Microbial Sulfur Transformations in Sediments from Subglacial Lake Whillans
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Destabilization, Stabilization, and Multiple Attractors in Saturated Mixotrophic Environments
Downloaded from orbit.dtu.dk on: Sep 27, 2021 Destabilization, stabilization, and multiple attractors in saturated mixotrophic environments Lindstrom, Torsten; Cheng, Yuanji; Chakraborty, Subhendu Published in: SIAM Journal on Applied Mathematics Link to article, DOI: 10.1137/19M1294186 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Lindstrom, T., Cheng, Y., & Chakraborty, S. (2020). Destabilization, stabilization, and multiple attractors in saturated mixotrophic environments. SIAM Journal on Applied Mathematics, 80(6), 2338-2364. https://doi.org/10.1137/19M1294186 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. SIAM J. APPL.MATH. © 2020 Society for Industrial and Applied Mathematics Vol. 80, No. 6, pp. 2338{2364 DESTABILIZATION, STABILIZATION, AND MULTIPLE ATTRACTORS IN SATURATED MIXOTROPHIC ENVIRONMENTS\ast \" y z x TORSTEN LINDSTROM , YUANJI CHENG , AND SUBHENDU CHAKRABORTY Abstract. The ability of mixotrophs to combine phototrophy and phagotrophy is now well recognized and found to have important implications for ecosystem dynamics. -
Core Sulphate-Reducing Microorganisms in Metal-Removing Semi-Passive Biochemical Reactors and the Co-Occurrence of Methanogens
microorganisms Article Core Sulphate-Reducing Microorganisms in Metal-Removing Semi-Passive Biochemical Reactors and the Co-Occurrence of Methanogens Maryam Rezadehbashi and Susan A. Baldwin * Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-604-822-1973 Received: 2 January 2018; Accepted: 17 February 2018; Published: 23 February 2018 Abstract: Biochemical reactors (BCRs) based on the stimulation of sulphate-reducing microorganisms (SRM) are emerging semi-passive remediation technologies for treatment of mine-influenced water. Their successful removal of metals and sulphate has been proven at the pilot-scale, but little is known about the types of SRM that grow in these systems and whether they are diverse or restricted to particular phylogenetic or taxonomic groups. A phylogenetic study of four established pilot-scale BCRs on three different mine sites compared the diversity of SRM growing in them. The mine sites were geographically distant from each other, nevertheless the BCRs selected for similar SRM types. Clostridia SRM related to Desulfosporosinus spp. known to be tolerant to high concentrations of copper were members of the core microbial community. Members of the SRM family Desulfobacteraceae were dominant, particularly those related to Desulfatirhabdium butyrativorans. Methanogens were dominant archaea and possibly were present at higher relative abundances than SRM in some BCRs. Both hydrogenotrophic and acetoclastic types were present. There were no strong negative or positive co-occurrence correlations of methanogen and SRM taxa. Knowing which SRM inhabit successfully operating BCRs allows practitioners to target these phylogenetic groups when selecting inoculum for future operations. -
Bioenergetics of Mixotrophic Metabolisms: a Theoretical Analysis
Bioenergetics of mixotrophic metabolisms: A theoretical analysis by Stephanie Slowinski A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Science in Earth Sciences (Water) Waterloo, Ontario, Canada, 2019 © Stephanie Slowinski 2019 Author’s Declaration This thesis consists of material all of which I authored or co-authored: see Statement of Contributions included in the thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Statement of Contributions This thesis consists of two co-authored chapters. I contributed to the study design and execution in chapters 2 and 3. Christina M. Smeaton (CMS) and Philippe Van Cappellen (PVC) provided guidance during the study design and analysis. I co-authored both of these chapters with CMS and PVC. iii Abstract Many biogeochemical reactions controlling surface water and groundwater quality, as well as greenhouse gas emissions and carbon turnover rates, are catalyzed by microorganisms. Representing the thermodynamic (or bioenergetic) constraints on the reduction-oxidation reactions carried out by microorganisms in the subsurface is essential to understand and predict how microbial activity affects the environmental fate and transport of chemicals. While organic compounds are often considered to be the primary electron donors (EDs) in the subsurface, many microorganisms use inorganic EDs and are capable of autotrophic carbon fixation. Furthermore, many microorganisms and communities are likely capable of mixotrophy, switching between heterotrophic and autotrophic metabolisms according to the environmental conditions and energetic substrates available to them. -
