Retinotoxicity of Hydroxychloroquine: Is It Possible to Demonstrate by Spectral Domain Optical Coherence Tomography Before Devel
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Macula Halo Syndrome
Int Ophthalmol (2019) 39:1391–1395 https://doi.org/10.1007/s10792-018-0939-6 CASE REPORT Macula halo syndrome I˙smail Umut Onur . Memhet Fatih As¸ula . Cansu Ekinci . Meral Mert Received: 16 August 2017 / Accepted: 2 May 2018 / Published online: 29 May 2018 Ó Springer Science+Business Media B.V., part of Springer Nature 2018 Abstract granular depositions were detected in the parafoveal Introduction Niemann–Pick disease (NPD) is a retina on both eyes. Optical coherence tomography hereditary lysosomal storage disorder in which muta- (OCT) revealed thin hyperreflective band correspond- tions in the sphingomyelin phosphodiesterase gene ing to depositions located in the parafoveolar inner leads to partial or complete deficiency of the sphin- retina. Microperimeter showed slight depression in gomyelinase enzyme. Niemann–Pick Type B is the retinal sensitivity, which was more pronounced par- intermediate form associated with hep- ticularly on perifovea rather than parafovea. atosplenomegaly, foam cells in the bone marrow, Conclusions Challenge to identify the NPD subtype hyperlipidemia and diffuse pulmonary infiltrates, of this case is associated with phenotypic character- which is generally diagnosed in late adolescence. istics on a wider spectrum that overlap the currently Central nervous system is not affected, and some cases described subtypes. may display macular halo. Case A 45-year-old female seen in ophthalmology Keywords Macula halo Á Niemann–Pick Á clinic for the examination of the eyes. Extraocular Microperimeter motility was normal bilaterally, and the visual acuity was 20/25 for both eyes. Biomicroscopic examination revealed faint corneal haze bilaterally, Circular pale Niemann–Pick disease (NPD) is a hereditary lysoso- mal storage disorder in which mutations in the Electronic supplementary material The online version of sphingomyelin phosphodiesterase gene leads to partial this article (https://doi.org/10.1007/s10792-018-0939-6) con- or complete deficiency of the sphingomyelinase tains supplementary material, which is available to authorized users. -
The Fovea in Retinopathy of Prematurity
Multidisciplinary Ophthalmic Imaging The Fovea in Retinopathy of Prematurity James D. Akula,1,2 Ivana A. Arellano,1 Emily A. Swanson,1 Tara L. Favazza,1 Theodore S. Bowe,2 Robert J. Munro,1 R. Daniel Ferguson,3 Ronald M. Hansen,1,2 Anne Moskowitz,1,2 and Anne B. Fulton1,2 1Department of Ophthalmology, Boston Children’s Hospital, Boston, Massachusetts, United States 2Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States 3Department of Biomedical Optics, Physical Sciences, Inc., Andover, Massachusetts, United States Correspondence: James D. Akula, PURPOSE. Because preterm birth and retinopathy of prematurity (ROP) are associated Department of Ophthalmology, with poor visual acuity (VA) and altered foveal development, we evaluated relationships Boston Children’s Hospital, among the central retinal photoreceptors, postreceptor retinal neurons, overlying fovea, 300 Longwood Aveue, Fegan 4, andVAinROP. Boston, MA 02115, USA; [email protected]. METHODS. We obtained optical coherence tomograms (OCTs) in preterm born subjects with no history of ROP (none; n = 61), ROP that resolved spontaneously without treat- Received: December 18, 2019 ment (mild; n = 51), and ROP that required treatment by laser ablation of the avascu- Accepted: July 2, 2020 = Published: September 16, 2020 lar peripheral retina (severe; n 22), as well as in term born control subjects (term; n = 111). We obtained foveal shape descriptors, measured central retinal layer thick- Citation: Akula JD, Arellano IA, nesses, and demarcated the anatomic parafovea using automated routines. In subsets Swanson EA, et al. The fovea in = retinopathy of prematurity. Invest of these subjects, we obtained OCTs eccentrically through the pupil (n 46) to reveal Ophthalmol Vis Sci. -
Clinical Study Photoreceptor Inner and Outer Segment Junction Reflectivity After Vitrectomy for Macula-Off Rhegmatogenous Retinal Detachment
