Prospects for Maintaining Strength of Paper and Paperboard Products While Using Less Forest Resources: a Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2019 Catalog 12-14.Pdf
www.legionpaper.com www.moabpaper.com www.risingmuseumboard.com www.solvart.com © Copyright 2019 Legion Paper Corporation All Rights Reserved. No portion of this publication may be reproduced without the permission of Legion Paper. OUR ROMANCE WITH PAPER Peace treaties are signed on it. Declarations of love are written on it. Artists’ works are portrayed on it. Of course, we mean paper; the medium that has evolved to reflect its own poetry, becoming an opportunity for pure innovation and unlimited creativity. Through the years, a melding of ancient craft and enlightened technology occurred, creating new practices and opening new horizons for expression in paper. When we trace its history, we find insight into man’s relentless imagination and creativity. Today, this convergence of ancient and modern continues and paper emerges with not only greater variety but a renewed appreciation of quality. To some, fine paper is the space that translates what is conceived in the mind to what is authentic. To others, having access to the right paper represents abundant possibility and profitability. The very selection of paper now becomes an adventure, realizing how the end result will vary based upon choice. Today, as in the years past, Legion Paper continues to source the finest papermakers around the globe, respecting the skill of the artisan and the unique attributes of the finished product. As we head into the future, Legion remains steadfast in its commitment to diversity, customer service and an unparalleled level of professionalism. We’re sure you will want to touch and feel some of the 3,500 papers described on the following pages. -
Decreased Wet Strength in Retorted Liquid Packaging Board Master of Science Thesis in the Master Degree Programme Materials and Nanotechnology
Decreased Wet Strength in Retorted Liquid Packaging Board Master of Science thesis in the Master Degree Programme Materials and Nanotechnology MARIA GUNNARSSON Department of Chemical and Biological Engineering Division of Organic chemistry CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2012 Report No. 2012:001 Decreased wet strength in retorted liquid packaging board Master of Science Thesis MARIA GUNNARSSON SUPERVISOR: Gunnar Westman EXAMINER: Gunnar Westman Department of Chemical and Biological engineering CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden, 2012 Decreased wet strength in retorted liquid packaging board MARIA GUNNARSSON ©MARIA GUNNARSSON, 2012 Report no 2012:001 Department of Chemical and Biological Engineering Chalmers University of Technology SE-412 96 Göteborg Sweden Telephone +46 (0)31-7721000 Cover: The Tetra Recart packaging. Department of Chemical and Biological Engineering Göteborg, Sweden 2012 Decreased wet strength in retorted liquid packaging board Maria Gunnarsson Department of Chemical and Biological Engineering Division of Organic Chemistry CHALMERS UNIVERSITY OF TECHNOLOGY ABSTRACT The Tetra Recart is a retortable food packaging, suitable for high viscous products, making it able to replace most food cans used for storage of food today. The packaging is built up by a paperboard, consisting of an unbleached bottom layer and a bleached top layer. Polymers and aluminium further cover the paperboard in order to protect the food against moisture and light, causing degradation. During the retorting process, the packaging develops a certain wet strength making it hard to disintegrate the pulp fibres in the board. The phenomenon of the developed wet strength is of high interest when inventing and developing new packaging materials. To investigate why and how the phenomenon occurs, a series of trials were made through production of laboratory sheets with subsequent disintegration. -
CHAPTER 47 PULP of WOOD OR of OTHER FIBROUS CELLULOSIC MATERIAL; WASTE and SCRAP of PAPER OR PAPERBOARD X 47-1 Note L
