Computational Modelling of Visual Illusions

Total Page:16

File Type:pdf, Size:1020Kb

Computational Modelling of Visual Illusions 1 Computational Modelling of Visual Illusions Astrid Zeman, B.Eng (Software Hons I) Dip. Eng. Prac Department of Cognitive Science ARC Centre of Excellence in Cognition and its Disorders Faculty of Human Sciences Macquarie University, Sydney, Australia This thesis is presented for the degree of Doctor of Philosophy (PhD) February, 2015 2 Table of Contents Computational Modelling of Visual Illusions ......................................................................... 1 Thesis Abstract .......................................................................................................................... 5 Statement of Candidate ............................................................................................................ 6 Acknowledgments ..................................................................................................................... 7 1 Introduction ......................................................................................................................... 9 1.1 General overview ........................................................................................................ 10 1.2 Defining illusions ........................................................................................................ 14 1.2.1 A general definition ............................................................................................... 14 1.2.2 Illusions as source reconstructions ........................................................................ 16 1.3 Categorising illusions ................................................................................................. 19 1.4 Aims, strengths and limitations of models .................................................................. 22 1.4.1 Limitations of Models ........................................................................................... 22 1.4.2 From theories to models and back ......................................................................... 25 1.5 Marr’s different levels of description .......................................................................... 26 1.6 Biological analogies ................................................................................................... 28 1.6.1 Historical influences from biology ........................................................................ 28 1.6.2 Biologically inspired systems ................................................................................ 31 1.7 Computational models of vision .................................................................................. 32 1.7.1 Deterministic versus probabilistic ......................................................................... 32 1.8 Pre-cortical models ..................................................................................................... 34 1.8.1 Historical context .................................................................................................. 34 1.8.2 Current models applied to illusions ....................................................................... 36 1.8.3 Our model selection: Exponential filter family model .......................................... 38 1.9 Ventral stream models ................................................................................................ 40 1.9.1 General properties ................................................................................................. 40 1.9.2 Hierarchical models in historical context .............................................................. 42 1.9.3 Our model selection: feed-forward model HMAX ............................................... 43 1.9.4 Feedback models ................................................................................................... 45 1.10 Existing computational models of visual illusions .................................................... 46 3 1.10.1 How to model illusions ........................................................................................ 46 1.11 Scope of this thesis .................................................................................................... 48 1.12 Thesis layout ............................................................................................................. 49 1.13 References ................................................................................................................. 49 2 Study 1 ............................................................................................................................... 60 Abstract ................................................................................................................................ 61 2.1 Introduction ................................................................................................................. 61 2.2 Methods ....................................................................................................................... 65 2.2.1 HMAX Layer Descriptions ................................................................................... 66 2.2.2 Task Description .................................................................................................... 68 2.2.3 Experimental Setup ............................................................................................... 68 2.3 Results ......................................................................................................................... 70 2.3.1 Experiment I: Control ............................................................................................ 70 2.3.2 Experiment II: Illusion Effect ................................................................................ 71 2.3.3 Experiment III: Illusion Strength Affected by Angle ............................................ 73 2.4 Discussion ................................................................................................................... 76 2.5 References ................................................................................................................... 84 2.6 Appendix: Determining whether low spatial frequency information may be influencing the SVM ................................................................................................................................ 87 2.6.1 Stage I: Extracting the highest weights entering the SVM layer .......................... 87 2.6.2 Stage II: Identify the spatial scale of the top contributing features in C2. ............ 89 3 Study 2 ............................................................................................................................... 92 3.1 Abstract ....................................................................................................................... 93 3.2 Introduction ................................................................................................................. 94 3.3 Materials and Methods ............................................................................................... 99 3.3.1 Computational model: HMAX .............................................................................. 99 3.3.2 Stimuli: Training and test sets (Control and Müller-Lyer) .................................. 100 3.3.3 Procedure: Learning, parameterization, illusion classification ........................... 103 3.4 Results ....................................................................................................................... 104 3.4.1 Experiment I: Classification of ML images after each level of HMAX ............. 104 3.4.2 Experiment II: HMAX classification of ML images with reduced variance ...... 110 4 3.5 Discussion ................................................................................................................. 112 3.6 References ................................................................................................................. 117 4 Study 3 ............................................................................................................................. 121 Abstract .............................................................................................................................. 122 4.1 Introduction ............................................................................................................... 123 4.2 Material & Methods .................................................................................................. 129 4.2.1 Stimuli ................................................................................................................. 129 4.2.2 Model ................................................................................................................... 132 4.3 Results ....................................................................................................................... 138 4.4 Discussion ................................................................................................................. 144 4.5 References ................................................................................................................. 154 5 Discussion & Conclusion ................................................................................................ 158 5.1 Chapter overview ...................................................................................................... 159 5.2 Summary and integration of studies .......................................................................... 159 5.2.1. Each of the studies in summary .........................................................................