Sulphate-Reducing Bacteria's Response to Extreme Ph Environments and the Effect of Their Activities on Microbial Corrosion
applied sciences Review Sulphate-Reducing Bacteria’s Response to Extreme pH Environments and the Effect of Their Activities on Microbial Corrosion Thi Thuy Tien Tran 1 , Krishnan Kannoorpatti 1,* , Anna Padovan 2 and Suresh Thennadil 1 1 Energy and Resources Institute, College of Engineering, Information Technology and Environment, Charles Darwin University, Darwin, NT 0909, Australia; [email protected] (T.T.T.T.); [email protected] (S.T.) 2 Research Institute for the Environment and Livelihoods, College of Engineering, Information Technology and Environment, Charles Darwin University, Darwin, NT 0909, Australia; [email protected] * Correspondence: [email protected] Abstract: Sulphate-reducing bacteria (SRB) are dominant species causing corrosion of various types of materials. However, they also play a beneficial role in bioremediation due to their tolerance of extreme pH conditions. The application of sulphate-reducing bacteria (SRB) in bioremediation and control methods for microbiologically influenced corrosion (MIC) in extreme pH environments requires an understanding of the microbial activities in these conditions. Recent studies have found that in order to survive and grow in high alkaline/acidic condition, SRB have developed several strategies to combat the environmental challenges. The strategies mainly include maintaining pH homeostasis in the cytoplasm and adjusting metabolic activities leading to changes in environmental pH. The change in pH of the environment and microbial activities in such conditions can have a Citation: Tran, T.T.T.; Kannoorpatti, significant impact on the microbial corrosion of materials. These bacteria strategies to combat extreme K.; Padovan, A.; Thennadil, S. pH environments and their effect on microbial corrosion are presented and discussed. -
An Improved Model of Carbon and Nutrient Dynamics in the Microbial Food Web in Marine Enclosures
AQUATIC MICROBIAL ECOLOGY Vol. 14: 91-108.1998 Published January 2 Aquat Microb Ecol An improved model of carbon and nutrient dynamics in the microbial food web in marine enclosures 'Ecological Modelling Centre, Joint Department of Danish Hydraulic Institute and VKI, Agern Alle 5, DK-2970 Harsholrn, Denmark 'VKI, Agern All6 11, DK-2970 Harsholrn, Denmark 3National Environmental Research Institute, PO Box 358, Frederiksborgvej 399, DK-4000 Roskilde, Denmark ABSTRACT: A description of an improved dynamic simulation model of a marine enclosure 1s given. New features In the model are the inclusion of picoalgae and rnixotrophs; the ability of bacteria to take up dissolved inorganic nutrients directly; and, for the phytoplankton functional groups, the inclusion of luxury uptake and the decoupling of the nutrient uptake dynamics from carbon-assimilat~ondynamics. This last feature implies dynamically variable phosphorus/carbon and nitrogedcarbon ratios. The model was calibrated with experimental results from enclosure experiments carried out in Knebel Vig, a shallow microtidal land-locked fjord in Denmark, and verified with results from enclosure experi- ments in Hylsfjord, a deep and salinity-stratified Norwegian fjord. Both observations and model simu- lation~showed dominance of a microbial food web in control enclosures with low productivity. In N- and P-enriched enclosures a classical food web developed, while an intermediate system was found in N-, P- and Si-enriched enclosures. Mixotrophic flagellates were most important in the nutrient-limited control enclosures where they accounted for 49% of the pigmented biomass and about 48% of the primary production. Lumping the mixotrophs in the simulation model with either the autotrophic or the heterotrophic functional groups reduced total primary production by 74 %. -