)&f1y3X CHAPTER 47 PULP OF WOOD OR OF OTHER FIBROUS CELLULOSIC MATERIAL; WASTE AND SCRAP OF PAPER OR PAPERBOARD X 47-1 Note l. For the purposes of heading 4702, the expression "chemical wood pulp, dissolving grades" means chemical woodpulp having by weight an insoluble fraction of 92 percent or more for soda or sulfate woodpulp or of 88 percent or more for sulfite woodpulp after one hour in a caustic soda solution containing 18 percent sodium hydroxide (NaOH) at 20oC, and for sulfite woodpulp an ash content that does not exceed 0.15 percent by weight. )&f2y3X X 47-2 4701.00.00 00 4 Mechanical woodpulp................................ t....... Free Free 4702.00.00 Chemical woodpulp, dissolving grades............... ........ Free Free 20 9 Sulfite....................................... t 40 5 Sulfate or soda............................... t 4703 Chemical woodpulp, soda or sulfate, other than dissolving grades: Unbleached: 4703.11.00 00 9 Coniferous............................... t....... Free Free 4703.19.00 00 1 Nonconiferous............................ t....... Free Free Semibleached or bleached: 4703.21.00 Coniferous............................... ........ Free Free 20 3 Semibleached........................ t 40 9 Bleached............................ t 4703.29.00 Nonconiferous............................ ........ Free Free 20 5 Semibleached........................ t 40 1 Bleached............................ t 4704 Chemical woodpulp, sulfite, other than dissolving grades: Unbleached: 4704.11.00 00 8 Coniferous............................... t....... Free Free 4704.19.00 00 0 Nonconiferous............................ t....... Free Free Semibleached or bleached: 4704.21.00 00 6 Coniferous............................... t....... Free Free 4704.29.00 00 8 Nonconiferous............................ t....... Free Free 4705.00.00 00 0 Semichemical woodpulp.............................. t....... Free Free 4706 Pulps of other fibrous cellulosic material: 4706.10.00 00 7 Cotton linters pulp.......................... -
26 the Carton Packaging Fact File CARTONBOARD
26 The Carton Packaging Fact File CARTONBOARD 5 The Carton Packaging Fact File 27 KEY FACTS Cartonboard is a multilayered material. The main types of cartonboard are solid bleached board, solid unbleached board, folding boxboard and white lined chipboard. Cartonboard usually has a white, pigmented coating on one or both surfaces Cartonboard specifications Cartonboard can be vary with respect to the pulp combined with other composition of the various materials to vary the visual layers and by the grammage appearance and to extend (weight per sq. metre in the protective properties grammes) and thickness (microns or 0.001 millimetre) Laminations, coatings and impregnations can be added to extend the range of carton applications 28 The Carton Packaging Fact File CARTONBOARD COMMON ABBREVIATIONS SBB Solid Bleached Board SUB Solid Unbleached Board FBB Folding Box Board WLC White Lined Chipboard Different types and grades the range 200-600g/m 2 for grammage product aroma, flavour and hygiene are of cartonboard and their and 350-800µm for thickness. critical. Examples of cartons where abbreviations. The principles SBB is used are perfumes, cosmetics, of cartonboard manufacture, What are the main characteristics chocolates, pharmaceuticals, frozen developments and treatments of cartonboard? foods and cigarettes. Cartonboard is mechanically strong. What is cartonboard? Its stiffness, rigidity and toughness SBB is sometimes referred to as SBS Cartonboard is a multilayer material provide compression strength to protect or GZ. with, usually, three or more layers, or products in distribution and use. It can plies, of cellulose fibre (pulp) derived be cut, creased, folded and glued, giving What is Solid Unbleached Board? from wood. -
Mountain Pine Beetle-Attacked Lodgepole Pine for Pulp and Papermaking
Operational extractives management from- mountain pine beetle-attacked lodgepole pine for pulp and papermaking Larry Allen and Vic Uloth Mountain Pine Beetle Working Paper 2007-15 Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, BC V8Z 1M5 (250) 363-0600 • cfs.nrcan.gc.ca/regions/pfc Natural Resources Ressources naturelles Canada Canada Canadian Forest Service canadien Service des forêts Operational extractives management from mountain pine beetle-attacked lodgepole pine for pulp and papermaking Larry Allen and Vic Uloth Mountain Pine Beetle Initiative W orking Paper 2007œ15 Paprican 3800 W esbrook Mall Vancouver, B.C. V6S 2L9 Mountain Pine Beetle Initiative PO # 8.43 Natural Resources Canada Canadian Forest Service Pacific Forestry Centre 506 W est Burnside Road Victoria, British Columbia V8Z 1M5 Canada 2007 ≤ Her Majesty the Queen in Right of Canada 2007 Printed in Canada Library and Archives Canada Cataloguing in Publication Allen, Larry Operational extractives m anagem ent from m ountain pine beetle-attached lodgepole pine from pulp and paperm aking / Larry Allen and Vic Uloth. (Mountain Pine Beetle Initiative working paper 2007-15) "Mountain Pine Beetle Initiative, Canadian Forest Service". "MPBI Project # 8.43". "Paprican". Includes bibliographical references: p. Includes abstract in French. ISBN 978-0-662-46480-8 Cat. no.: Fo143-3/2007-15E 1. Pulping--British Colum bia--Quality control. 