Hindawi Publishing Corporation Journal of Ophthalmology Volume 2015, Article ID 451408, 7 pages http://dx.doi.org/10.1155/2015/451408 Clinical Study Photoreceptor Inner and Outer Segment Junction Reflectivity after Vitrectomy for Macula-Off Rhegmatogenous Retinal Detachment Jakub J. Kaluzny,1,2 Bartosz L. Sikorski,3 Grzegorz Czajkowski,2 Mateusz Burduk,3 Bartlomiej J. Kaluzny,3 Joanna Stafiej,3 and Grazyna Malukiewicz3 1 Department of Public Health, Collegium Medicum, Nicolaus Copernicus University, Ulica Sandomierska 16, 85-830 Bydgoszcz, Poland 2Oftalmika Eye Hospital, Ulica Modrzewiowa 15, 85-631 Bydgoszcz, Poland 3Department of Ophthalmology, Collegium Medicum, Nicolaus Copernicus University, Ulica Marii Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland Correspondence should be addressed to Jakub J. Kaluzny; [email protected] and Bartosz L. Sikorski; [email protected] Received 4 May 2015; Revised 26 June 2015; Accepted 1 July 2015 AcademicEditor:LawrenceS.Morse Copyright © 2015 Jakub J. Kaluzny et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Purpose. To evaluate the spatial distribution of photoreceptor inner and outer segment junction (IS/OS) reflectivity changes after successful vitrectomy for macula-off retinal detachment (PPV-mOFF) using spectral domain optical coherence tomography (SdOCT). Methods. Twenty eyes after successful PPV-mOFF were included in the study. During a mean follow-up period of 15.3 months, SdOCT was performed four times. To evaluate the IS/OS reflectivity a four-grade scale was used. Results. At the first follow- up visit the IS/OS had very similar reflectivity in entire length of the central scan with total average value of 1,05. -
Embryology, Anatomy, and Physiology of the Afferent Visual Pathway
CHAPTER 1 Embryology, Anatomy, and Physiology of the Afferent Visual Pathway Joseph F. Rizzo III RETINA Physiology Embryology of the Eye and Retina Blood Supply Basic Anatomy and Physiology POSTGENICULATE VISUAL SENSORY PATHWAYS Overview of Retinal Outflow: Parallel Pathways Embryology OPTIC NERVE Anatomy of the Optic Radiations Embryology Blood Supply General Anatomy CORTICAL VISUAL AREAS Optic Nerve Blood Supply Cortical Area V1 Optic Nerve Sheaths Cortical Area V2 Optic Nerve Axons Cortical Areas V3 and V3A OPTIC CHIASM Dorsal and Ventral Visual Streams Embryology Cortical Area V5 Gross Anatomy of the Chiasm and Perichiasmal Region Cortical Area V4 Organization of Nerve Fibers within the Optic Chiasm Area TE Blood Supply Cortical Area V6 OPTIC TRACT OTHER CEREBRAL AREASCONTRIBUTING TO VISUAL LATERAL GENICULATE NUCLEUSPERCEPTION Anatomic and Functional Organization The brain devotes more cells and connections to vision lular, magnocellular, and koniocellular pathways—each of than any other sense or motor function. This chapter presents which contributes to visual processing at the primary visual an overview of the development, anatomy, and physiology cortex. Beyond the primary visual cortex, two streams of of this extremely complex but fascinating system. Of neces- information flow develop: the dorsal stream, primarily for sity, the subject matter is greatly abridged, although special detection of where objects are and for motion perception, attention is given to principles that relate to clinical neuro- and the ventral stream, primarily for detection of what ophthalmology. objects are (including their color, depth, and form). At Light initiates a cascade of cellular responses in the retina every level of the visual system, however, information that begins as a slow, graded response of the photoreceptors among these ‘‘parallel’’ pathways is shared by intercellular, and transforms into a volley of coordinated action potentials thalamic-cortical, and intercortical connections. -
Vision Research 138 (2017) 59–65