Tree Scale: 1 D Bacteria P Desulfobacterota C Jdfr-97 O Jdfr-97 F Jdfr-97 G Jdfr-97 S Jdfr-97 Sp002010915 WGS ID MTPG01
d Bacteria p Desulfobacterota c Thermodesulfobacteria o Thermodesulfobacteriales f Thermodesulfobacteriaceae g Thermodesulfobacterium s Thermodesulfobacterium commune WGS ID JQLF01 d Bacteria p Desulfobacterota c Thermodesulfobacteria o Thermodesulfobacteriales f Thermodesulfobacteriaceae g Thermosulfurimonas s Thermosulfurimonas dismutans WGS ID LWLG01 d Bacteria p Desulfobacterota c Desulfofervidia o Desulfofervidales f DG-60 g DG-60 s DG-60 sp001304365 WGS ID LJNA01 ID WGS sp001304365 DG-60 s DG-60 g DG-60 f Desulfofervidales o Desulfofervidia c Desulfobacterota p Bacteria d d Bacteria p Desulfobacterota c Desulfofervidia o Desulfofervidales f Desulfofervidaceae g Desulfofervidus s Desulfofervidus auxilii RS GCF 001577525 1 001577525 GCF RS auxilii Desulfofervidus s Desulfofervidus g Desulfofervidaceae f Desulfofervidales o Desulfofervidia c Desulfobacterota p Bacteria d d Bacteria p Desulfobacterota c Thermodesulfobacteria o Thermodesulfobacteriales f Thermodesulfatatoraceae g Thermodesulfatator s Thermodesulfatator atlanticus WGS ID ATXH01 d Bacteria p Desulfobacterota c Desulfobacteria o Desulfatiglandales f NaphS2 g 4484-190-2 s 4484-190-2 sp002050025 WGS ID MVDB01 ID WGS sp002050025 4484-190-2 s 4484-190-2 g NaphS2 f Desulfatiglandales o Desulfobacteria c Desulfobacterota p Bacteria d d Bacteria p Desulfobacterota c Thermodesulfobacteria o Thermodesulfobacteriales f Thermodesulfobacteriaceae g QOAM01 s QOAM01 sp003978075 WGS ID QOAM01 d Bacteria p Desulfobacterota c BSN033 o UBA8473 f UBA8473 g UBA8473 s UBA8473 sp002782605 WGS -
1 Characterization of Sulfur Metabolizing Microbes in a Cold Saline Microbial Mat of the Canadian High Arctic Raven Comery Mast
Characterization of sulfur metabolizing microbes in a cold saline microbial mat of the Canadian High Arctic Raven Comery Master of Science Department of Natural Resource Sciences Unit: Microbiology McGill University, Montreal July 2015 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master in Science © Raven Comery 2015 1 Abstract/Résumé The Gypsum Hill (GH) spring system is located on Axel Heiberg Island of the High Arctic, perennially discharging cold hypersaline water rich in sulfur compounds. Microbial mats are found adjacent to channels of the GH springs. This thesis is the first detailed analysis of the Gypsum Hill spring microbial mats and their microbial diversity. Physicochemical analyses of the water saturating the GH spring microbial mat show that in summer it is cold (9°C), hypersaline (5.6%), and contains sulfide (0-10 ppm) and thiosulfate (>50 ppm). Pyrosequencing analyses were carried out on both 16S rRNA transcripts (i.e. cDNA) and genes (i.e. DNA) to investigate the mat’s community composition, diversity, and putatively active members. In order to investigate the sulfate reducing community in detail, the sulfite reductase gene and its transcript were also sequenced. Finally, enrichment cultures for sulfate/sulfur reducing bacteria were set up and monitored for sulfide production at cold temperatures. Overall, sulfur metabolism was found to be an important component of the GH microbial mat system, particularly the active fraction, as 49% of DNA and 77% of cDNA from bacterial 16S rRNA gene libraries were classified as taxa capable of the reduction or oxidation of sulfur compounds. -
MIXOTROPHY in FRESHWATER FOOD WEBS a Dissertation