2. Pulping--Alberta--Quality control. 3. Paper m ills-- Econom ic aspects--British Colum bia. 4. Pulp m ills--Econom ic aspects--Alberta. 5. Lodgepole pine--Diseases and pests–Econom ic aspects. 6. Mountain pine beetle--Econom ic aspects. -
Basics of Kraft Pulping
Lignin Wood is composed of many chemical components, primarily extractives, carbohydrates, and lignin, which are distributed nonuniformly as the result of anatomical structure. Lignin is derived from the Latin term lignum, which means wood.1 Anselme Payen (1838) was the first to recognize the composite nature of wood and referred to a carbon- rich substance as the “encrusting material” which embedded cellulose in the wood. Schulze (1865) later defined this encrusting material as lignin. Lignin has been described as a random, three-dimensional network polymer comprised of variously linked phenylpropane units.2 Lignin is the second most abundant biological material on the planet, exceeded only by cellulose and hemicellulose, and comprises 15-25% of the dry weight of woody plants. This macromolecule plays a vital role in providing mechanical support to bind plant fibers together. Lignin also decreases the permeation of water through the cell walls of the xylem, thereby playing an intricate role in the transport of water and nutrients. Finally, lignin plays an important function in a plant’s natural defense against degradation by impeding penetration of destructive enzymes through the cell wall. Although lignin is necessary to trees, it is undesirable in most chemical papermaking fibers and is removed by pulping and bleaching processes. 1.1.1 Biosynthesis Plant lignins can be broadly divided into three classes: softwood (gymnosperm), hardwood (angiosperm) and grass or annual plant (graminaceous) lignin.3 Three different phenylpropane units, or monolignols, are responsible for lignin biosynthesis.4 Guaiacyl lignin is composed principally of coniferyl alcohol units, while guaiacyl-syringyl lignin contains monomeric units from coniferyl and sinapyl alcohol. -
Paper Technology Journal
Paper Technology Journal World paper market: Quo vadis newsprint? News from the Divisions: Stock Preparation, Paper Machinery, Finishing and Service. A Scandinavian Success Story. Notable Startups. Orderbook Highlights. China, changing times in 3 the cradle of papermaking. Contents Foreword 1 Corporate News Highlights USA/Germany: Voith Appleton machine clothing. 55 Startups, orders on hand 2 Austria: World paper market The Andritz Group – partnering the Quo vadis newsprint? 5 pulp and paper industry 58 News from the Divisions Germany: Stock preparation: B+G Fördertechnik thirty years on 64 Membrane technology for the further close-up of paper mill water loops 14 Germany: Board and packaging Paper Machinery: pilot paper machine upgrade – Ortviken PM 4 – facing the future with tomorrow’s technology today 22 versatility 69 Paper Machinery: Latest generation of cylinder mould New names, new addresses formers – FloatLip former N, NO, S 28 Hunt & Moscrop: now Voith Sulzer Paper Machinery: Finishing Ltd., Manchester 72 Serang BM3/BM4 – the exemplary commissioning 30 Voith Sulzer Paper Technology: regional representation in Jakarta 72 Gap Former Technology: No. 26 DuoFormer CFD installation a success 37 Special awards for innovation and design Paper Machinery: New applications in multilayer Neusiedler Paper wins innovation technology 38 award with a revolutionary 3-layer headbox and NipcoFlex press 73 Paper Machinery: Brilliant Coating with JetFlow F – SPCI ’96 – impressive presence 73 data, facts, experience 44 Finishing: Advertisement of the year in Brazil 73 Econip – a new generation of deflection compensating rolls 48 China: Service: The changing origins of GR2 cover – next-generation paper – from hand-made performance leader 51 to machine-made 75 Cover picture: Ortviken – successfull start-up (see article on page 22). -
