Gaze-Contingent Visual Communication

Total Page:16

File Type:pdf, Size:1020Kb

Gaze-Contingent Visual Communication GAZE-CONTINGENT VISUAL COMMUNICATION A Dissertation by ANDREW TED DUCHOWSKI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 1997 Major Subject: Computer Science GAZE-CONTINGENT VISUAL COMMUNICATION A Dissertation by ANDREW TED DUCHOWSKI Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved as to style and content by: Bruce H. McCormick Udo W. Pooch (Chair of Committee) (Member) John J. Leggett Norman C. Griswold (Member) (Member) Wayne L. Shebilske Richard A. Volz (Member) (Head of Department) August 1997 Major Subject: Computer Science iii ABSTRACT Gaze-Contingent Visual Communication. (August 1997) Andrew Ted Duchowski, B.Sc., Simon Fraser University Chair of Advisory Committee: Dr. Bruce H. McCormick Virtual environments today lack realism. Real-time display of visually rich scenery is encumbered by the demand of rendering excessive amounts of information. This problem is especially severe in virtual reality. To minimize refresh latency, image quality is often sacrificed for speed. What’s missing is knowledge of the participant’s locus of visual attention, and an understanding of how an individual scans the visual field. Neurophysiological and psychophysical literature on the human visual system suggests the field of view is inspected minutatim through brief fixations over small regions of interest. Significant savings in scene pro- cessing can be realized if fine detail information is presented “just in time” in a gaze-contingent manner, delivering only as much information as required by the viewer. An attentive model of vision is proposed where Volumes Of Interest (VOIs) represent fixations through time. The visual scanpath, composed of raw two-dimensional point of regard (POR) data, is analyzed over a se- quence of video frames in time. Fixation locations are predicted by a piecewise auto-regressive integrated moving average (PARIMA) time series model of eye movements. PARIMA model parameters are derived from established spatio-temporal characteristics of eye movements. POR data is fitted to the PARIMA model through the application of the three-dimensional wavelet transform. Identified fixations are assembled into volumes in three-dimensional space-time, delineating dynamic foveal attention. The attentive visual model utilizes VOIs to synthesize video sequences matching human visual acuity. Specif- ically, spatial resolution drops off smoothly with the degree of eccentricity from the viewer’s point of gaze. Seamless degradation of individual video frames is accomplished through inhomogeneous wavelet recon- struction where the intersections of VOIs and frames constitute expected foveal regions. Peripheral degrada- tion of video is evaluated through human subjective quality testing in a gaze-contingent environment. The proposed method of visual representation is applicable to systems with inherently intensive display require- ments including teleoperator and virtual environments. iv To my wife and family. v ACKNOWLEDGMENTS I would like to thank Professor Bruce H. McCormick, my advisor and mentor, for his masterful guidance. His strict adherence to the scientific method inspired me to strive for a high level of rigor throughout the course of my investigation. The ultimate reward in maintaining this discipline is my personal satisfaction and confidence in the completion of this work. I will never forget Professor McCormick’s insights and poignant prose. I am forever indebted and deeply grateful. I would like to extend thanks to my advisory committee members for their contribution and patience in the preparation of this dissertation. I thank Professor Wayne Shebilske from the Psychology Department for his invaluable help in setting up the eye tracking apparatus. His forewarning of potential difficulties in dealing with human subjects were right on the mark and I am grateful for his suggestions. I would also like to thank Dr. Shebilske for his help in my understanding of the theoretical aspects of human perception and performance and above all his encouragement. I would like to thank Professor Don House of the Visualization Department for putting together the summer workshop on wavelets. This workshop, together with