton gradient of 2 pH units under potential (AI, interior negative) of approximately -75 mV in appropriate conditions when assayed by flow dialysis. Using E. coli membrane vesicles has been documented (6, 13, 14). the distribution of weak acids to measure the proton gradient (ApH) and the distribution of the lipophilic cation triphenyl- Moreover it has been shown that the potential causes the ap- methylphosphonium to measure the electrical potential across pearance of high affinity binding sites for dansyl- and azido- the membrane (AI), the vesicles are shown to generate an phenylgalactosides on the outer surface of the membrane (4, electrochemical proton gradient (AiH+) of approximately -180 15) and that the potential is partially dissipated as a result of mV at pH 5.5 in the presence of ascorbate and phenazine lactose accumulation (6). Although these findings provide ev- methosulfate, the major component of which is a ApH of about idence for the chemiosmotic hypothesis, it has also been dem- -110 mV. As external pH is increased, ApH decreases, reaching o at pH 7.5 and above, while AI remains at about -75 mV and onstrated (6, 16) that vesicles are able to accumulate lactose and internal pH remains at pH 7.5. Moreover, the ability of various other substrates to intravesicular concentrations which are electron donors to drive transport is correlated with their ability 100-fold or greater than those of the external medium. To to generate A4H+. In addition, ApH and Ad can be varied re- sustain concentration gradients of this magnitude, a membrane ciprocally in the presence of valinomycin and nigericin. These potential of at least -120 mV is required. This observation, in data and others (manuscript in preparation) provide convincing addition so numerous negative attempts to establish the exis- support for the role of chemiosmotic phenomena in active tence of a transmembrane pH gradient (1, 6) has left some transport. doubt as to the quantitative relationship between AILH+ and Despite apparently contradictory initial observations (1-3), an solute accumulation. [In the apparent absence of a transmem- increasing accumulation of experimental evidence (4-6) indi- brane pH gradient, it is also not immediately clear how anionic cates that chemiosmotic phenomena, as postulated by Mitchell solutes are accumulated, by the chemiosmotic mechanism. (7-10), play a central role in respiration-linked active transport suggested for this process (10)]. in Escherichia coli membrane vesicles. It now seems clearly Recently, Padan et al. (17) have shown that intact E. coli established that membrane vesicles prepared by the techniques generate a ApH (interior alkaline), and that the magnitude of developed in this laboratory retain the same orientation as the the ApH is very dependent upon external pH, exhibiting a membrane in the intact cell (see ref. 11 for a summary of the maximal value of about 2 pH units at pH 6.0 or below. In ad- evidence), and that oxidation of electron donors which drive dition, Rottenberg (18) has utilized acetate to determine ApH transport in the vesicles results in the generation of a trans- in mitochondria, and suggested that this weak acid might be membrane electrical potential (interior negative) by means of more useful than 5,5'-dimethyloxazolidine-2,4-dione (DMO) electrogenic proton extrusion (6, 12-14). The potential is pos- (19) in certain systems because it might be less permeant (H. tulated to drive solute accumulation via facilitated diffusion Rottenberg; personal communication). of positively charged substrates such as lysine or via coupled The results presented in this paper were obtained by means movements of protons with neutral substrates such as lactose of flow dialysis (20), a technique which allows a rapid, contin- or proline (i.e., "symport"). uous determination of changes in the concentration of solutes According to the chemiosmotic hypothesis, the total driving in the external medium without manipulation of the vesicles. force generated by proton extrusion is the electrochemical Using this technique, it is demonstrated that E. coli membrane potential of protons across the membrane (A,4H+) (7-10). This vesicles generate a large proton gradient under appropriate thermodynamic entity is composed of an electrical and a conditions. In addition, we have shown that ApH and AI can chemical parameter according to the following relationship: be manipulated reciprocally by the ionophores valinomycin and nigericin. The results to be presented, and others (S. Ramos 2.3RTA and H. R. Kaback, manuscript in preparation) which will be A =H+= A - F ApH [1] discussed, leave little doubt as to the primary role of chemios- motic phenomena in respiration-dependent active