Computational Modelling of Visual Illusions

Computational Modelling of Visual Illusions

1 Computational Modelling of Visual Illusions Astrid Zeman, B.Eng (Software Hons I) Dip. Eng. Prac Department of Cognitive Science ARC Centre of Excellence in Cognition and its Disorders Faculty of Human Sciences Macquarie University, Sydney, Australia This thesis is presented for the degree of Doctor of Philosophy (PhD) February, 2015 2 Table of Contents Computational Modelling of Visual Illusions ......................................................................... 1 Thesis Abstract .......................................................................................................................... 5 Statement of Candidate ............................................................................................................ 6 Acknowledgments ..................................................................................................................... 7 1 Introduction ......................................................................................................................... 9 1.1 General overview ........................................................................................................ 10 1.2 Defining illusions ........................................................................................................ 14 1.2.1 A general definition ............................................................................................... 14 1.2.2 Illusions as source reconstructions ........................................................................ 16 1.3 Categorising illusions ................................................................................................. 19 1.4 Aims, strengths and limitations of models .................................................................. 22 1.4.1 Limitations of Models ........................................................................................... 22 1.4.2 From theories to models and back ......................................................................... 25 1.5 Marr’s different levels of description .......................................................................... 26 1.6 Biological analogies ................................................................................................... 28 1.6.1 Historical influences from biology ........................................................................ 28 1.6.2 Biologically inspired systems ................................................................................ 31 1.7 Computational models of vision .................................................................................. 32 1.7.1 Deterministic versus probabilistic ......................................................................... 32 1.8 Pre-cortical models ..................................................................................................... 34 1.8.1 Historical context .................................................................................................. 34 1.8.2 Current models applied to illusions ....................................................................... 36 1.8.3 Our model selection: Exponential filter family model .......................................... 38 1.9 Ventral stream models ................................................................................................ 40 1.9.1 General properties ................................................................................................. 40 1.9.2 Hierarchical models in historical context .............................................................. 42 1.9.3 Our model selection: feed-forward model HMAX ............................................... 43 1.9.4 Feedback models ................................................................................................... 45 1.10 Existing computational models of visual illusions .................................................... 46 3 1.10.1 How to model illusions ........................................................................................ 46 1.11 Scope of this thesis .................................................................................................... 48 1.12 Thesis layout ............................................................................................................. 49 1.13 References ................................................................................................................. 49 2 Study 1 ............................................................................................................................... 60 Abstract ................................................................................................................................ 61 2.1 Introduction ................................................................................................................. 61 2.2 Methods ....................................................................................................................... 65 2.2.1 HMAX Layer Descriptions ................................................................................... 66 2.2.2 Task Description .................................................................................................... 68 2.2.3 Experimental Setup ............................................................................................... 68 2.3 Results ......................................................................................................................... 70 2.3.1 Experiment I: Control ............................................................................................ 70 2.3.2 Experiment II: Illusion Effect ................................................................................ 71 2.3.3 Experiment III: Illusion Strength Affected by Angle ............................................ 73 2.4 Discussion ................................................................................................................... 76 2.5 References ................................................................................................................... 84 2.6 Appendix: Determining whether low spatial frequency information may be influencing the SVM ................................................................................................................................ 87 2.6.1 Stage I: Extracting the highest weights entering the SVM layer .......................... 87 2.6.2 Stage II: Identify the spatial scale of the top contributing features in C2. ............ 89 3 Study 2 ............................................................................................................................... 92 3.1 Abstract ....................................................................................................................... 93 3.2 Introduction ................................................................................................................. 94 3.3 Materials and Methods ............................................................................................... 99 3.3.1 Computational model: HMAX .............................................................................. 99 3.3.2 Stimuli: Training and test sets (Control and Müller-Lyer) .................................. 100 3.3.3 Procedure: Learning, parameterization, illusion classification ........................... 103 3.4 Results ....................................................................................................................... 104 3.4.1 Experiment I: Classification of ML images after each level of HMAX ............. 104 3.4.2 Experiment II: HMAX classification of ML images with reduced variance ...... 110 4 3.5 Discussion ................................................................................................................. 112 3.6 References ................................................................................................................. 117 4 Study 3 ............................................................................................................................. 121 Abstract .............................................................................................................................. 122 4.1 Introduction ............................................................................................................... 123 4.2 Material & Methods .................................................................................................. 129 4.2.1 Stimuli ................................................................................................................. 129 4.2.2 Model ................................................................................................................... 132 4.3 Results ....................................................................................................................... 138 4.4 Discussion ................................................................................................................. 144 4.5 References ................................................................................................................. 154 5 Discussion & Conclusion ................................................................................................ 158 5.1 Chapter overview ...................................................................................................... 159 5.2 Summary and integration of studies .......................................................................... 159 5.2.1. Each of the studies in summary .........................................................................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    209 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us