Dr. House’s enthusiasm, prompted me to learn this mathematical concept which forms the analytical foundation of the work found herein. Without Dr. House’s interest and support I may never have braved through the initial learning curve. I would like to express my appreciation to Dr. Rick Jacoby from NASA Ames Research for his contribution to the development of the gaze-contingent video system. Rick’s help with the implementation of shared memory prompted me to design the eye tracking system without which none of the human subject experiments would have been possible. I would like to ex- tend my warm thanks to Drs. Nancy Amato and Mac Lively for their help and guidance in the preparation of my defense. I would also like to express my thanks to the support staff of the Computer Science Department at Texas A&M. They are the silent support force who enabled me to put this work together. I thank my family for seeing me through graduate school. Their moral (and of course financial) support carried me through. Finally, I owe my greatest debt of gratitude to my wife, Corey. Thanks for your patience, understanding, and above all your love. This research was supported in part by the National Science Foundation, under Infrastructure Grant CDA- 9115123 and CISE Research Instrumentation Grant CDA-9422123, and by the Texas Advanced Technology Program under Grant 999903-124. vi TABLE OF CONTENTS Page ABSTRACT . iii DEDICATION . iv ACKNOWLEDGMENTS . v TABLE OF CONTENTS . vi LIST OF FIGURES . xi LIST OF TABLES . xv CHAPTER I INTRODUCTION . 1 1.1 Research Objective . 1 1.2 Specific Aims . 3 1.3 Dissertation Organization . 3 II VISUAL ATTENTION . 5 2.1 Chronological Review of Visual Attention . 5 2.2 Visual Search . 9 2.3 Scene Integration . 10 2.4 Summary . 10 III NEUROPHYSIOLOGY . 12 3.1 The Brain and the Visual Pathways . 12 3.2 Physiology of the Eye . 17 3.3 Implications for Attentional Visual Display Design . 26 IV EYE MOVEMENTS . 28 4.1 Eye Trackers . 28 4.2 The Oculomotor System . 30 vii CHAPTER Page 4.3 Taxonomy and Models of Eye Movements . 31 4.4 Implications for Eye Movement Analysis . 36 4.5 Implications for Pre-Attentional Visual Display Design . 37 V INTRODUCTION TO WAVELETS . 39 5.1 Fundamentals . 39 5.2 Wavelet Functions . 49 5.3 Wavelet Maxima and Multiscale Edges . 52 5.4 Multiresolution Analysis . 55 5.5 Wavelet Decomposition and Reconstruction . 57 5.6 Wavelet Filters . 62 5.7 Discrete Wavelet Transform . 69 5.8 Multidimensional Multiscale Edge Detection . 85 5.9 Anisotropic Multidimensional Discrete Wavelet Transform . 91 5.10 Wavelet Interpolation . 93 VI TIME SERIES ANALYSIS . 101 6.1 Fundamentals . 101 6.2 Nondeterministic (Stochastic) Time Series Models . 107 6.3 Stochastic Process Sample Statistics . 118 6.4 Stationary Time Series Modeling . 120 6.5 Non-stationary (Linear) Time Series Modeling . 122 6.6 Interrupted Time Series Experiments . 124 6.7 Piecewise Autoregressive Integrated Moving Average Time Series . 124 VII EYE MOVEMENT MODELING . 133 7.1 Linear Filtering Approach to Eye Movement Classification . 133 7.2 Conceptual Specification of the PARIMA Model . 136 7.3 Implementation Recommendations . 142 7.4 Three-dimensional Considerations in the Frame-Based Implementation . 144 7.5 Automatic Algorithm Specification . 147 7.6 Limitations of the Frame-Based PARIMA Implementation . 150 7.7 Summary . 153 viii CHAPTER Page VIII VOLUMES OF INTEREST . 154 8.1 Synthesis of Volumes Of Interest . 156 8.2 Graphical VOI Construction . 157 8.3 Comparison of Two- and Three-dimensional Eye Movement Visualizations . 159 8.4 Aggregate Volumes Of Interest . 161 IX GAZE-CONTINGENT VISUAL COMMUNICATION . 165 9.1 Background . 165 9.2 Resolution Mapping . 168 9.3 Multiple ROI Image Segmentation . 173 9.4 Multiple ROI Image Reconstruction Examples . 174 X EXPERIMENTAL METHOD AND APPARATUS . 178 10.1 Hardware . 178 10.2 Software . 182 10.3 Calibration Procedures . 186 10.4 Eye Tracker-Image Coordinate Space Mapping Transformation . 188 XI EXPERIMENT 1: EYE MOVEMENT MODELING . 196 11.1 Video Sequences . 196 11.2 Experimental Trials . 197 11.3 Subjects . 198 11.4 Experimental Design . 198 11.5 Results . 199 11.6 Discussion . 204 XII EXPERIMENT 2: GAZE-CONTINGENT VOI DETECTION . 207 12.1 Video Sequences . 207 12.2 Experimental Trials . 208 12.3 Subjects . ..