transport. where Ai represents the electrical potential across the mem- brane, and ApH is the chemical difference in proton concen- METHODS tration across the membrane (2.3RT/F is equal to 58.8 mV at Growth of Cells and Preparation of Membrane Vesicles. room temperature). E. coli ML 308-225 (i-z-y+a+) was grown on minimal me- Through the use of lipophilic cations and rubidium (in the dium A with 1.0% sodium succinate (hexahydrate), and membrane vesicles were prepared as described (21, 22). Vesicles Abbreviations: DMO, 5,.5'-dimethyloxazolidine-2,4-dione; TPMP', M and triphenylmethylphosphonium (bromide salt); PMS, phenazine were suspended in 0.1 potassium phosphate (pH 6.6) methosulfate; CCCP, carbonylcyanide m-chlorophenylhydrazone. stored in liquid nitrogen. * Present address: Department of Molecular Biology, Hadassah For studies at various pH's, membrane suspensions containing Medical School, Hebrew University, Jerusalem, Israel. about 4 mg of protein per ml were removed from storage, 1892 Downloaded by guest on October 2, 2021 Biochemistry: Ramos et al. Proc. Natl. Acad. Sci. USA 73 (1976) 1893 thawed rapidly at 460, diluted at least 10-fold with 0.1 M po- tassium phosphate buffer at the desired pH, and incubated for 10 min at 25°. The suspension was centrifuged at 40,000 X g for 30 min, and the pellet resuspended and washed once in a similar volume of the same buffer. The final pellet was then resuspended to an appropriate protein concentration in 0.1 M potassium phosphate at the same pH. 0 Transport Assays. Filtration assays (6, 23) were carried out x on Millipore Cellotate filters (0.5 ,um pore size). Electron donors ., and isotopically labeled solutes were used as described. Flow 0. 15 dialysis was performed as described (24) except that the ap- paratus was modified so that the upper chamber was com- pletely open to the atmosphere, and the reaction mixture was gassed with oxygen. The upper and lower chambers were separated by Spectrapor 1 dialysis tubing (600-8000 molecular weight cut-off; Fisher Scientific), and both chambers were stirred by means of magnetic bars. Membrane vesicles sus- FRACTION NUMBER pended in 0.05 M potassium phosphate at a given pH containing FIG. 1. Ascorbate-PMS-dependent acetate uptake by E. coli ML 0.'01 M magnesium sulfate were added to the upper chamber 308-225 membrane vesicles as determined by flow dialysis. The assay (total volume 0.8 ml), and electron donors, isotopically labeled shown was carried out at pH 5.5 as described in Methods with sodium solutes, and ionophores were added as indicated. Potassium [3H]acetate (685 mCi/mmol) at a final concentration of 18 gM and phosphate (0.05 M at the same pH as the buffer in the upper E. coli ML 308-225 membrane vesicles at a final concentration of 2.5 mg ofprotein per ml in the upper chamber. As indicated by the arrows, chamber) was pumped from the lower chamber at a rate of 6.0 ascorbate and phenazine methosulfate (ASC/PMS), valinomycin ml/min with a Pharmacia pump (model P3). Fractions of about (VAL), and nigericin (NIG) were added to the upper chamber at final 1.7 ml were collected and assayed for radioactivity by liquid concentrations of 20 mM and 0.1 mM, 1 ,uM and 1 gM, respectively scintillation spectrometry. Since phenazine methosulfate (PMS) (closed symbols). Open symbols were obtained from an identical ex- causes about 5.5% quenching of tritium under the conditions periment carried out in the absence of ascorbate and PMS. The data described, control experiments were carried out in the absence have been corrected for a control performed in the absence of mem- of membrane vesicles, and the data were corrected appro- brane vesicles as described in Methods. priately. appears in the dialysate, increasing linearly for about 2 min, and Determination of ApH. ApH.was determined by measuring reaching a maximum which then decreases at a slow and con- the accumulation of acetate, propionate, butyrate or DMO by stant rate (open symbols). When ascorbate and PMS are added flow dialysis unless otherwise stated. Data were quantitated to the upper chamber (closed symbols), the vesicles accumulate assuming that dialysis rates obtained after addition of nigericin acetate, and its concentration in the dialysate decreases mark- (Fig. 1) represent 0 ApH. edly to about 60% of the level observed in the absence of elec- Determination of AI. The electrical potential across the tron donor. Addition of valinomycin, an ionophore which membrane (Au') was determined by measuring the accumu- specifically increases the potassium permeability of the mem- lation of [3H]triphenylmethylphosphonium (TPMP+) by either brane (27), causes the vesicles to accumulate more acetate, and filtration (6) or flow dialysis.