Recommended publications
  • Neuro-Opthalmology (Developments in Ophthalmology, Vol
    Neuro-Ophthalmology Developments in Ophthalmology Vol. 40 Series Editor W. Behrens-Baumann, Magdeburg Neuro- Ophthalmology Neuronal Control of Eye Movements Volume Editors Andreas Straube, Munich Ulrich Büttner, Munich 39 figures, and 3 tables, 2007 Basel · Freiburg · Paris · London · New York · Bangalore · Bangkok · Singapore · Tokyo · Sydney Andreas Straube Ulrich Büttner Department of Neurology Department of Neurology Klinikum Grosshadern Klinikum Grosshadern Marchioninistrasse 15 Marchioninistrasse 15 DE–81377 Munich DE–81377 Munich Library of Congress Cataloging-in-Publication Data Neuro-ophthalmology / volume editors, Andreas Straube, Ulrich Büttner. p. ; cm. – (Developments in ophthalmology, ISSN 0250-3751 ; v. 40) Includes bibliographical references and indexes. ISBN 978-3-8055-8251-3 (hardcover : alk. paper) 1. Neuroophthalmology. I. Straube, Andreas. II. Büttner, U. III. Series. [DNLM: 1. Eye Movements–physiology. 2. Ocular Motility Disorders. 3. Oculomotor Muscles–physiology. 4. Oculomotor Nerve-physiology. W1 DE998NG v.40 2007 / WW 400 N4946 2007] RE725.N45685 2007 617.7Ј32–dc22 2006039568 Bibliographic Indices. This publication is listed in bibliographic services, including Current Contents® and Index Medicus. Disclaimer. The statements, options and data contained in this publication are solely those of the individ- ual authors and contributors and not of the publisher and the editor(s). The appearance of advertisements in the book is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements. Drug Dosage. The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication.
    [Show full text]
  • Role of Stereopsis Losses in Older Adults’ Performance
    ROLE OF STEREOPSIS LOSSES IN OLDER ADULTS’ PERFORMANCE ON THE FINE-GRAIN MOVEMENT ILLUSION TASK by Marlena Pearson Honours Bachelor of Science, Psychology, Nipissing University, North Bay, Ontario, 2014 Honours Bachelor of Arts, Criminal Justice, Nipissing University, North Bay, Ontario, 2014 A thesis presented to Ryerson University in partial fulfillment of the requirement for the degree of Master of Arts in the program of Psychology Toronto, Ontario, Canada, 2017 © Marlena Pearson, 2017 Author’s Declaration AUTHOR'S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I authorize Ryerson University to lend this thesis to other institutions or individuals for the purpose of scholarly research I further authorize Ryerson University to reproduce this thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research. I understand that my thesis may be made electronically available to the public. ii Role of Stereopsis Losses in Older Adults’ Performance on the Fine-Grain Movement Illusion Task Master of Arts, 2017 Marlena Pearson Psychology, Ryerson University Abstract Accurate motion perception is necessary for older adults to safely navigate their environments. Yet it is not clear how stereopsis losses contribute to findings of motion perception deficits in older adults. To assess the contribution of stereopsis losses, three groups (younger adults, older adults with intact stereopsis, older adults with poor stereopsis) were recruited for a fine-grain movement task.
    [Show full text]
  • Polarity Selectivity of Spatial Interactions in Perceived Contrast
    Journal of Vision (2012) 12(2):3, 1–10 http://www.journalofvision.org/content/12/2/3 1 Polarity selectivity of spatial interactions in perceived contrast Department of Psychology, The University of Tokyo, Japan,& Human and Information Science Laboratory, Hiromi Sato NTT Communication Science Laboratories, NTT, Japan Human and Information Science Laboratory, Isamu Motoyoshi NTT Communication Science Laboratories, NTT, Japan Department of Psychology, Takao Sato The University of Tokyo, Japan The apparent contrast of a texture is reduced when surrounded by another texture with high contrast. This contrast–contrast phenomenon has been thought to be a result of spatial interactions between visual channels that encode contrast energy. In the present study, we show that contrast–contrast is selective to luminance polarity by using texture patterns composed of sparse elongated blobs. The apparent contrast of a texture of bright (dark) elements was substantially reduced only when it was surrounded by a texture of elements with the same polarity. This polarity specificity was not evident for textures with high element densities, which were similar to those used in previous studies, probably because such stimuli should inevitably activate both on- and off-type sensors. We also found that polarity-selective suppression decreased as the difference in orientation between the center and surround elements increased but remained for orthogonally oriented elements. These results suggest that the contrast–contrast illusion largely depends on spatial interactions between visual channels that are selective to on–off polarity and only weakly selective to orientation. Keywords: polarity selectivity, spatial interactions, perceived contrast Citation: Sato, H., Motoyoshi, I., & Sato, T.