MIXOTROPHY IN FRESHWATER FOOD WEBS A Dissertation Submitted to the Temple University Graduate Board In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY by Sarah B. DeVaul May 2016 Examining Committee Members: Robert W. Sanders, Advisory Chair, Biology Erik E. Cordes, Biology Amy Freestone, Biology Dale Holen, External Member, Penn State Worthington Scranton © Copyright 2016 by Sarah B. DeVaul All Rights Reserved ii ABSTRACT Environmental heterogeneity in both space and time has significant repercussions for community structure and ecosystem processes. Dimictic lakes provide examples of vertically structured ecosystems that oscillate between stable and mixed thermal layers on a seasonal basis. Vertical patterns in abiotic conditions vary during both states, but with differing degrees of variation. For example, during summer thermal stratification there is high spatial heterogeneity in temperature, nutrients, dissolved oxygen and photosynthetically active radiation. The breakdown of stratification and subsequent mixing of the water column in fall greatly reduces the stability of the water column to a vertical gradient in light. Nutrients and biomass that were otherwise constrained to the depths are also suspended, leading to a boom in productivity. Freshwater lakes are teeming with microbial diversity that responds to the dynamic environment in a seemingly predictable manner. Although such patterns have been well studied for nanoplanktonic phototrophic and heterotrophic populations, less work has been done to integrate the influence of mixotrophic nutrition to the protistan assemblage. Phagotrophy by phytoplankton increases the complexity of nutrient and energy flow due to their dual functioning as producers and consumers. The role of mixotrophs in freshwater planktonic communities also varies depending on the relative balance between taxon-specific utilization of carbon and energy sources that ranges widely between phototrophy and heterotrophy. -
A Novel Bacterial Thiosulfate Oxidation Pathway Provides a New Clue About the Formation of Zero-Valent Sulfur in Deep Sea
The ISME Journal (2020) 14:2261–2274 https://doi.org/10.1038/s41396-020-0684-5 ARTICLE A novel bacterial thiosulfate oxidation pathway provides a new clue about the formation of zero-valent sulfur in deep sea 1,2,3,4 1,2,4 3,4,5 1,2,3,4 4,5 1,2,4 Jing Zhang ● Rui Liu ● Shichuan Xi ● Ruining Cai ● Xin Zhang ● Chaomin Sun Received: 18 December 2019 / Revised: 6 May 2020 / Accepted: 12 May 2020 / Published online: 26 May 2020 © The Author(s) 2020. This article is published with open access Abstract Zero-valent sulfur (ZVS) has been shown to be a major sulfur intermediate in the deep-sea cold seep of the South China Sea based on our previous work, however, the microbial contribution to the formation of ZVS in cold seep has remained unclear. Here, we describe a novel thiosulfate oxidation pathway discovered in the deep-sea cold seep bacterium Erythrobacter flavus 21–3, which provides a new clue about the formation of ZVS. Electronic microscopy, energy-dispersive, and Raman spectra were used to confirm that E. flavus 21–3 effectively converts thiosulfate to ZVS. We next used a combined proteomic and genetic method to identify thiosulfate dehydrogenase (TsdA) and thiosulfohydrolase (SoxB) playing key roles in the conversion of thiosulfate to ZVS. Stoichiometric results of different sulfur intermediates further clarify the function of TsdA − – – – − 1234567890();,: 1234567890();,: in converting thiosulfate to tetrathionate ( O3S S S SO3 ), SoxB in liberating sulfone from tetrathionate to form ZVS and sulfur dioxygenases (SdoA/SdoB) in oxidizing ZVS to sulfite under some conditions. -
Plant Sulphur Metabolism Is Stimulated by Photorespiration
ARTICLE https://doi.org/10.1038/s42003-019-0616-y OPEN Plant sulphur metabolism is stimulated by photorespiration Cyril Abadie1,2 & Guillaume Tcherkez 1* 1234567890():,; Intense efforts have been devoted to describe the biochemical pathway of plant sulphur (S) assimilation from sulphate. However, essential information on metabolic regulation of S assimilation is still lacking, such as possible interactions between S assimilation, photo- synthesis and photorespiration. In particular, does S assimilation scale with photosynthesis thus ensuring sufficient S provision for amino acids synthesis? This lack of knowledge is problematic because optimization of photosynthesis is a common target of crop breeding and furthermore, photosynthesis is stimulated by the inexorable increase in atmospheric CO2. Here, we used high-resolution 33S and 13C tracing technology with NMR and LC-MS to access direct measurement of metabolic fluxes in S assimilation, when photosynthesis and photorespiration are varied via the gaseous composition of the atmosphere (CO2,O2). We show that S assimilation is stimulated by photorespiratory metabolism and therefore, large photosynthetic fluxes appear to be detrimental to plant cell sulphur nutrition. 1 Research School of Biology, Australian National University, Canberra, ACT 2601, Australia. 2Present address: IRHS (Institut de Recherche en Horticulture et Semences), UMR 1345, INRA, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, 49071 Angers, Beaucouzé, France. *email: guillaume. [email protected] COMMUNICATIONS BIOLOGY -
