Decreased Wet Strength in Retorted Liquid Packaging Board Master of Science Thesis in the Master Degree Programme Materials and Nanotechnology

Total Page:16

File Type:pdf, Size:1020Kb

Decreased Wet Strength in Retorted Liquid Packaging Board Master of Science Thesis in the Master Degree Programme Materials and Nanotechnology Decreased Wet Strength in Retorted Liquid Packaging Board Master of Science thesis in the Master Degree Programme Materials and Nanotechnology MARIA GUNNARSSON Department of Chemical and Biological Engineering Division of Organic chemistry CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2012 Report No. 2012:001 Decreased wet strength in retorted liquid packaging board Master of Science Thesis MARIA GUNNARSSON SUPERVISOR: Gunnar Westman EXAMINER: Gunnar Westman Department of Chemical and Biological engineering CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden, 2012 Decreased wet strength in retorted liquid packaging board MARIA GUNNARSSON ©MARIA GUNNARSSON, 2012 Report no 2012:001 Department of Chemical and Biological Engineering Chalmers University of Technology SE-412 96 Göteborg Sweden Telephone +46 (0)31-7721000 Cover: The Tetra Recart packaging. Department of Chemical and Biological Engineering Göteborg, Sweden 2012 Decreased wet strength in retorted liquid packaging board Maria Gunnarsson Department of Chemical and Biological Engineering Division of Organic Chemistry CHALMERS UNIVERSITY OF TECHNOLOGY ABSTRACT The Tetra Recart is a retortable food packaging, suitable for high viscous products, making it able to replace most food cans used for storage of food today. The packaging is built up by a paperboard, consisting of an unbleached bottom layer and a bleached top layer. Polymers and aluminium further cover the paperboard in order to protect the food against moisture and light, causing degradation. During the retorting process, the packaging develops a certain wet strength making it hard to disintegrate the pulp fibres in the board. The phenomenon of the developed wet strength is of high interest when inventing and developing new packaging materials. To investigate why and how the phenomenon occurs, a series of trials were made through production of laboratory sheets with subsequent disintegration. The addition and amount of cationic starch was varied as well as the addition of alkyl ketene dimers, AKD, to investigate their influence on the developed wet strength. A hemicellulose or a cellulose derivative was adsorbed on the pulp fibres in order to see if the phenomenon could be prevented and thereby explained. Two types of lignin was also adsorbed on the pulp fibres to evaluate the influence of lignin on the phenomenon. Finally, the Klason lignin content in the non-retorted and retorted paperboard was measured to investigate a possible change in the chemical composition of lignin. Results showed that the addition and amount of cationic starch as well as the addition of AKD has an effect on the developed wet strength. Adsorption of a hemicellulose or a cellulose derivative on the pulp fibres can be used to prevent the phenomenon to occur. Adsorption of a lignin on the pulp fibres cannot be used to evaluate its influence on the phenomenon. Instead, adsorption of a lignin prevents the phenomenon to occur in the same way as a hemicellulose or a cellulose derivative. Measurements of the Klason lignin content showed a decrease in Klason lignin when retorting the paperboard for 1 hour but an increase in Klason lignin again when rertorting the paperboard for 1.5 hour and 2 hours. Keywords: Liquid packaging board, wet strength, retorting, cationic starch, AKD, lignin. CONTENTS 1. INTRODUCTION ............................................................................................................. 5 1.1 Background .................................................................................................................. 5 1.2 Purpose ........................................................................................................................ 6 1.3 Limitations ................................................................................................................... 6 1.4 Specification of question formulation ......................................................................... 6 2. THEORY ........................................................................................................................... 7 2.1 Wood and wood fibres ................................................................................................. 7 2.2 Cellulose ...................................................................................................................... 7 2.3 Hemicellulose – Xylan ................................................................................................ 9 2.4 Lignin ......................................................................................................................... 10 Lignin measurements ............................................................................................. 12 Kappa number ....................................................................................................... 12 The phenomenon auto-adhesion ............................................................................ 12 2.5 Starch ......................................................................................................................... 12 2.6 Cellulose derivatives .................................................................................................. 13 2.7 Sizing and sizing agents ............................................................................................ 14 AKD ....................................................................................................................... 14 ASA ........................................................................................................................ 