    [Show full text]
  • Visual Context Processing in Schizophrenia
    Empirical Article Clinical Psychological Science 1(1) 5 –15 Visual Context Processing in Schizophrenia © The Author(s) 2013 Reprints and permission: sagepub.com/journalsPermissions.nav DOI: 10.1177/2167702612464618 http://cpx.sagepub.com Eunice Yang1,2, Duje Tadin3,4, Davis M. Glasser3, Sang Wook Hong1,5, Randolph Blake1,2, and Sohee Park1 1Department of Psychology, Vanderbilt University; 2Department of Brain and Cognitive Sciences, Seoul National University, Republic of Korea; 3Center for Visual Science and Department of Brain and Cognitive Sciences, University of Rochester; 4Department of Ophthalmology, University of Rochester; and 5Department of Psychology, Florida Atlantic University Abstract Abnormal perceptual experiences are central to schizophrenia, but the nature of these anomalies remains undetermined. We investigated contextual processing abnormalities across a comprehensive set of visual tasks. For perception of luminance, size, contrast, orientation, and motion, we quantified the degree to which the surrounding visual context altered a center stimulus’s appearance. Healthy participants showed robust contextual effects across all tasks, as evidenced by pronounced misperceptions of center stimuli. Schizophrenia patients exhibited intact contextual modulations of luminance and size but showed weakened contextual modulations of contrast, performing more accurately than controls. Strong motion and orientation context effects correlated with worse symptoms and social functioning. Importantly, the overall strength of contextual
    [Show full text]
  • Abstracts (PDF)
    Abstracts of the Psychonomic Society — Volume 12 — November 2007 48th Annual Meeting — November 15–18, 2007 — Long Beach, California Papers 1–7 Friday Morning Implicit Memory is a widely used experimental procedure that has been modeled in Regency ABC, Friday Morning, 8:00–9:20 order to obtain ostensibly separate measures for explicit memory and implicit memory. Existing models are critiqued here and a new con- Chaired by Neil W. Mulligan fidence process-dissociation (CPD) model is developed for a modi- University of North Carolina, Chapel Hill fied process-dissociation task that uses confidence ratings in con- junction with the usual old/new recognition response. With the new 8:00–8:15 (1) model there are several direct tests for the key assumptions of the stan- Attention and Auditory Implicit Memory. NEIL W. MULLIGAN, dard models for this task. Experimental results are reported here that University of North Carolina, Chapel Hill—Traditional theorizing are contrary to the critical assumptions of the earlier models for the stresses the importance of attentional state during encoding for later process-dissociation task. These results cast doubt on the suitability memory, based primarily on research with explicit memory. Recent re- of the process-dissociation procedure itself for obtaining separate search has investigated the role of attention in implicit memory in the measures for implicit and explicit memory. visual modality. The present experiments examined the effect of divided attention on auditory implicit memory, using auditory perceptual iden- Attentional Selection and Priming tification, word-stem completion, and word-fragment completion. Par- Regency DEFH, Friday Morning, 8:00–10:00 ticipants heard study words under full attention conditions or while si- multaneously carrying out a distractor task.