DOI: 10.1002/ ((Please Add Manuscript Number)) Article Type: Full Paper
DOI: 10.1002/ ((please add manuscript number)) Article type: Full Paper, Novel applications of nonwood cellulose for blood typing assays. Prof. Jasmina. Casals-Terré*1, Josep Farré-Lladós1, Allinson. Zuñiga1,2, Prof. Maria Blanca Roncero2, Prof Teresa Vidal2 1 Technical University of Catalonia, Mechanical Engineering Department, MicroTech Lab,Terrassa, Spain 2 Technical University of Catalonia, CELBIOTECH Paper Engineering Research Group, Terrassa, Spain * Corresponding Author: Address: MicroTech Laboratory, Department of Mechanical Engineering, Technical University of Catalonia, Terrassa 08222, Spain. E-mail. [email protected] Keywords: Sisal-based paper, Lab-on-a-Chip, sisal, paper-based microfluidics, blood typing test, Point-of-Care Testing (POCT). Abstract Paper-based microfluidics devices can create a new healthcare model. Cellulose is carbohydrate polymer biocompatible and hydrophilic. These characteristics enhance the development of user- friendly diagnostic devices, but the link between paper manufacturing process and performance of the devices is still unclear. Previous studies focused on either commercial papers or lab papers from wood-cellulose fibers, with different basis-weight. This work introduces the effect of refining process and lab paper from non-wood-cellulose fibers, focusing on sisal fibers to overcome the aforementioned challenge. Structural characteristics of paper, such as basis-weight and degree of refining, are optimized and correlated with blood typing test resolution. Unrefined sisal paper of 50 g/m2 and 100 g/m2 basis-weight exhibit a higher gray intensity level than refined paper, and also maximal capillary rise and a pore size suitable for blood grouping tests. Two different blood types were evaluated with results consistent with the traditional methods, testifying the usefulness of this methodology. -
Technical Drawing: Selecting Your Paper
Published on L'atelier Canson (https://www.lateliercanson.com) Accueil > Technical drawing: Selecting your paper Retour à la liste d'articles [1] Technical drawing: Selecting your paper [2] Le matériel [5] Notez cet article Give Technical drawing: ? Selecting your paper 3/5 Taux Texture, format, thickness, grid: a wide range of paper, tracing paper and transparent film readily adapts to all your creations. 1. Grammage It conditions the paper's thickness and is measured as grams per square meter: fine papers (under 90 g/m²) are appropriate for sketching, intermediate (up to 200 g/m²), adapt to most kinds of work, thick (300 g and more) are designed for wet media such as watercolor. 2. Format It is standardized and comes in six formats: from A0 (1 (m)2), up to A5 (the smallest one). Each format represents half of the previous one. Most used are the two classics, A3 and A4. 3. Texture The quality of a technical drawing relies on perfect lines: opt for slightly textured paper, whether fine grained or satin finish, and even completely smooth, such as Bristol board. Memo: There?s a paper for every medium Graphite: white or slightly tinted (beige, ocher, gray?). Color pencils: fine grained to make the pigments hold. Markers: paper known as "layout" paper holds ink and limits smudges. 4. Graph paper Technical drawing implies high precision. Choose it taking your subject's constraints into account. White drawing paper and Bristol board are available as graph paper. The covers of "to scale" pads of tracing paper come as 5 mm grid charts. -
Nanofibrillated Cellulose Applied As Reinforcement for Short-Fiber Paper
NANOFIBRILLATED CELLULOSE APPLIED AS REINFORCEMENT FOR SHORT-FIBER PAPER Daniele Cristina Potulski1*, Lívia Cássia Viana2, Ana Namikata da Fonte3 Mayara Elita Carneiro4, Graciela Ines Bolzon de Muniz5, Umberto Klock6 Universidade Federal do Paraná. Curitiba, Paraná, Brasil – [email protected]* ; [email protected] ; [email protected] ; [email protected] ; [email protected] 2 Universidade Federal do Tocantins. Gurupi, Tocantins, Brasil – e-mail: [email protected] Received for publication: 02/05/2018 - Accepted for publication: 31/10/2019 __________________________________________________________________________________________________ Resumo Nanocelulose aplicada como reforço para papel de fibra curta. Este trabalho teve como objetivo