Recommended publications
  • Role of Stereopsis Losses in Older Adults’ Performance
    ROLE OF STEREOPSIS LOSSES IN OLDER ADULTS’ PERFORMANCE ON THE FINE-GRAIN MOVEMENT ILLUSION TASK by Marlena Pearson Honours Bachelor of Science, Psychology, Nipissing University, North Bay, Ontario, 2014 Honours Bachelor of Arts, Criminal Justice, Nipissing University, North Bay, Ontario, 2014 A thesis presented to Ryerson University in partial fulfillment of the requirement for the degree of Master of Arts in the program of Psychology Toronto, Ontario, Canada, 2017 © Marlena Pearson, 2017 Author’s Declaration AUTHOR'S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I authorize Ryerson University to lend this thesis to other institutions or individuals for the purpose of scholarly research I further authorize Ryerson University to reproduce this thesis by photocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research. I understand that my thesis may be made electronically available to the public. ii Role of Stereopsis Losses in Older Adults’ Performance on the Fine-Grain Movement Illusion Task Master of Arts, 2017 Marlena Pearson Psychology, Ryerson University Abstract Accurate motion perception is necessary for older adults to safely navigate their environments. Yet it is not clear how stereopsis losses contribute to findings of motion perception deficits in older adults. To assess the contribution of stereopsis losses, three groups (younger adults, older adults with intact stereopsis, older adults with poor stereopsis) were recruited for a fine-grain movement task.
    [Show full text]
  • The Fovea in Retinopathy of Prematurity
    Multidisciplinary Ophthalmic Imaging The Fovea in Retinopathy of Prematurity James D. Akula,1,2 Ivana A. Arellano,1 Emily A. Swanson,1 Tara L. Favazza,1 Theodore S. Bowe,2 Robert J. Munro,1 R. Daniel Ferguson,3 Ronald M. Hansen,1,2 Anne Moskowitz,1,2 and Anne B. Fulton1,2 1Department of Ophthalmology, Boston Children’s Hospital, Boston, Massachusetts, United States 2Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States 3Department of Biomedical Optics, Physical Sciences, Inc., Andover, Massachusetts, United States Correspondence: James D. Akula, PURPOSE. Because preterm birth and retinopathy of prematurity (ROP) are associated Department of Ophthalmology, with poor visual acuity (VA) and altered foveal development, we evaluated relationships Boston Children’s Hospital, among the central retinal photoreceptors, postreceptor retinal neurons, overlying fovea, 300 Longwood Aveue, Fegan 4, andVAinROP. Boston, MA 02115, USA; [email protected]. METHODS. We obtained optical coherence tomograms (OCTs) in preterm born subjects with no history of ROP (none; n = 61), ROP that resolved spontaneously without treat- Received: December 18, 2019 ment (mild; n = 51), and ROP that required treatment by laser ablation of the avascu- Accepted: July 2, 2020 = Published: September 16, 2020 lar peripheral retina (severe; n 22), as well as in term born control subjects (term; n = 111). We obtained foveal shape descriptors, measured central retinal layer thick- Citation: Akula JD, Arellano IA, nesses, and demarcated the anatomic parafovea using automated routines. In subsets Swanson EA, et al. The fovea in = retinopathy of prematurity. Invest of these subjects, we obtained OCTs eccentrically through the pupil (n 46) to reveal Ophthalmol Vis Sci.