15 2.8 IR spectroscopy ......................................................................................................... 15 2.9 Food and liquid food packaging ................................................................................ 16 2.10 Liquid packaging board ............................................................................................. 16 Retortable board .................................................................................................... 17 Board process ........................................................................................................ 17 2.11 Sterilization ................................................................................................................ 17 Retorting ................................................................................................................ 18 3. MATERIALS AND METHODS ................................................................................... 19 3.1 Pulps and chemicals ................................................................................................... 19 3.2 Modification of lignin ................................................................................................ 19 3.3 Production of laboratory sheets ................................................................................. 20 Reference sheets .................................................................................................... 20 Variation of starch addition .................................................................................. 20 Addition of xylan ................................................................................................... 20 Addition of HPC .................................................................................................... 21 Addition of HPMC ................................................................................................. 21 Addition of HPMC-P ............................................................................................. 21 Addition of lignin and modified lignin .................................................................. 21 Addition of antioxidant .......................................................................................... 21 3.4 Industrial retorting ..................................................................................................... 21 3.5 Laboratory retorting ................................................................................................... 22 Laboratory retorting in N 2-atmosphere ................................................................ 22 3.6 IR-spectroscopy ......................................................................................................... 22 3.7 SEM - Scanning electron microscopy ....................................................................... 23 3.8 Disintegration ............................................................................................................ 23 3.9 Klason lignin .............................................................................................................. 23 3.10 Acid soluble lignin ..................................................................................................... 24 3.11 Carbohydrate analysis ................................................................................................ 24 4. RESULTS AND DISCUSSION ..................................................................................... 25 4.1 IR-spectroscopy analysis ........................................................................................... 25 4.2 SEM-pictures of non-retorted and retorted material .................................................. 26 4.3 Temperature as an effect of disintegration ................................................................ 27 4.4 Addition of starch with and without AKD as an effect of disintegration
Recommended publications
  • A Guide to Packaging Material Flows and Terminology Pollution Is Nothing but the Resources We Are Not Harvesting
    A Guide to PAckAGinG MAteriAl Flows And terMinoloGy Pollution is nothing but the resources we are not harvesting. We allow them to disperse because we’ve been ignorant of their value. R. Buckminster Fuller A Guide to Packaging Material Flows and Terminology The work upon which this publication is based was funded, in whole, through grants awarded by the California Department of Conservation and GreenBlue through its Sustainable Packaging Coalition®. The statements and conclusions of this report are those of GreenBlue and not necessarily those of the Department of Conservation or its employees. The Department makes no warranties, express or implied, and assumes no liability for the information contained in the succeeding text. The Guide to Packaging Material Flows and Terminology is issued “as is” and with all faults. We give no express warranties, guarantees or conditions. You may have additional rights under local laws which this disclaimer cannot change. However, to the extent permitted under applicable laws, the Green Blue Institute makes no warranty of any kind, either express or implied, including but not limited to, any implied warranties of merchantability, fitness for a particular purpose or non–infringement. The Scrap Specifications Circular 2008 is © 2008 Institute of Scrap Recycling Industries, Inc. (ISRI), 1615 L Street, N.W., Suite 600, Washington, DC 20036, and portions were used by permission. ISRI’s Scrap Specifications Circular is subject to change; therefore, readers should contact ISRI or go to http://www.isri. org/specs to make certain they are reading the most recent version of the Scrap Specifications Circular. Closing the Loop: A Guide to Packaging Material Flows and Terminology Closing the Loop: A Guide to Packaging Material Flows and Terminology was developed by GreenBlue®, a nonprofit institute that works with the private sector to enable the positive redesign of industrial systems.