avaliar a influência da adição de diferentes porcentagens de celulose nanofibrilada sobre as propriedades mecânicas e físicas do papel feito a partir da polpa de fibras curtas. A celulose nanofibrilada foi obtida a partir de polpa Kraft de Eucalyptus sp. branqueada, submetida a três diferentes passes no moinho: 2, 10 e 20 passes. Os papéis foram produzidos com a adição de celulose nanofibrilada nas porcentagens de 3, 6 e 9%. Os resultados mostraram que a adição de celulose nanofibrilada aumentou as propriedades mecânicas: índice de tração, índice de arrebentamento e índice de rasgo. A porosidade e a densidade aparente diminuíram. A adição de 9% de celulose nanofibrilada, obtida a partir de 2 passes, proporcionou os melhores resultados com aumento da resistência à tração, arrebentamento e rasgo de 111, 114 e 70%, respectivamente, em comparação aos papéis normais. A melhoria das propriedades mecânicas do papel está relacionada à rede muito densa de ligações de hidrogênio, resultando em maior área de superfície obtida após a desfibrilação. -
Corrugated Board Structure: a Review M.C
ISSN: 2395-3594 IJAET International Journal of Application of Engineering and Technology Vol-2 No.-3 Corrugated Board Structure: A Review M.C. Kaushal1, V.K.Sirohiya2 and R.K.Rathore3 1 2 Assistant Prof. Mechanical Engineering Department, Gwalior Institute of Information Technology,Gwalior, Assistant Prof. Mechanical Engineering 3 Departments, Gwalior Engineering College, Gwalior, M. Tech students Maharanapratap College of Technology, Gwalior, [email protected] [email protected] [email protected] ABSTRACT Corrugated board is widely used in the packing industry. The main advantages are lightness, recyclability and low cost. This makes the material the best choice to produce containers devoted to the shipping of goods. Furthermore examples of structure design based on corrugated boards can be found in different fields. Structural analysis of paperboard components is a crucial topic in the design of containers. It is required to investigate their strength properties because they have to protect the goods contained from lateral crushing and compression loads due to stacking. However in this paper complete and detailed information are presented. Keywords: - corrugated boards, recyclability, compression loads. Smaller flutes offer printability advantages as well as I. INTRODUCTION structural advantages for retail packaging. Corrugated board is essentially a paper sandwich consisting of corrugated medium layered between inside II. HISTORY and outside linerboard. On the production side, corrugated In 1856 the first known corrugated material was patented is a sub-category of the paperboard industry, which is a for sweatband lining in top hats. During the following four sub-category of the paper industry, which is a sub-category decades other forms of corrugated material were used as of the forest products industry. -
The Repulping of Wet-Strength Paperboard
Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 12-1997 The Repulping of Wet-Strength Paperboard Angelo N. Melchiorre Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Wood Science and Pulp, Paper Technology Commons Recommended Citation Melchiorre, Angelo N., "The Repulping of Wet-Strength Paperboard" (1997). Master's Theses. 4929. https://scholarworks.wmich.edu/masters_theses/4929 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. THE REPULPING OF WET-STRENGTH PAPERBOARD by Angelo N. Melchiorre A Thesis Submitted to the Faculty of the Graduate College in partial fulfillmentof the requirements forthe Degree of Master of Science Department of Paper and Printing Science and Engineering Western Michigan University Kalamazoo, Michigan December 1997 Copyright by AngeloN. Melchiorre 1997 ACKNOWLEDGMENTS I would like to express my sincere thanks to my mother Rosemary, my sister Doreen, my wifeClaudia and my son Andres' for their emotional and financial support throughout my collegiate career: and to my committee members Professor Dr. Brian Scheller, Dr. Ellsworth Schriver and Dr. David Peterson for their advice and guidance throughout this project. Special thanks to Dr. Raja Aravamuthan and Barb Valenski, for their advice, encouragement and support. Lastly, I would like to thank Todd Fytczyk and the pilot plant fortheir assistance. Angelo N. Melchiorre 11 TIIE REPULPINGOF WET-STRENGTH PAPERBOARD Angelo N.