Recommended publications
  • Cellular Transport Notes About Cell Membranes
    Cellular Transport Notes @ 2011 Center for Pre-College Programs, New Jersey Institute of Technology, Newark, New Jersey About Cell Membranes • All cells have a cell membrane • Functions: – Controls what enters and exits the cell to maintain an internal balance called homeostasis TEM picture of a – Provides protection and real cell membrane. support for the cell @ 2011 Center for Pre-College Programs, New Jersey Institute of Technology, Newark, New Jersey 1 About Cell Membranes (continued)‏ 1.Structure of cell membrane Lipid Bilayer -2 layers of phospholipids • Phosphate head is polar (water loving)‏ Phospholipid • Fatty acid tails non-polar (water fearing)‏ • Proteins embedded in membrane Lipid Bilayer @ 2011 Center for Pre-College Programs, New Jersey Institute of Technology, Newark, New Jersey Polar heads Fluid Mosaic love water Model of the & dissolve. cell membrane Non-polar tails hide from water. Carbohydrate cell markers Proteins @ 2011 Center for Pre-College Programs, New Jersey Institute of Technology, Newark, New Jersey 2 About Cell Membranes (continued)‏ • 4. Cell membranes have pores (holes) in it • Selectively permeable: Allows some molecules in and keeps other molecules out • The structure helps it be selective! Pores @ 2011 Center for Pre-College Programs, New Jersey Institute of Technology, Newark, New Jersey Structure of the Cell Membrane Outside of cell Carbohydrate Proteins chains Lipid Bilayer Transport Protein Phospholipids Inside of cell (cytoplasm)‏ @ 2011 Center for Pre-College Programs, New Jersey Institute of Technology, Newark, New Jersey 3 Types of Cellular Transport • Passive Transport cell‏doesn’t‏use‏energy 1. Diffusion 2. Facilitated Diffusion 3. Osmosis • Active Transport cell does use energy 1.
    [Show full text]
  • Cellular Biology 1
    Cellular biology 1 INTRODUCTION • Specialized intracellular membrane-bound organelles (Fig. 1.2), such as mitochondria, Golgi apparatus, endoplasmic reticulum (ER). This chapter is an overview of eukaryotic cells, addressing • Large size (relative to prokaryotic cells). their intracellular organelles and structural components. A basic appreciation of cellular structure and function is important for an understanding of the following chapters’ information concerning metabolism and nutrition. For fur- ther detailed information in this subject area, please refer to EUKARYOTIC ORGANELLES a reference textbook. Nucleus The eukaryotic cell The nucleus is surrounded by a double membrane (nuclear Humans are multicellular eukaryotic organisms. All eukary- envelope). The envelope has multiple pores to allow tran- otic organisms are composed of eukaryotic cells. Eukaryotic sit of material between the nucleus and the cytoplasm. The cells (Fig. 1.1) are defined by the following features: nucleus contains the cell’s genetic material, DNA, organized • A membrane-limited nucleus (the key feature into linear structures known as chromosomes. As well as differentiating eukaryotic cells from prokaryotic cells) chromosomes, irregular zones of densely staining material that contains the cell’s genetic material. are also present. These are the nucleoli, which are responsible Inner nuclear Nucleus membrane Nucleolus Inner Outer Outer mitochondrial nuclear mitochondrial membrane membrane membrane Ribosome Intermembrane space Chromatin Mitochondrial Rough matrix Mitochondrial Nuclear endoplasmic ribosome pore reticulum Crista Mitochondrial mRNA Smooth Vesicle endoplasmic Mitochondrion Circular reticulum mitochondrial Proteins of the DNA Vesicle budding electron transport off rough ER Vesicles fusing system with trans face of Cytoplasm Golgi apparatus ‘Cis’ face + discharging protein/lipid Golgi apparatus ‘Trans’ face Lysosome Vesicles leaving Golgi with modified protein/lipid cargo Cell membrane Fig.