    [Show full text]
  • Polarity Selectivity of Spatial Interactions in Perceived Contrast
    Journal of Vision (2012) 12(2):3, 1–10 http://www.journalofvision.org/content/12/2/3 1 Polarity selectivity of spatial interactions in perceived contrast Department of Psychology, The University of Tokyo, Japan,& Human and Information Science Laboratory, Hiromi Sato NTT Communication Science Laboratories, NTT, Japan Human and Information Science Laboratory, Isamu Motoyoshi NTT Communication Science Laboratories, NTT, Japan Department of Psychology, Takao Sato The University of Tokyo, Japan The apparent contrast of a texture is reduced when surrounded by another texture with high contrast. This contrast–contrast phenomenon has been thought to be a result of spatial interactions between visual channels that encode contrast energy. In the present study, we show that contrast–contrast is selective to luminance polarity by using texture patterns composed of sparse elongated blobs. The apparent contrast of a texture of bright (dark) elements was substantially reduced only when it was surrounded by a texture of elements with the same polarity. This polarity specificity was not evident for textures with high element densities, which were similar to those used in previous studies, probably because such stimuli should inevitably activate both on- and off-type sensors. We also found that polarity-selective suppression decreased as the difference in orientation between the center and surround elements increased but remained for orthogonally oriented elements. These results suggest that the contrast–contrast illusion largely depends on spatial interactions between visual channels that are selective to on–off polarity and only weakly selective to orientation. Keywords: polarity selectivity, spatial interactions, perceived contrast Citation: Sato, H., Motoyoshi, I., & Sato, T.
    [Show full text]
  • Visual Context Processing in Schizophrenia
    Empirical Article Clinical Psychological Science 1(1) 5 –15 Visual Context Processing in Schizophrenia © The Author(s) 2013 Reprints and permission: sagepub.com/journalsPermissions.nav DOI: 10.1177/2167702612464618 http://cpx.sagepub.com Eunice Yang1,2, Duje Tadin3,4, Davis M. Glasser3, Sang Wook Hong1,5, Randolph Blake1,2, and Sohee Park1 1Department of Psychology, Vanderbilt University; 2Department of Brain and Cognitive Sciences, Seoul National University, Republic of Korea; 3Center for Visual Science and Department of Brain and Cognitive Sciences, University of Rochester; 4Department of Ophthalmology, University of Rochester; and 5Department of Psychology, Florida Atlantic University Abstract Abnormal perceptual experiences are central to schizophrenia, but the nature of these anomalies remains undetermined. We investigated contextual processing abnormalities across a comprehensive set of visual tasks. For perception of luminance, size, contrast, orientation, and motion, we quantified the degree to which the surrounding visual context altered a center stimulus’s appearance. Healthy participants showed robust contextual effects across all tasks, as evidenced by pronounced misperceptions of center stimuli. Schizophrenia patients exhibited intact contextual modulations of luminance and size but showed weakened contextual modulations of contrast, performing more accurately than controls. Strong motion and orientation context effects correlated with worse symptoms and social functioning. Importantly, the overall strength of contextual
    [Show full text]
  • Clinical Study Photoreceptor Inner and Outer Segment Junction Reflectivity After Vitrectomy for Macula-Off Rhegmatogenous Retinal Detachment
    Hindawi Publishing Corporation Journal of Ophthalmology Volume 2015, Article ID 451408, 7 pages http://dx.doi.org/10.1155/2015/451408 Clinical Study Photoreceptor Inner and Outer Segment Junction Reflectivity after Vitrectomy for Macula-Off Rhegmatogenous Retinal Detachment Jakub J. Kaluzny,1,2 Bartosz L. Sikorski,3 Grzegorz Czajkowski,2 Mateusz Burduk,3 Bartlomiej J. Kaluzny,3 Joanna Stafiej,3 and Grazyna Malukiewicz3 1 Department of Public Health, Collegium Medicum, Nicolaus Copernicus University, Ulica Sandomierska 16, 85-830 Bydgoszcz, Poland 2Oftalmika Eye Hospital, Ulica Modrzewiowa 15, 85-631 Bydgoszcz, Poland 3Department of Ophthalmology, Collegium Medicum, Nicolaus Copernicus University, Ulica Marii Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland Correspondence should be addressed to Jakub J. Kaluzny; [email protected] and Bartosz L. Sikorski; [email protected] Received 4 May 2015; Revised 26 June 2015; Accepted 1 July 2015 AcademicEditor:LawrenceS.Morse Copyright © 2015 Jakub J. Kaluzny et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Purpose. To evaluate the spatial distribution of photoreceptor inner and outer segment junction (IS/OS) reflectivity changes after successful vitrectomy for macula-off retinal detachment (PPV-mOFF) using spectral domain optical coherence tomography (SdOCT). Methods. Twenty eyes after successful PPV-mOFF were included in the study. During a mean follow-up period of 15.3 months, SdOCT was performed four times. To evaluate the IS/OS reflectivity a four-grade scale was used. Results. At the first follow- up visit the IS/OS had very similar reflectivity in entire length of the central scan with total average value of 1,05.