    [Show full text]
  • Bioplausible Multiscale Filtering in Retino-Cortical Processing As A
    Brain Informatics (2017) 4:271–293 DOI 10.1007/s40708-017-0072-8 Bioplausible multiscale filtering in retino-cortical processing as a mechanism in perceptual grouping Nasim Nematzadeh . David M. W. Powers . Trent W. Lewis Received: 25 January 2017 / Accepted: 23 August 2017 / Published online: 8 September 2017 Ó The Author(s) 2017. This article is an open access publication Abstract Why does our visual system fail to reconstruct Differences of Gaussians and the perceptual interaction of reality, when we look at certain patterns? Where do Geo- foreground and background elements. The model is a metrical illusions start to emerge in the visual pathway? variation of classical receptive field implementation for How far should we take computational models of vision simple cells in early stages of vision with the scales tuned with the same visual ability to detect illusions as we do? to the object/texture sizes in the pattern. Our results suggest This study addresses these questions, by focusing on a that this model has a high potential in revealing the specific underlying neural mechanism involved in our underlying mechanism connecting low-level filtering visual experiences that affects our final perception. Among approaches to mid- and high-level explanations such as many types of visual illusion, ‘Geometrical’ and, in par- ‘Anchoring theory’ and ‘Perceptual grouping’. ticular, ‘Tilt Illusions’ are rather important, being charac- terized by misperception of geometric patterns involving Keywords Visual perception Á Cognitive systems Á Pattern lines
    [Show full text]
  • Cognition Revised Edition 2015
    IIID Public Library Information Design 5 Cognition Revised edition 2015 Rune Pettersson Institute for infology IIID Public Library The “IIID Public Library” is a free resource for all who are interested in information design. This book was kindly donated by the author free of charge to visitors of the IIID Public Library / Website. International Institute for Information Design (IIID) designforum Wien, MQ/quartier 21 Museumsplatz 1, 1070 Wien, Austria www.iiid.net Information Design 5 Cognition Words Pictures Rune Pettersson * Institute for infology Information Design 5–Cognition Yin and yang, or yin-yang, is a concept used in Chinese philoso- phy to describe how seemingly opposite forces are intercon- nected and interdependent, and how they give rise to each other. Many natural dualities, such as life and death, light and dark, are thought of as physical manifestations of the concept. Yin and yang can also be thought of as complementary forces interacting to form a dynamic system in which the whole is greater than the parts. In information design, theory and prac- tice is an example where the whole is greater than the parts. In this book drawings and photos are my own, unless other information. ISBN 978-91-85334-30-8 © Rune Pettersson Tullinge 2015 2 Preface Information design is a multi-disciplinary, multi-dimensional, and worldwide consideration with influences from areas such as language, art and aesthetics, information, communication, be- haviour and cognition, business and law, as well as media pro- duction technologies. Since my retirement I have edited and revised sections of my earlier books, conference papers and reports about informa- tion design, message design, visual communication and visual literacy.
    [Show full text]
  • Getting Signals Into the Brain: Visual Prosthetics Through Thalamic Microstimulation
    Neurosurg Focus 27 (1):E6, 2009 Getting signals into the brain: visual prosthetics through thalamic microstimulation JOHN S. PEZARI S , PH.D., AN D EMA D N. ES KAN D AR , M.D. Department of Neurosurgery, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts Common causes of blindness are diseases that affect the ocular structures, such as glaucoma, retinitis pigmen- tosa, and macular degeneration, rendering the eyes no longer sensitive to light. The visual pathway, however, as a pre- dominantly central structure, is largely spared in these cases. It is thus widely thought that a device-based prosthetic approach to restoration of visual function will be effective and will enjoy similar success as cochlear implants have for restoration of auditory function. In this article the authors review the potential locations for stimulation electrode placement for visual prostheses, assessing the anatomical and functional advantages and disadvantages of each. Of particular interest to the neurosurgical community is placement of deep brain stimulating electrodes in thalamic structures that has shown substantial promise in an animal model. The theory of operation of visual prostheses is discussed, along with a review of the current state of knowledge. Finally, the visual prosthesis is proposed as a model for a general high-fidelity machine-brain interface.(DOI: 10.3171/2009.4.FOCUS0986) KEY WOR ds • visual prosthesis • deep brain stimulation • visual function N this article we review the current state of visual Evaluating Points Along the Early prosthetics with particular attention to the approaches Visual Pathway as Stimulation Targets that include neurosurgical methodologies. I There are 6 locations along the visual pathway with potential for functional restoration of sight through mi- Background: Causes of Blindness crostimulation as depicted in Fig.
    [Show full text]
  • Download Thesis
    This electronic thesis or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ Contextual Processing in Psychosis and Cannabis use Kane, Fergus Awarding institution: King's College London The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. END USER LICENCE AGREEMENT Unless another licence is stated on the immediately following page this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ You are free to copy, distribute and transmit the work Under the following conditions: Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. No Derivative Works - You may not alter, transform, or build upon this work. Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 05. Oct. 2021 This electronic theses or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ Title: Contextual Processing in Psychosis and Cannabis use Author: Kane, Fergus The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement.