    [Show full text]
  • Passive and Active Transport
    Passive and Active Transport 1. Thermodynamics of transport 2. Passive-mediated transport 3. Active transport neuron, membrane potential, ion transport Membranes • Provide barrier function – Extracellular – Organelles • Barrier can be overcome by „transport proteins“ – To mediate transmembrane movements of ions, Na+, K+ – Nutrients, glucose, amino acids etc. – Water (aquaporins) 1) Thermodynamics of Transport • Aout <-> Ain (ressembles a chemical equilibration) o‘ • GA - G A = RT ln [A] • ∆GA = GA(in) - GA(out) = RT ln ([A]in/[A]out) • GA: chemical potential of A o‘ • G A: chemical potential of standard state of A • If membrane has a potential, i.e., plasma membrane: -100mV (inside negative) then GA is termed the electrochemical potential of A Two types of transport across a membrane: o Nonmediated transport occurs by passive diffusion, i.e., O2, CO2 driven by chemical potential gradient, i.e. cannot occur against a concentration gradient o Mediated transport occurs by dedicated transport proteins 1. Passive-mediated transport/facilitated diffusion: [high] -> [low] 2. Active transport: [low] -> [high] May require energy in form of ATP or in form of a membrane potential 2) Passive-mediated transport Substances that are too large or too polar to diffuse across the bilayer must be transported by proteins: carriers, permeases, channels and transporters A) Ionophores B) Porins C) Ion Channels D) Aquaporins E) Transport Proteins A) Ionophores Organic molecules of divers types, often of bacterial origin => Increase the permeability of a target membrane for ions, frequently antibiotic, result in collapse of target membrane potential by ion equilibration 1. Carrier Ionophore, make ion soluble in membrane, i.e. valinomycin, 104 K+/sec 2.
    [Show full text]
  • Evidence for a Respiratory Chain in the Chloroplast
    Proc. NatL Acad. Sci. USA Vol. 79, pp. 4352-4356, July 1982 Cell Biology Evidence for a respiratory chain in the chloroplast (photosynthesis/respiration/starch degradation/evolution) PIERRE BENNOUN Institut de Biologie Physico-Chimique, 13, rue Pierre et Marie Curie, 75005, Paris, France Communicated by Pierre Joliot, April 12, 1982 ABSTRACT Evidence is given for the existence ofan electron in 20 ml of 20 mM N-tris(hydroxymethyl)methylglycine(Tri- transport pathway to oxygen in the thylakoid membranes ofchlo- cine)/KOH, pH 7.8/10 mM NaCl/10 mM MgCl2/1 mM K2- roplasts (chlororespiration). Plastoquinone is shown to be a redox HPO4/0.1 M sucrose/5% Ficoll. The cell suspension was carrier common to both photosynthetic and chlororespiratory passed through a Yeda press operated at 90 kg/cm2, diluted pathways. It is shown that, in dark-adapted chloroplasts, an elec- with 200 ml of Ficoll-lacking buffer, and centrifuged, and the trochemical gradient is built up across the thylakoid membrane pellet was suspended in the same buffer. by transfer of electrons through the chlororespiratory chain as Chlorophyll fluorescence kinetics and luminescence mea- well as by reverse functioning of the chloroplast ATPases. It is surements were performed as described (9). proposed that these mechanisms ensure recycling ofthe ATP and NAD(P)H generated by the glycolytic pathway converting starch into triose phosphates. Chlororespiration is thus an 02-uptake RESULTS process distinct from photorespiration and the Mehler reaction. The plastoquinone (PQ) pool ofchloroplast is a redox carrier of The evolutionary significance of chlororespiration is discussed. the photosynthetic electron transport chain.