    [Show full text]
  • Embryology, Anatomy, and Physiology of the Afferent Visual Pathway
    CHAPTER 1 Embryology, Anatomy, and Physiology of the Afferent Visual Pathway Joseph F. Rizzo III RETINA Physiology Embryology of the Eye and Retina Blood Supply Basic Anatomy and Physiology POSTGENICULATE VISUAL SENSORY PATHWAYS Overview of Retinal Outflow: Parallel Pathways Embryology OPTIC NERVE Anatomy of the Optic Radiations Embryology Blood Supply General Anatomy CORTICAL VISUAL AREAS Optic Nerve Blood Supply Cortical Area V1 Optic Nerve Sheaths Cortical Area V2 Optic Nerve Axons Cortical Areas V3 and V3A OPTIC CHIASM Dorsal and Ventral Visual Streams Embryology Cortical Area V5 Gross Anatomy of the Chiasm and Perichiasmal Region Cortical Area V4 Organization of Nerve Fibers within the Optic Chiasm Area TE Blood Supply Cortical Area V6 OPTIC TRACT OTHER CEREBRAL AREASCONTRIBUTING TO VISUAL LATERAL GENICULATE NUCLEUSPERCEPTION Anatomic and Functional Organization The brain devotes more cells and connections to vision lular, magnocellular, and koniocellular pathways—each of than any other sense or motor function. This chapter presents which contributes to visual processing at the primary visual an overview of the development, anatomy, and physiology cortex. Beyond the primary visual cortex, two streams of of this extremely complex but fascinating system. Of neces- information flow develop: the dorsal stream, primarily for sity, the subject matter is greatly abridged, although special detection of where objects are and for motion perception, attention is given to principles that relate to clinical neuro- and the ventral stream, primarily for detection of what ophthalmology. objects are (including their color, depth, and form). At Light initiates a cascade of cellular responses in the retina every level of the visual system, however, information that begins as a slow, graded response of the photoreceptors among these ‘‘parallel’’ pathways is shared by intercellular, and transforms into a volley of coordinated action potentials thalamic-cortical, and intercortical connections.
    [Show full text]
  • Vision Research 138 (2017) 59–65
    Vision Research 138 (2017) 59–65 Contents lists available at ScienceDirect Vision Research journal homepage: www.elsevier.com/locate/visres Role of parafovea in blur perception ⇑ Abinaya Priya Venkataraman a, ,1, Aiswaryah Radhakrishnan b,1, Carlos Dorronsoro b, Linda Lundström a, Susana Marcos b a Department of Applied Physics, KTH, Royal Institute of Technology, Stockholm, Sweden b Visual Optics and Biophotonics Lab, Instituto de Óptica ‘‘Daza de Valdés”, Consejo Superior de Investigaciones Científicas, Madrid, Spain article info abstract Article history: The blur experienced by our visual system is not uniform across the visual field. Additionally, lens designs Received 22 April 2017 with variable power profile such as contact lenses used in presbyopia correction and to control myopia Received in revised form 10 July 2017 progression create variable blur from the fovea to the periphery. The perceptual changes associated with Accepted 15 July 2017 varying blur profile across the visual field are unclear. We therefore measured the perceived neutral focus with images of different angular subtense (from 4° to 20°) and found that the amount of blur, for which Number of reviewers = 2 focus is perceived as neutral, increases when the stimulus was extended to cover the parafovea. We also studied the changes in central perceived neutral focus after adaptation to images with similar magnitude Keywords: of optical blur across the image or varying blur from center to the periphery. Altering the blur in the Blur adaptation Peripheral blur periphery had little or no effect on the shift of perceived neutral focus following adaptation to normal/ Central vision blurred central images.