The Relation of Sulfur Metabolism to Acid-Base Balance and Electrolyte Excretion: the Effects of Dl-Methionine in Normal Man
THE RELATION OF SULFUR METABOLISM TO ACID-BASE BALANCE AND ELECTROLYTE EXCRETION: THE EFFECTS OF DL-METHIONINE IN NORMAL MAN Jacob Lemann Jr., Arnold S. Relman J Clin Invest. 1959;38(12):2215-2223. https://doi.org/10.1172/JCI104001. Research Article Find the latest version: https://jci.me/104001/pdf THE RELATION OF SULFUR METABOLISM TO ACID-BASE BALANCE AND ELECTROLYTE EXCRETION: THE EFFECTS -OF DL-METHIONINE IN NORMAL MAN *t By JACOB LEMANN, JR. AND ARNOLD S. RELMAN WITH THE TECHNICAL ASSISTANCE OF HELEN P. CONNORS (From the Department of Medicine, Boston University School of Medicine, and the Evans Memorial Department, Massachusetts Memorial Hospitals, Boston, Mass.) (Submitted for publication June 15, 1959; accepted August 31, 1959) It has been known for many years that most of information about the interrelationships of changes the inorganic sulfate in the urine is derived from in systemic acid-base balance, urinary excretion the oxidation of sulfur-containing organic com- of acid and electrolytes and the metabolism of pounds. In the classical calculation of the "acid- organic sulfur is currently available. The present base balance" of food each Mole of sulfur in the work was therefore designed to clarify this prob- ash is assigned an acid equivalence of two, thus lem by carrying out balance studies of the effects assuming its quantitative conversion to sulfuric of large loads of DL-methionine in normal men. acid or to some other strong acid or acids which yield a total of two equivalents of hydrogen ion METHODS AND MATERIALS per Mole of sulfur (1). Five balance studies were performed on three healthy Until recently, however, there have been virtu- young adult males who carried on their usual daily ally no studies of the relationship of sulfur metabo- activities during the period of observation. -
Advance View Proofs
Microbes Environ. Vol. 00, No. 0, 000-000, 2019 https://www.jstage.jst.go.jp/browse/jsme2 doi:10.1264/jsme2.ME18153 Stratification of Sulfur Species and Microbial Community in Launched Marine Sediment by an Improved Sulfur-Fractionation Method and 16S rRNA Gene Sequencing HIDEYUKI IHARA1,2, TOMOYUKI HORI2*, TOMO AOYAGI2, HIROKI HOSONO3†, MITSURU TAKASAKI4, and YOKO KATAYAMA3††* 1United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3–5–8 Saiwai-cho, Fuchu, Tokyo 183–8509, Japan; 2Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16–1 Onogawa, Tsukuba, Ibaraki 305–8569, Japan; 3Institute of Agriculture, Tokyo University of Agriculture and Technology, 3–5–8 Saiwai-cho, Fuchu, Tokyo 183–8509, Japan; and 4Department of Food and Environmental Sciences, Faculty of Science and Engineering, Ishinomaki Senshu University, 1 Shinmito, Minamisakai, Ishinomaki, Miyagi 986–8580, Japan (Received November 10, 2018—Accepted March 6, 2019—Published online June 11, 2019) With a focus on marine sediment launched by the tsunami accompanying the Great East Japan Earthquake, we examined the vertical (i.e., depths of 0–2, 2–10, and 10–20 mm) profiles of reduced inorganic sulfur species and microbial community using a newly improved sulfur-fractionation method and 16S rRNA gene sequencing. S0 accumulated at the largest quantities at a depth of 2–10 mm, while the reduced forms of sulfur, such as iron(II) sulfide and pyrite, were abundant below 2 mm of the sediment. Operational taxonomic units (OTUs) related to chemolithotrophically sulfur-oxidizing Sulfurimonas denitrificans and Sulfurimonas autotrophica were only predominant at 2–10 mm, suggesting the involvement of these OTUs in the oxidation of sulfide to S0.