Vision Research 138 (2017) 59–65 Contents lists available at ScienceDirect Vision Research journal homepage: www.elsevier.com/locate/visres Role of parafovea in blur perception ⇑ Abinaya Priya Venkataraman a, ,1, Aiswaryah Radhakrishnan b,1, Carlos Dorronsoro b, Linda Lundström a, Susana Marcos b a Department of Applied Physics, KTH, Royal Institute of Technology, Stockholm, Sweden b Visual Optics and Biophotonics Lab, Instituto de Óptica ‘‘Daza de Valdés”, Consejo Superior de Investigaciones Científicas, Madrid, Spain article info abstract Article history: The blur experienced by our visual system is not uniform across the visual field. Additionally, lens designs Received 22 April 2017 with variable power profile such as contact lenses used in presbyopia correction and to control myopia Received in revised form 10 July 2017 progression create variable blur from the fovea to the periphery. The perceptual changes associated with Accepted 15 July 2017 varying blur profile across the visual field are unclear. We therefore measured the perceived neutral focus with images of different angular subtense (from 4° to 20°) and found that the amount of blur, for which Number of reviewers = 2 focus is perceived as neutral, increases when the stimulus was extended to cover the parafovea. We also studied the changes in central perceived neutral focus after adaptation to images with similar magnitude Keywords: of optical blur across the image or varying blur from center to the periphery. Altering the blur in the Blur adaptation Peripheral blur periphery had little or no effect on the shift of perceived neutral focus following adaptation to normal/ Central vision blurred central images. -
In Vivo Foveal Development Using Optical Coherence Tomography
Retina In Vivo Foveal Development Using Optical Coherence Tomography Helena Lee, Ravi Purohit, Aarti Patel, Eleni Papageorgiou, Viral Sheth, Gail Maconachie, Anastasia Pilat, Rebecca J. McLean, Frank A. Proudlock, and Irene Gottlob University of Leicester Ulverscroft Eye Unit, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester, United Kingdom Correspondence: Irene Gottlob, PURPOSE. To characterize the time course of normal foveal development in vivo in term infants University of Leicester Ulverscroft and young children using handheld spectral-domain optical coherence tomography (HH- Eye Unit, Robert Kilpatrick Clinical SDOCT). Sciences Building, PO Box 65, Leicester Royal Infirmary, Leicester METHODS. We obtained 534 HH-SDOCT scans from 261 infants, children, and young adults LE2 7LX, UK; with a mean age of 4.9 years (range, 0–27 years). Each retinal layer was manually segmented [email protected]. in ImageJ and correlated with gestational age (GA) and visual acuity (VA). The developmental Submitted: January 26, 2015 trajectories of each retinal layer at the fovea, parafovea, and perifovea were calculated using Accepted: May 3, 2015 fractional polynomial modeling. Citation: Lee H, Purohit R, Patel A, et RESULTS. The central macular thickness (CMT) increases logarithmically between birth and al. In vivo foveal development using 48.6 months GA. The foveal ganglion cell (GCL), inner plexiform, inner nuclear (INL), and optical coherence tomography. Invest outer plexiform layers decrease in thickness exponentially until 18 months GA. Interestingly, Ophthalmol Vis Sci. 2015;56:4537– the parafoveal and perifoveal GCL and INL thicknesses initially decrease until 17 months GA 4545. DOI:10.1167/iovs.15-16542 and then increase in thickness until 65.5 GA. -
Research Article Increased Subfoveal Choroidal Thickness and Retinal Structure Changes on Optical Coherence Tomography in Pediatric Alport Syndrome Patients
Hindawi Journal of Ophthalmology Volume 2019, Article ID 6741930, 7 pages https://doi.org/10.1155/2019/6741930 Research Article Increased Subfoveal Choroidal Thickness and Retinal Structure Changes on Optical Coherence Tomography in Pediatric Alport Syndrome Patients Seda Karaca Adıyeke ,1 Gamze Ture,1 Fatma Mutlubas¸,2 Hasan Aytog˘an,1 Onur Vural,1 Neslisah Kutlu Uzakgider,1 Gulsah Talay Dayangaç,1 and Ekrem Talay1 1Tepecik Research and Training Hospital, Ophthalmology Department, Izmir, Turkey 2Tepecik Research and Training Hospital, Pediatric Nephrology Department, Izmir, Turkey Correspondence should be addressed to Seda Karaca Adıyeke; [email protected] Received 8 September 2018; Revised 19 November 2018; Accepted 17 December 2018; Published 21 January 2019 Academic Editor: Sentaro Kusuhara Copyright © 2019 Seda Karaca Adıyeke et al. )is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Objective. To evaluate optical coherence tomography (OCT) findings of pediatric Alport syndrome (AS) patients with no retinal pathology on fundus examination. Materials and Methods. Twenty-one patients being followed up with the diagnosis of AS (Group 1) and 24 age- and sex-matched healthy volunteers (Group 2) were prospectively evaluated. All participants underwent standard ophthalmologic examination, retinal nerve fibre layer (RNFL) analysis, and horizontal and vertical scan macula en- hanced depth imaging OCT (EDI-OCT). Statistical analysis of the data obtained in this study was performed with SPSS 15.0. Results. Macula thickness was significantly decreased in the temporal quadrant in Group 1 compared to those of the control group (p � 0:013). -