    [Show full text]
  • Research Article Increased Subfoveal Choroidal Thickness and Retinal Structure Changes on Optical Coherence Tomography in Pediatric Alport Syndrome Patients
    Hindawi Journal of Ophthalmology Volume 2019, Article ID 6741930, 7 pages https://doi.org/10.1155/2019/6741930 Research Article Increased Subfoveal Choroidal Thickness and Retinal Structure Changes on Optical Coherence Tomography in Pediatric Alport Syndrome Patients Seda Karaca Adıyeke ,1 Gamze Ture,1 Fatma Mutlubas¸,2 Hasan Aytog˘an,1 Onur Vural,1 Neslisah Kutlu Uzakgider,1 Gulsah Talay Dayangaç,1 and Ekrem Talay1 1Tepecik Research and Training Hospital, Ophthalmology Department, Izmir, Turkey 2Tepecik Research and Training Hospital, Pediatric Nephrology Department, Izmir, Turkey Correspondence should be addressed to Seda Karaca Adıyeke; [email protected] Received 8 September 2018; Revised 19 November 2018; Accepted 17 December 2018; Published 21 January 2019 Academic Editor: Sentaro Kusuhara Copyright © 2019 Seda Karaca Adıyeke et al. )is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Objective. To evaluate optical coherence tomography (OCT) findings of pediatric Alport syndrome (AS) patients with no retinal pathology on fundus examination. Materials and Methods. Twenty-one patients being followed up with the diagnosis of AS (Group 1) and 24 age- and sex-matched healthy volunteers (Group 2) were prospectively evaluated. All participants underwent standard ophthalmologic examination, retinal nerve fibre layer (RNFL) analysis, and horizontal and vertical scan macula en- hanced depth imaging OCT (EDI-OCT). Statistical analysis of the data obtained in this study was performed with SPSS 15.0. Results. Macula thickness was significantly decreased in the temporal quadrant in Group 1 compared to those of the control group (p � 0:013).
    [Show full text]
  • (AMD) and a New Metric for Objective Evaluation of the Efficacy of Ocular Nutrition
    Nutrients 2012, 4, 1812-1827; doi:10.3390/nu4121812 OPEN ACCESS nutrients ISSN 2072-6643 www.mdpi.com/journal/nutrients Article Retinal Spectral Domain Optical Coherence Tomography in Early Atrophic Age-Related Macular Degeneration (AMD) and a New Metric for Objective Evaluation of the Efficacy of Ocular Nutrition Stuart Richer 1,2,*, Jane Cho 1,2, William Stiles 1, Marc Levin 1, James S. Wrobel 3, Michael Sinai 4 and Carla Thomas 1 1 Eye Clinic, James A Lovell Federal Health Care Center, North Chicago, IL 60064, USA; E-Mails: [email protected] (J.C.); [email protected] (W.S.); [email protected] (M.L.); [email protected] (C.T.) 2 Family & Preventive Medicine, RFUMS Chicago Medical School, North Chicago, IL 60064, USA 3 Internal Medicine, Podiatry Services, University of Michigan, Ann Arbor, MI 48105, USA; E-Mail: [email protected] 4 Optovue Inc., Fremont, CA 94538, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-224-610-7145. Received: 11 October 2012; in revised form: 12 November 2012 / Accepted: 14 November 2012 / Published: 27 November 2012 Abstract: Purpose: A challenge in ocular preventive medicine is identification of patients with early pathological retinal damage that might benefit from nutritional intervention. The purpose of this study is to evaluate retinal thinning (RT) in early atrophic age-related macular degeneration (AMD) against visual function data from the Zeaxanthin and Visual Function (ZVF) randomized double masked placebo controlled clinical trial (FDA IND #78973). Methods: Retrospective, observational case series of medical center veterans with minimal visible AMD retinopathy (AREDS Report #18 simplified grading 1.4/4.0 bilateral retinopathy).