    [Show full text]
  • S-Cone Visual Stimuli Activate Superior Colliculus Neurons in Old World Monkeys: Implications for Understanding Blindsight
    S-cone Visual Stimuli Activate Superior Colliculus Neurons in Old World Monkeys: Implications for Understanding Blindsight Nathan Hall and Carol Colby Downloaded from http://mitprc.silverchair.com/jocn/article-pdf/26/6/1234/1781060/jocn_a_00555.pdf by MIT Libraries user on 17 May 2021 Abstract ■ The superior colliculus (SC) is thought to be unresponsive calibrated psychophysically in each animal and at each in- to stimuli that activate only short wavelength-sensitive cones dividual spatial location used in experimental testing [Hall, (S-cones) in the retina. The apparent lack of S-cone input to N. J., & Colby, C. L. Psychophysical definition of S-cone stim- the SC was recognized by Sumner et al. [Sumner, P., Adamjee, uli in the macaque. Journal of Vision, 13, 2013]. We recorded T., & Mollon, J. D. Signals invisible to the collicular and magno- from 178 visually responsive neurons in two awake, behaving cellular pathways can capture visual attention. Current Biology, rhesus monkeys. Contrary to the prevailing view, we found 12, 1312–1316, 2002] as an opportunity to test SC function. The that nearly all visual SC neurons can be activated by S-cone- idea is that visual behavior dependent on the SC should be specific visual stimuli. Most of these neurons were sensitive impaired when S-cone stimuli are used because they are in- to the degree of S-cone contrast. Of 178 visual SC neurons, visible to the SC. The SC plays a critical role in blindsight. If 155 (87%) had stronger responses to a high than to a low S- the SC is insensitive to S-cone stimuli blindsight behavior cone contrast.
    [Show full text]
  • Optical Illusion - Wikipedia, the Free Encyclopedia
    Optical illusion - Wikipedia, the free encyclopedia Try Beta Log in / create account article discussion edit this page history [Hide] Wikipedia is there when you need it — now it needs you. $0.6M USD $7.5M USD Donate Now navigation Optical illusion Main page From Wikipedia, the free encyclopedia Contents Featured content This article is about visual perception. See Optical Illusion (album) for Current events information about the Time Requiem album. Random article An optical illusion (also called a visual illusion) is characterized by search visually perceived images that differ from objective reality. The information gathered by the eye is processed in the brain to give a percept that does not tally with a physical measurement of the stimulus source. There are three main types: literal optical illusions that create images that are interaction different from the objects that make them, physiological ones that are the An optical illusion. The square A About Wikipedia effects on the eyes and brain of excessive stimulation of a specific type is exactly the same shade of grey Community portal (brightness, tilt, color, movement), and cognitive illusions where the eye as square B. See Same color Recent changes and brain make unconscious inferences. illusion Contact Wikipedia Donate to Wikipedia Contents [hide] Help 1 Physiological illusions toolbox 2 Cognitive illusions 3 Explanation of cognitive illusions What links here 3.1 Perceptual organization Related changes 3.2 Depth and motion perception Upload file Special pages 3.3 Color and brightness
    [Show full text]
  • Ibn Al-‐Haytham the Man Who Discovered How We
    IBN AL-HAYTHAM THE MAN WHO DISCOVERED HOW WE SEE IBN AL-HAYTHAM EDUCATIONAL WORKSHOPS 1 Ibn al-Haytham was a pioneering scientific thinker who made important contributions to the understanding of vision, optics and light. His methodology of investigation, in particular using experiment to verify theory, shows certain similarities to what later became known as the modern scientific method. 2 Themes and Learning Objectives The educational initiative "1001 Inventions and the World of Ibn Al-Haytham" celebrates the legacy of Ibn al-Haytham. The global initiative was launched by 1001 Inventions in partnership with UNESCO in 2015 in celebration of the United Nations International Year of Light. The initiative engaged audiences around the world with events at the UNESCO headquarters in Paris, United Nations in New York, the China Science Festival in Beijing, the Royal Society in London and in more than ten other cities around the world. Inspired by Ibn al-Haytham, exhibits, hands-on workshops, science demonstrations, films and learning materials take children on a fascinating journey into the past, sparking their interest in science while promoting integration and intercultural appreciation. This document includes a range of hands-on workshops and science demonstrations, with links to fantastic resources, for understanding the fundamental principles of light, optics and vision. The activities help engage young people to make, design and tinker while better understanding the significant contributions of Ibn al-Haytham to our understanding of both vision and light. Learning Objectives ü Inspire young people to study science, technology, engineering and maths (STEM) and pursue careers in science. ü Improve awareness of light, optics and vision through Ibn al-Haytham’s discoveries.
    [Show full text]