    [Show full text]
  • Specific Copb Transporter: Revising P1B-Type Atpase Classification
    + Cu -specific CopB transporter: Revising P1B-type ATPase classification Rahul Purohita,b, Matthew O. Rossa,b, Sharon Bateluc, April Kusowskic,d, Timothy L. Stemmlerc,d, Brian M. Hoffmana,b, and Amy C. Rosenzweiga,b,1 aDepartment of Molecular Biosciences, Northwestern University, Evanston, IL 60208; bDepartment of Chemistry, Northwestern University, Evanston, IL 60208; cDepartment of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201; and dSchool of Medicine, Wayne State University, Detroit, MI 48201 Contributed by Amy C. Rosenzweig, January 12, 2018 (sent for review December 14, 2017; reviewed by Megan M. McEvoy and Gabriele Meloni) The copper-transporting P1B-ATPases, which play a key role in cellu- metal specificities of the P1B-5 (PCP motif), P1B-6 (SCA motif), lar copper homeostasis, have been divided traditionally into two and P1B-7-ATPases (CSC motif) remain unclear, although some 2+ 2+ subfamilies, the P1B-1-ATPases or CopAs and the P1B-3-ATPases or evidence links the P1B-5-ATPases to Ni and Fe (20, 21). The + CopBs. CopAs selectively export Cu whereas previous studies and remaining two groups are the copper transporters. The P1B-1- + bioinformatic analyses have suggested that CopBs are specific for ATPases, which include ATP7A and ATP7B, transport Cu 2+ 2+ Cu export. Biochemical and spectroscopic characterization of (9, 22), whereas the P1B-3-ATPases are proposed to transport Cu Sphaerobacter thermophilus CopB (StCopB) show that, while it does (23, 24). These two subfamilies differ from one another in several 2+ bind Cu , the binding site is not the prototypical P1B-ATPase trans- ways. First, the TM helix 4 motif is CPC in the P1B-1-ATPases and membrane site and does not involve sulfur coordination as proposed CPH in the P1B-3-ATPases.
    [Show full text]
  • Photosynthesis and Respiration
    18 Photosynthesis and Respiration ATP is the energy currency of the cell Goal To understand how energy from sunlight is harnessed to Cells need to carry out many reactions that are energetically unfavorable. generate chemical energy by photosynthesis and You have seen some examples of these non-spontaneous reactions in respiration. earlier chapters: the synthesis of nucleic acids and proteins from their corresponding nucleotide and amino acid building blocks and the transport Objectives of certain ions against concentration gradients across a membrane. In many cases, unfavorable reactions like these are coupled to the hydrolysis of ATP After this chapter, you should be able to: in order to make them energetically favorable under cellular conditions; we • Explain the concepts of oxidation and have learned that for these reactions the free energy released in breaking reduction. the phosphodiester bonds in ATP exceeds the energy consumed by the • Explain how light energy generates an uphill reaction such that the sum of the free energy of the two reactions is electrochemical gradient. negative (ΔG < 0). To perform these reactions, cells must then have a way • Explain how an electrochemical of generating ATP efficiently so that a sufficient supply is always available. gradient generates chemical energy. The amount of ATP used by a mammalian cell has been estimated to be on the order of 109 molecules per second. In other words, ATP is the principal • Explain how chemical energy is harnessed to fix carbon dioxide. energy currency of the cell. • Explain how glucose is used to generate How does the cell produce enough ATP to sustain life and what is the source ATP anaerobically.
    [Show full text]
  • Biology Passive & Active Transport April 30, 2020
    High School Science Virtual Learning Biology Passive & Active Transport April 30, 2020 High School General Biology Lesson: Passive & Active Transport Objective/Learning Target: Students will understand how passive and active transports work. Bell Ringer Activity 1. If someone is being active what does that mean? 2. If someone is being passive what does that mean? Bell Ringer Answers 1. If someone is being active that means they are marked by energetic activity. 2. If someone is being passive they are accepting what happens to others without an active response. Keep these definitions in mind as we discuss the differences between what active and passive transport are in biology. Let’s Get Started! Lesson Activity: Directions: 1. Watch this video. 2. Create a Venn Diagram like the one you see here ---> 3. Compare and contrast Active and Passive Transport by the information you learn from the video. Lesson Questions Answers Venn Diagram Examples: Practice Questions 1. What is passive transport? 2. What is active transport? 3. What is the difference between diffusion and osmosis? 4. What is the difference between endocytosis and exocytosis? 5. What is the differences between facilitated diffusion and active transport by a protein pump? Answers to Practice Questions 1. Passive transport is the movement of materials across the cell membrane without using cellular energy. 2. Active transport is the movement of materials against a concentration difference; it requires energy. 3. In diffusion, both solvent and solute particles are free to move; however, in osmosis only water molecules cross the semipermeable membrane. Answers to Practice Questions Continued 4.