    [Show full text]
  • Ultrastructural Findings in Solar Retinopathy
    ULTRASTRUCTURAL FINDINGS IN SOLAR RETINOPATHY M. W. HOPE-ROSS, G. J. MAHON, T. A. GARDINER and D. B. ARCHER Belfast, Northern Ireland SUMMARY The prognosis for recovery in solar retinopathy is good This study documents the ultrastructural findings in a and the majority of patients regain pre-exposure visual case of solar retinopathy, 6 day s after sungazing. A malig­ acuity.3 However, central scotomas frequently persist. nant melanoma of the choroid was diagnosed in a 65- The purpose of this paper is to document the ultrastruc­ year-old man. On fundoscopy, the macula was normal. tural findings in a case of solar retinopathy. The patient agreed to stare at the sun prior to enuclea­ CASE REPORT AND METHODS tion. A typical solar retinopathy developed, characterised by a small, reddish, sharply circumscribed depression in A 65-year-old man presented to the Ophthalmic Depart­ the foveal area. Structural examination of the fovea and ment of the Royal Victoria Hospital, Belfast, complaining parafovea revealed a spectrum of cone and rod outer seg­ of a IO-week history of floaters affecting the right eye. ment changes including vesiculation and fragmentation Examination revealed best corrected visual acuity was right of the photoreceptor lamellae and the presence of discrete eye 6/9 and left eye 6/4. Fundoscopy of the right eye 100-120 nm whorls within the disc membranes. Many revealed an inferonasal peripapillary choroidal malignant photoreceptor cells, particularly the parafoveal rods, also melanoma, measuring 9 mm in diameter. A fluorescein demonstrated mitochondrial swelling and nuclear pyk­ angiogram confirmed the presence of a choroidal malig­ nosis.
    [Show full text]
  • Download Thesis
    This electronic thesis or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ Contextual Processing in Psychosis and Cannabis use Kane, Fergus Awarding institution: King's College London The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. END USER LICENCE AGREEMENT Unless another licence is stated on the immediately following page this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ You are free to copy, distribute and transmit the work Under the following conditions: Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. No Derivative Works - You may not alter, transform, or build upon this work. Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 05. Oct. 2021 This electronic theses or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ Title: Contextual Processing in Psychosis and Cannabis use Author: Kane, Fergus The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement.
    [Show full text]
  • Optical Illusion - Wikipedia, the Free Encyclopedia
    Optical illusion - Wikipedia, the free encyclopedia Try Beta Log in / create account article discussion edit this page history [Hide] Wikipedia is there when you need it — now it needs you. $0.6M USD $7.5M USD Donate Now navigation Optical illusion Main page From Wikipedia, the free encyclopedia Contents Featured content This article is about visual perception. See Optical Illusion (album) for Current events information about the Time Requiem album. Random article An optical illusion (also called a visual illusion) is characterized by search visually perceived images that differ from objective reality. The information gathered by the eye is processed in the brain to give a percept that does not tally with a physical measurement of the stimulus source. There are three main types: literal optical illusions that create images that are interaction different from the objects that make them, physiological ones that are the An optical illusion. The square A About Wikipedia effects on the eyes and brain of excessive stimulation of a specific type is exactly the same shade of grey Community portal (brightness, tilt, color, movement), and cognitive illusions where the eye as square B. See Same color Recent changes and brain make unconscious inferences. illusion Contact Wikipedia Donate to Wikipedia Contents [hide] Help 1 Physiological illusions toolbox 2 Cognitive illusions 3 Explanation of cognitive illusions What links here 3.1 Perceptual organization Related changes 3.2 Depth and motion perception Upload file Special pages 3.3 Color and brightness
    [Show full text]