    [Show full text]
  • The Repulping of Wet-Strength Paperboard
    Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 12-1997 The Repulping of Wet-Strength Paperboard Angelo N. Melchiorre Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Wood Science and Pulp, Paper Technology Commons Recommended Citation Melchiorre, Angelo N., "The Repulping of Wet-Strength Paperboard" (1997). Master's Theses. 4929. https://scholarworks.wmich.edu/masters_theses/4929 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. THE REPULPING OF WET-STRENGTH PAPERBOARD by Angelo N. Melchiorre A Thesis Submitted to the Faculty of the Graduate College in partial fulfillmentof the requirements forthe Degree of Master of Science Department of Paper and Printing Science and Engineering Western Michigan University Kalamazoo, Michigan December 1997 Copyright by AngeloN. Melchiorre 1997 ACKNOWLEDGMENTS I would like to express my sincere thanks to my mother Rosemary, my sister Doreen, my wifeClaudia and my son Andres' for their emotional and financial support throughout my collegiate career: and to my committee members Professor Dr. Brian Scheller, Dr. Ellsworth Schriver and Dr. David Peterson for their advice and guidance throughout this project. Special thanks to Dr. Raja Aravamuthan and Barb Valenski, for their advice, encouragement and support. Lastly, I would like to thank Todd Fytczyk and the pilot plant fortheir assistance. Angelo N. Melchiorre 11 TIIE REPULPINGOF WET-STRENGTH PAPERBOARD Angelo N.
    [Show full text]
  • Staff Paper Series Number 206 : United States Wood-Based Industry: a Review of Structure and Organization
    UNITED STATES WOOD-BASED INDUSTRY: A REVIEW OF STRUCTURE AND ORGANIZATION by Paul V. Ellefson and Michael A. Kilgore January 2010 STAFF PAPER SERIES NUMBER 206 Department of Forest Resources College of Food, Agricultural and Natural Resources Sciences University of Minnesota St. Paul, MN 55108 For more information about the Department of Forest Resources and its teaching, research, and outreach programs, contact the Department at: Department of Forest Resources University of Minnesota 115 Green Hall 1530 N. Cleveland Avenue North St. Paul, MN 55108-6112 Ph: 612-624-3400 Fax: 612-625-5212 Email: [email protected] http://forestry.umn.edu/publications/staffpapers/index.html The University of Minnesota is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, color, creed, religion, national origin, sex, age, martial status, disability, public assistance status, veteran status, or sexual orientation UNITED STATES WOOD-BASED INDUSTRY: A REVIEW OF STRUCTURE AND ORGANIZATION by Paul V. Ellefson and Michael A. Kilgorea January 2010 a Professors, Department of Forest Resources, University of Minnesota, St. Paul, MN. Research supported by Minnesota Agricultural Experim ent Station; Research and Developm ent-RPA Assessment Program, Forest Service, U.S. Departm ent of Agriculture, Washington, DC; and the Southern Research Station, Forest Service, U.S. Department of Agricultural, New Orleans, LA. Contents Page INTRODUCTION 1 TIMBER GROWING INDUSTRY 1 General Character
    [Show full text]
  • ITP Forest Products: Development of Screenable Pressure Sensitive Adhesives
    Development of Screenable Pressure Sensitive Adhesives Final Report for Project DE-FC07-00ID13881 By Steven J. Severtson (Principal Investigator) XinPing Wang, Michael J. Nowak and Jihui Guo Department of Wood and Paper Science, University of Minnesota 2004 Folwell Avenue, St. Paul, MN 55108 Mark S. Kroll H.B. Fuller Company, 1200 Willow Lake Boulevard, St. Paul, MN 55110 Jennifer A. Lien Boise Paper Solutions, 400 Second Street, International Falls, MN 56649 Carl J. Houtman and Karen L. Scallon USDA Forest Service, Forest Products Laboratory, One Gifford Pinchot Drive Madison, WI 53705 November 28, 2003 Executive Summary Several approaches were examined for meeting the project objective of developing pressure sensitive adhesive (PSA) products that are engineered for enhanced removal during the processing of recycled fiber, also known as environmentally benign PSAs. These included the 1.) design of environmentally benign PSA films, 2.) development of paper face stock with high screening removal efficiencies that retain attached PSA films and 3.) modification of face stock surface properties to enhance the removal of PSA films. All three approaches yielded promising laboratory results that were confirmed at the pilot scale and appear to be commercially viable. Most of this study focused on hot-melt formulations, which compose a smaller portion of the PSA label market than water-based formulations. However, hot-melt formulations are considerably less complex and allow great flexibility for property modifications. The results of this research
    [Show full text]
  • Wide Format Playlist