(AMD) and a New Metric for Objective Evaluation of the Efficacy of Ocular Nutrition
Nutrients 2012, 4, 1812-1827; doi:10.3390/nu4121812 OPEN ACCESS nutrients ISSN 2072-6643 www.mdpi.com/journal/nutrients Article Retinal Spectral Domain Optical Coherence Tomography in Early Atrophic Age-Related Macular Degeneration (AMD) and a New Metric for Objective Evaluation of the Efficacy of Ocular Nutrition Stuart Richer 1,2,*, Jane Cho 1,2, William Stiles 1, Marc Levin 1, James S. Wrobel 3, Michael Sinai 4 and Carla Thomas 1 1 Eye Clinic, James A Lovell Federal Health Care Center, North Chicago, IL 60064, USA; E-Mails: [email protected] (J.C.); [email protected] (W.S.); [email protected] (M.L.); [email protected] (C.T.) 2 Family & Preventive Medicine, RFUMS Chicago Medical School, North Chicago, IL 60064, USA 3 Internal Medicine, Podiatry Services, University of Michigan, Ann Arbor, MI 48105, USA; E-Mail: [email protected] 4 Optovue Inc., Fremont, CA 94538, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-224-610-7145. Received: 11 October 2012; in revised form: 12 November 2012 / Accepted: 14 November 2012 / Published: 27 November 2012 Abstract: Purpose: A challenge in ocular preventive medicine is identification of patients with early pathological retinal damage that might benefit from nutritional intervention. The purpose of this study is to evaluate retinal thinning (RT) in early atrophic age-related macular degeneration (AMD) against visual function data from the Zeaxanthin and Visual Function (ZVF) randomized double masked placebo controlled clinical trial (FDA IND #78973). Methods: Retrospective, observational case series of medical center veterans with minimal visible AMD retinopathy (AREDS Report #18 simplified grading 1.4/4.0 bilateral retinopathy). -
Ultrastructural Findings in Solar Retinopathy
ULTRASTRUCTURAL FINDINGS IN SOLAR RETINOPATHY M. W. HOPE-ROSS, G. J. MAHON, T. A. GARDINER and D. B. ARCHER Belfast, Northern Ireland SUMMARY The prognosis for recovery in solar retinopathy is good This study documents the ultrastructural findings in a and the majority of patients regain pre-exposure visual case of solar retinopathy, 6 day s after sungazing. A malig acuity.3 However, central scotomas frequently persist. nant melanoma of the choroid was diagnosed in a 65- The purpose of this paper is to document the ultrastruc year-old man. On fundoscopy, the macula was normal. tural findings in a case of solar retinopathy. The patient agreed to stare at the sun prior to enuclea CASE REPORT AND METHODS tion. A typical solar retinopathy developed, characterised by a small, reddish, sharply circumscribed depression in A 65-year-old man presented to the Ophthalmic Depart the foveal area. Structural examination of the fovea and ment of the Royal Victoria Hospital, Belfast, complaining parafovea revealed a spectrum of cone and rod outer seg of a IO-week history of floaters affecting the right eye. ment changes including vesiculation and fragmentation Examination revealed best corrected visual acuity was right of the photoreceptor lamellae and the presence of discrete eye 6/9 and left eye 6/4. Fundoscopy of the right eye 100-120 nm whorls within the disc membranes. Many revealed an inferonasal peripapillary choroidal malignant photoreceptor cells, particularly the parafoveal rods, also melanoma, measuring 9 mm in diameter. A fluorescein demonstrated mitochondrial swelling and nuclear pyk angiogram confirmed the presence of a choroidal malig nosis. -
Pediatric Retina
