Running Head: Mixotrophy in planktonic communities Title: Intraguild predation enables coexistence of competing phytoplankton in a well-mixed water column Authors: Holly V. Moeller1,2,3,∗, Michael G. Neubert1, and Matthew D. Johnson1 1. Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA; 2. Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada. 3. Current Address: Department of Ecology, Evolution, & Marine Biology, University of Califor- nia, Santa Barbara, Santa Barbara, California 93106, USA; ∗ Corresponding author; email:
[email protected] Manuscript elements: 5 figures, 1 table, online appendix A (including figures A1-9). Figures 1, 4, 5, and A1-A3 are in color. Manuscript type: Article 1 Abstract: Resource competition theory predicts that when two species compete for a single, finite resource, 3 the better competitor should exclude the other. However, in some cases, weaker competitors can persist through intraguild predation, i.e., by eating their stronger competitor. Mixotrophs, species that meet their carbon demand by combining photosynthesis and phagotrophic heterotro- 6 phy, may function as intraguild predators when they consume the phototrophs with which they compete for light. Thus, theory predicts that mixotrophy may allow for coexistence of two species on a single limiting resource. We tested this prediction by developing a new mathematical model 9 for a unicellular mixotroph and phytoplankter that compete for light, and comparing the model’s predictions with a laboratory experimental system. We find that, like other intraguild predators, mixotrophs can persist when an ecosystem is sufficiently productive (i.e., the supply of the lim- 12 iting resource, light, is relatively high), or when species interactions are strong (i.e., attack rates and conversion efficiencies are high).