    WIDE FORMAT PLAYLIST EVERYTHING WIDE FORMAT TABLE OF CONTENTS LATEX, ECO SOLVENT, UV CURABLE SELF ADHESIVE VINYL Economy PSA Vinyl .................................................................................................................3 Intermediate PSA Vinyl ............................................................................................................3 Premium PSA Vinyl ..................................................................................................................3 Retail Window Perforated Film .................................................................................................4 Specialty PSA Vinyl ..................................................................................................................4 Specialty PSA Window Vinyl ....................................................................................................4 Specialty PSA Wall Vinyl ..........................................................................................................5 Specialty PSA Floor Vinyl .........................................................................................................5 LATEX, ECO SOLVENT, UV CURABLE FLEET & VEHICLE WRAP VINYL Fleet PSA Vinyl ........................................................................................................................5 Vehicle Wrap PSA Vinyl & Laminate .........................................................................................5 Vehicle Window Perforated & Laminate ...................................................................................5
    [Show full text]
  • Clarification Announcement
    The Stock Exchange of Hong Kong Limited takes no responsibility for the contents of this announcement, makes no representation as to its accuracy or completeness and expressly disclaims any liability whatsoever for any loss howsoever arising from or in reliance upon the whole or any part of the contents of this announcement. * (Incorporated in Bermuda with limited liability) (Stock Code: 2689) CLARIFICATION ANNOUNCEMENT This announcement intends to clarify certain matters following the recent meetings of the Directors with investors and analysts of international research institutions regarding the Company’s progress in new products development and upstream expansion plan. In the recent meetings of the directors of the Company (the “Directors”) with investors and analysts of international research institutions, the Directors noted keen interests from the investors and analysts on the Company’s progress in new products development and upstream expansion plan. In this connection, the Directors wish to clarify the progress made by the Company in its development of new products and upstream expansion. Sichuan Factories In December 2007, the Company entered into agreements with three independent third parties (the “Vendors”) in Sichuan Province pursuant to which the Company agreed to acquire (the “Acquisition”) from the Vendors (i) Sichuan Qian Wei Baiya Paper Co. Ltd. (“Qian Wei”) and (ii) Sichuan Rui Song Paper Co. Ltd. (“Rui Song”). Qian Wei Pursuant to the sale and purchase agreements (the “Qian Wei Agreements”) for the acquisition of Qian Wei, the Vendors transferred their entire equity interests in Qian Wei to the Group free of consideration. Except for those items which the Group has expressly agreed to be responsible, the Vendors will be responsible for all debts and liabilities of Qian Wei prior to completion of the acquisition.
    [Show full text]
  • WINE, SPIRITS & CRAFT BEVERAGE Labelling
    WINE, SPIRITS & CRAFT BEVERAGE labelling World-class materials for desirable labels and eye-catching functionality Style, performance and function The wine, spirits and craft beverage industries are notoriously competitive markets. The label is a graphic canvas that gives consumers their first impression of a brand, and one of the most effective point-of-sale advertising methods. UPM Raflatac label materials give brands the tools needed to create a world-class label that delivers standout performance on the shelf and at the bar – offering an eye-catching look and delighting the senses. We offer a versatile range of paper-based, foil and film faces with labelling options for wines, spirits and craft beverages. Our labelling faces, adhesives and liners are expertly designed for the label’s entire life cycle. With UPM Raflatac you get a canvas on which to create the look you want, with efficient conversion, a clean, strong application and long-lasting performance in changeable temperatures and humidity levels. Why choose UPM Raflatac’s self-adhesive labelling for wine, spirits and craft beverage? • Selection. A diverse choice of innovative paper, • Sustainability. Solutions such as RafCycle® transform foil and film face materials and complementary label waste into usable resources, while Label Life embellishments for distinctive looks and design helps guide sustainable material selection. The raw possibilities. materials for our FSC® and PEFC™-certified products • Performance. Face materials, adhesives and liners are sourced from certified, responsibly managed forests. that offer top performance in a variety of conditions. • Printer versatility. Suitability for a full range of • Service. A global level of service from our experts, printing techniques, including digital printing.