Pediatric Retina Bearbeitet von James D. Reynolds, Scott E. Olitsky 1st Edition. 2010. Buch. viii, 462 S. Hardcover ISBN 978 3 642 12040 4 Format (B x L): 19,3 x 26 cm Gewicht: 1190 g Weitere Fachgebiete > Medizin > Klinische und Innere Medizin > Augenheilkunde, Optometrie Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Anatomy and Physiology of the Retina 2 Göran Darius Hildebrand and Alistair R. Fielder 2.1 Introduction optic disc and is about 1.5 mm, or one disc size, in diameter [7]. The center of the macula lies just below the horizontal meridian [8], a relationship that is used The retina remains the best studied part of the human to study rotation during incyclo and excyclotorsion. brain. Embryologically part of the central nervous sys- The presence of xanthophyll, a yellow carotenoid pig- tem [1–5], but readily accessible to examination, it can ment, gives the region its name – the macula lutea. be investigated with relative ease by both scientists and The most central part of the macula, the fovea (ana- clinicians. Moreover, an estimated 80% of all sensory tomic foveola), is formed by a central, circa 0.35 mm- information in humans is thought to be of retinal origin wide depression and represents the retinal region of [6], indicating the importance of retinal function for the greatest visual acuity [9]. -
Decrease in Inner Retinal Thickness at Para- and Perifoveal Areas Before Vascular Retinopathy in Patients with Metabolic Risk Factors
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Taiwan Journal of Ophthalmology 3 (2013) 108e115 Contents lists available at SciVerse ScienceDirect Taiwan Journal of Ophthalmology journal homepage: www.e-tjo.com Original article Decrease in inner retinal thickness at para- and perifoveal areas before vascular retinopathy in patients with metabolic risk factors Ko-Jo Lin a, Mei-Xue Loi a, Shao-Yu Lei a, Chao-Chun Shiau a, Chien-Liang Wu a,b,*, Jennifer Hui-Chun Ho a,b,c,* a Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan b Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan c Center for Stem Cell Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan article info abstract Article history: Background: Hypertension, dyslipidemia, and hyperglycemia are major risk factors for vascular reti- Received 1 April 2013 nopathy. The relationship between retinal thickness at the macular area and metabolic risk factors, as Received in revised form well as visual impairment, in elderly patients before developing vascular occlusion needs to be 13 May 2013 investigated. Accepted 22 May 2013 Methods: In this prospective, case-control study, patients >60 years old, without objective visual Available online 12 July 2013 threatened ocular diseases or systemic abnormalities, except for hypertension, dyslipidemia or/and hy- perglycemia, were included for measurement of retinal thickness at the macular area by optical coher- Keywords: inner retina ence tomography (OCT). macular thickness Results: Fifty-four patients were analyzed; 11 patients had no metabolic risk factors, 16 had one, 17 had metabolic risk factors two, and 10 had three. -
Human Eye.Pdf
Optical Engineering Part 17: Human eye Herbert Gross Summer term 2020 www.iap.uni-jena.de 2 Contents . Introduction . data . Optical properties . Eye models . Resolution and quality . Diseases The Human Eye Ref: Wikipedia The Human Eye muscle outer skin choroid conjunctiva membrane front chamber fibres retina rear chamber cornea macula pupil lens vitreous (yellow) body iris tear liquid fibres nerve conjunctiva muscle blind spot The Human Field of View . Ranges: < 10° central < 30° near peripheral < 60° mid peripheral . Black circle: blind spot Ref: Wikipedia Optical Data of the Eye Property relaxed accomodated Refractive power 58.63 dptr 70.57 dptr Focal length in air 17.1 mm 14.2 mm Power of the crystalline lens 19 dptr 33 dptr Pupil diameter, smallest value for high brightness 1.5 mm Pupil diameter, largest value for night vision 8.0 mm Abbe number (approx.) 50.23 Petzval radius -17.58 mm Location of entrance pupil -3.047 mm Field of view maximum 108° Field of foveated seeing 5° Diameter eye ball 24 mm Distance rotation point from cornea vertex 13.5 mm Nodal point location 7.33 mm Principal plane location 1.6 mm Eye Data - Overview temporal . Terms posterior chamber . Sizes and lengths vitreous anterior humor chamber fovea optical disc crystalline lens blind spot cornea lens capsule 7.33 mm iris retina 13.5 mm nasal 1.6 mm 1.8 mm 2.5 mm F C PP' NN' F' 4 mm 0.5 mm 1.8 mm 3.6 mm 3.6 mm 15.7 mm 24.4 mm Refractive Index cornea crystalline lens lens capsule retina n anterior .