    [Show full text]
  • AS 91156 Cells Glossary Active Site a Specific Shaped Part of an Enzyme Where the Substrate Fits Active Transport the Movement
    No Brain Too Small BIOLOGY AS 91156 AS 91156 Cells Glossary Active site A specific shaped part of an enzyme where the substrate fits The movement of molecules from an area of low concentration to an Active transport area of high which requires energy Aerobic respiration Respiration in the presence of oxygen Anabolic enzyme An enzyme that takes small molecules and joins them together Anaerobic respiration Respiration with limited oxygen Catabolic enzyme An enzyme which takes large molecules and breaks them up Cell wall Rigid layer of cells found only in plants Chlorophyll Pigment found in plants which gives the plant its green colour Chloroplast Site of photosynthesis Part of mitochondria (the folds) where the electron transfer chain Cristae occurs The changing in the shape of the active site of an enzyme, so the Denature substrate can no longer fit - caused by high temperatures and incorrect pH Deoxyribose nucleic Full name for DNA acid The movement of materials from an area of high concentration to an Diffusion area of low concentration DNA replication The copying of DNA before the cell divides Biological catalysts which speed up biochemical reactions in an Enzymes organism A form of passive transport where molecules move across the cell Facilitated diffusion membrane through the membrane proteins Flaccid A cell that is limp and floppy G1 of cell cycle The stage in the cell cycle where the cell grows and does its job The stage in the cell cycle where the replicated chromosomes are G2 of cell cycle checked for mistakes Golgi body Part
    [Show full text]
  • 3. Transport Can Be Active Or Passive. •Passive Transport Is Movement
    3. Transport can be active or passive. F 6-3 Taiz. Microelectrodes are used to measure membrane •Passive transport is movement down an electrochemical potentials across cell membrane gradient. •Active transport is movement against an electrochemical gradient. What is an electrochemical gradient? How is it formed? Passive and active transport of ions result in electric potential difference across membranes. •Movement of an uncharged mol Is dependent on conc. gradient alone. •Movement of an ion depends on the electric gradient and the conc. gradient. •Diffusion potential- Pump potential- How do you know if an ion is moving uphill or downhill? Nernst Eq What is the driving force for uphill movement? A) ATP ; b) H+ gradient 6-5. Pump potential and diffusion potential. How can we determine whether an ion moves in or out by active or passive transport? Nernst equation states that at equilibrium the difference in concentration of an ion between two compartments is balanced by the voltage difference. Thus it can predict the ion conc at equilibrium at a certain ΔE. Very useful to predict active or passive transport of an ion. Fig. 6-4, Taiz. Passive and active transporters. Tab 6-1, Taiz . Using the Nernst equation to predict ion conc. at equilibrium when the Cell electrical potential, Δψ = -110 mV ---------------------------------------------------------------------------------------- Ext Conc. Ion Internal concentration (mM) Summary: In general observed Nernst (Predicted) ---------------------------------------------------------------------------------------- Cation uptake: passive 1 mM K+ 75 mM 74 Cation efflux: active 1 mM Na+ 8 mM 74 1 mM Ca2+ 2 mM 5,000 Anion uptake: active 0.2 mM Mg2+ 3 1,340 Anion release: passive - 2 mM NO3 5 mM 0.02 1 Cl- 10 mM 0.01 - 1H2PO4 21 0.01 ---------------------------------------------------------------------------------------- 1 6-10.