    [Show full text]
  • Label Papers Label
    Label Papers Label Papers Label Papers Label your brand. As premium. With their outstanding brightness and excellent printing and metallisation results, our high-quality label papers are an ideal choice for customers looking to achieve a high shelf impact and brand differentiation for their products. Developed for the wet-glue and face stock labelling of cans, jars and bottles, PET, PVC and PET containers, wines and spirits and more, they are the perfect fit for a wide vari- ety of applications and offer high-quality and consistent results. The label papers offer high operation speed and excellent properties, such as wet strength and anti-mould. 74 Sappi Packaging and Speciality Papers March 2020 Features • Wide portfolio of face stock and wet-glue label papers • Unique pulp recipes and coating technology/expertise • Outstanding surface properties • Back-up solutions (PM and mills) • Financial strength and global presence Benefits • Excellent printing and metallisation results • Achieving high shelf impact and brand differentiation • High operation speed • Excellent converting operations • Perfect fit for different advanced applications • Matt labels • Oil- and grease-resistant labels (Kit Test) • Suitable for both labels and package insert applications Sappi Packaging and Speciality Papers March 2020 75 Label Papers For face stock and wet-glue labelling Face stock labelling Wet-glue labelling • Adicar 2 • Labelcar 6 WSM • Adicar Matt • Labelcar MT / Labelcar MTS • Adicar MC • Labelcar WS HG 5 • Adicar OGR • LusterCote • Adicar WS AM
    [Show full text]
  • Packaging Tomorrow
    Packaging Tomorrow Modelling the Material Input for European Packaging in the 21st Century M.P. Hekkert L.A.J. Joosten E. Worrell 98001 Packaging Tomorrow Modeling the Material Input for European Packaging in the 21st Century M.P. Hekkert L.A.J. Joosten E. Worrell This work was funded by the National Research Programme on Global Air Pollution and Climate Change Department of Science Technology and Society Utrecht University Padualaan 14 NL- 3584 CH Utrecht The Netherlands Report No. 98001 ISBN 90-73958-39-3 March 1997 1 2 Contents 1 INTRODUCTION............................................................................................................................... 5 1.1 THE MATTER PROJECT................................................................................................................... 5 1.2 PACKAGING IN EUROPE.................................................................................................................. 5 1.3 AIM AND STRUCTURE OF THIS REPORT ........................................................................................... 6 2 AUTONOMOUS DEVELOPMENTS............................................................................................... 9 2.1 EUROPEAN POLICIES IN REDUCING PACKAGING MATERIAL. ........................................................... 9 2.2 AUTONOMOUS DEVELOPMENTS FOR THE MARKAL MODEL ....................................................... 10 3 COSTS AND ENERGY CALCULATIONS METHOD FOR PACKAGING OPTIONS.......... 11 3.1 INTRODUCTION ...........................................................................................................................
    [Show full text]
  • Life Cycle Assessment (LCA) of Food and Beverage Packaging
    POLITECNICO DI MILANO Scuola di Ingegneria Civile, Ambientale e Territoriale POLO TERRITORIALE DI COMO Master of Science in Environmental and Land Planning Engineering Life Cycle Assessment (LCA) of Food and Beverage Packaging Supervisor: Prof. Giovanni Lonati Assistant Supervisor: Ing. Lucia Rigamonti Master Graduation Thesis by: Cynthia Elgiene L. Latunussa Student Id. number: 723332 Academic Year 2010/11 POLITECNICO DI MILANO Scuola di Ingegneria Civile, Ambientale e Territoriale POLO TERRITORIALE DI COMO Corso di Laurea Specialistica in Ingegneria per l’Ambiente e il Territorio Life Cycle Assessment (LCA) of Food and Beverage Packaging Relatore : Prof. Giovanni Lonati Correlatore : Ing. Lucia Rigamonti Tesi di Laurea di: Cynthia Elgiene L. Latunussa matr. 723332 Anno Accademico 2010/11 ABSTRACT Food and beverage industry is tightly bound to packaging industry to enable the protection of products and to transport them safely to the consumers. Multi material packaging is one of the most common packaging type and is usually adopted to contain liquid products like milk, juice, and wine. Multi material packaging generates potential adverse impacts to the environment over its life cycle. In recent years, the major multi material packaging producers have been utilizing Life Cycle Assessment (LCA) as a tool to analyze the environmental performance of their packaging systems. In this work, twelve LCA studies on multi material packaging were reviewed to get a general picture of the current LCA practice in these systems. The common potential processes in multi material packaging were summarized. These include the extraction and production of raw materials, the production of packaging, the filling phase, the end-of-life, transportation.
    [Show full text]
  • 1 Fibre Box Handbook Glossary Adhesive
    Fibre Box Handbook Glossary A Adhesive: Substance capable of adhering one surface to another. For fiberboard boxes, the substance is used to hold plies of solid fiberboard together, to hold linerboard to the tips of flutes of corrugated medium, or to hold overlapping flaps together to form the joint or to close a box. Anilox System: Inking system used in flexographic presses. B Bale: A shaped unit, usually containing compressible articles or materials, enclosed in a fiberboard container not conforming to the carriers’ rules for a box, or enclosed in other wrapping, and bound by strapping, rope or wire under tension. Banded Unit: A package or palletized load that has a band or bands (usually plastic) applied to it. Bar Code: An identification symbol. Alpha or alpha-numeric information is encoded in a sequence of high-contrast, rectangular bars and blank spaces. The relative widths of these bars and spaces and their sequence differentiate the individual characters that make up the encoded information. Bar codes are “read” by electronic scanners. Basis Weight (of Containerboard): Weight of linerboard or corrugating medium expressed in terms of pounds per 1,000 square feet (msf). Bending: In the expression "proper bending qualities," the ability of containerboard or combined board to be folded along score lines without rupture of the surface fibers to the point of seriously weakening the structure. Blank or Box Blank: A flat sheet of corrugated or solid fiberboard that has been cut, slotted and scored so that, when folded along the score lines and joined, it will take the form of a box.
    [Show full text]
  • Beverage Packaging in Brazil a Comparative Life Cycle Assessment
    1 Beverage Packaging in Brazil A Comparative Life Cycle Assessment On behalf of Ball Corporation Client: Ball Corporation Beverage packaging in Brazil (BR) – Title: A Comparative Life Cycle Assessment Report version: v3.0 Report date: 16/07/2020 © Sphera On behalf of Sphera and its subsidiaries Document prepared by Flora D’Souza [] [email protected] 16.07.2020 phone +49-711-341817-406 Contributing authors Rosie Dodd Maike Horlacher Iris Matzke Quality assurance by Manfred Russ [Signature] Principal Consultant 16.07.2020 Under the supervision of Dr Sabine Deimling Principal, Team Lead Food, Agriculture and Renewable Materials During the course of the project, thinkstep became Sphera Solutions GmbH. Therefore, all references to ‘thinkstep’ in this report refer to “Sphera Solutions”. Disclaimer (Sphera): This report has been prepared by Sphera with all reasonable skill and diligence within the terms and conditions of the contract between thinkstep and the client. Sphera is not accountable to the client, or any others, with respect to any matters outside the scope agreed upon for this project. Regardless of report confidentiality, Sphera does not accept responsibility of whatsoever nature to any third parties to whom this report, or any part thereof, is made known. Any such party relies on the report at its own risk. Interpretations, analyses, or statements of any kind made by a third party and based on this report are beyond Sphera’s responsibility. If you have any suggestions, complaints, or any other feedback, please contact us at [email protected]. Disclaimer (Ball): This Regional Summary is drawn from a comparative Life Cycle Assessment Report (“LCA”) conducted by Sphera at Ball Corporation’s request.
    [Show full text]