    [Show full text]
  • Molecular Biology of the Cell 6Th Edition
    753 CHAPTER Energy Conversion: Mitochondria and Chloroplasts 14 To maintain their high degree of organization in a universe that is constantly drift- IN THIS CHAPTER ing toward chaos, cells have a constant need for a plentiful supply of ATP, as we have explained in Chapter 2. In eukaryotic cells, most of the ATP that powers life THE MITOCHONDRION processes is produced by specialized, membrane-enclosed, energy-converting organelles. Tese are of two types. Mitochondria, which occur in virtually all cells THE PROTON PUMPS OF THE of animals, plants, and fungi, burn food molecules to produce ATP by oxidative ELECTRON-TRANSPORT CHAIN phosphorylation. Chloroplasts, which occur only in plants and green algae, har- ness solar energy to produce ATP by photosynthesis. In electron micrographs, the ATP PRODUCTION IN most striking features of both mitochondria and chloroplasts are their extensive MITOCHONDRIA internal membrane systems. Tese internal membranes contain sets of mem- brane protein complexes that work together to produce most of the cell’s ATP. In CHLOROPLASTS AND bacteria, simpler versions of essentially the same protein complexes produce ATP, PHOTOSYNTHESIS but they are located in the cell’s plasma membrane (Figure 14–1). Comparisons of DNA sequences indicate that the energy-converting organ- THE GENETIC SYSTEMS elles in present-day eukaryotes originated from prokaryotic cells that were endo- OF MITOCHONDRIA AND cytosed during the evolution of eukaryotes (discussed in Chapter 1). This explains CHLOROPLASTS why mitochondria and chloroplasts contain their own DNA, which still encodes a subset of their proteins. Over time, these organelles have lost most of their own genomes and become heavily dependent on proteins that are encoded by genes in the nucleus, synthesized in the cytosol, and then imported into the organelle.
    [Show full text]
  • Living Environment Vocabulary by Prentice Hall 2001 Review Book Unit
    Living Environment Vocabulary By Prentice Hall 2001 Review Book Unit Similarities and Topic 1 Differences Among Living Organisms cell the basic unit of structure and function that makes up all organisms metabolism all the chemical reactions that occur within the cells of an organism homeostasis the ability of an organism to maintain a stable internal environment even when the external environment changes reproduction the process by which organisms produce new organisms of the same type cell respiration the process in which nutrients are broken apart, releasing the chemical energy stored in them synthesis a life process that involves combining simple substances into more complex substances organic term used to describe molecules that contain both hydrogen and carbon inorganic a type of molecule that does not contain both carbon and hydrogen but can contain any other combination of elements organelle a structure within the cell that carries out a specific function tissues a group of specialized cells that perform a specific function organ a body structure made of different kinds of tissues combined to perform a specific function organ system several organs that work together to perform a major function in the body cytoplasm the jellylike substance that is between the cell membrane and the nucleus and that contains specialized structures nucleus a large structure within a cell that controls the cell’s metabolism and stores genetic information, including chromosomes and DNA vacuoles storage sacs within the cytoplasm of a cell that may contain
    [Show full text]
  • Electron Transport Generates a Proton Gradient Across the Membrane
    Electron Transport Generates a Proton Gradient Across the Membrane Each of respiratory enzyme complexes couples the energy released by electron transfer across it to an uptake of protons from water in the mitochondrial matrix, accompanied by the release of protons on the other side of the membrane into the intramembrane space. As result, the energetically favorable flow of electrons along the electron- transport chain pumps protons across the membrane out of the matrix. This event creates electrochemical protons across the inner membrane. The Proton Gradient Drives ATP Synthesis The electrochemical proton gradient across the inner mitochondrial membrane is used to drive ATP synthesis in the process of oxidative Phosphorylation. The device that makes this possible is a large membrane-bound enzyme called ATP synthase. This enzymes creates a hydrophilic pathway across the inner mitochondrial membrane that allows protons to follow down their electrochemical gradient. As these ions thread their way through the ATP synthase, they are used to drive the energetically unfavorable reaction between ADP and Pi. 1 Proton Gradients Produce Most of the Cell’s ATP Glycolysis alone produces a net yield of two molecules of ATP for every molecule of glucose, which is the total energy yield for the fermentation process that occur in the absence of oxygen. In contrast, during the oxidative Phosphorylation each pair of electrons donated by NADH produced mitochondria is thought to provide energy for the formation of the about 2.5 molecules of ATP, once one includes the energy needed for transporting this ATP to cytosol. Oxidative Phosphorylation also produces 1.5 ATP molecules per electron pair of FADH2, or from the NADH molecules produced by glycolysis in the cytosol.
    [Show full text]