Label Papers Label
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Country-Of-Origin Labeling for Foods
Country-of-Origin Labeling for Foods Remy Jurenas Specialist in Agricultural Policy July 15, 2010 Congressional Research Service 7-5700 www.crs.gov RS22955 CRS Report for Congress Prepared for Members and Committees of Congress Country-of-Origin Labeling for Foods Summary Many retail food stores are now required to inform consumers about the country of origin of fresh fruits and vegetables, seafood, peanuts, pecans, macadamia nuts, ginseng, and ground and muscle cuts of beef, pork, lamb, chicken, and goat. The rules are required by the 2002 farm bill (P.L. 107- 171) as amended by the 2008 farm bill (P.L. 110-246). Other U.S. laws have required such labeling, but only for imported food products already pre-packaged for consumers. Both the authorization and implementation of country-of-origin labeling (COOL) by the U.S. Department of Agriculture’s Agricultural Marketing Service have not been without controversy. Much attention has focused on the labeling rules that now apply to meat and meat product imports. A number of leading agricultural and food industry groups continue to oppose COOL as costly and unnecessary. They and some major food and livestock exporters to the United States (e.g., Canada and Mexico) also view the new requirement as trade-distorting. Others, including some cattle and consumer groups, maintain that Americans want and deserve to know the origin of their foods, and that many U.S. trading partners have their own, equally restrictive import labeling requirements. Obama Administration officials announced in February 2009 that they would allow the final rule on COOL, published just before the end of the Bush Administration on January 15, 2009, to take effect as planned on March 16, 2009. -
Durability Test Data for Brother Laminated Tze Labels
Durability test data for Brother laminated TZe labels Brother laminated TZe labels have been designed to last, wherever you use them Whether you need a professional labelling solution for the office, industry or home, Brother laminated TZe labels have been designed with you in mind. We’ve thought about exactly when, where and how you might need to use our labels and put them through a series of tests which demonstrate how our laminated labels withstand heavy abrasion, heat, cold, sunshine, water and chemicals. Brother laminated TZe labels Why Brother laminated TZe labels withstand Lamination the test of time provides an extra protective overcoat Unlike non-laminated labels, our laminated TZe tape technology applies a layer of super-clear polyethylene laminate to protect your text. Protective coating ( PET ) Adhesive ( acrylic ) Coloured base film ( PET ) Adhesive ( acrylic ) Backingbacking paperpaper Lettering When using Brother laminated TZe tape cassettes in our P-touch label printers, a clear polyethylene laminate layer is applied over the entire label and thermal transfer ink at the time of printing, unlike comparable competitor label printers. Therefore Brother laminated labels offer an additional level of protection, ensuring your text and the valuable information contained on the label remains legible, even under harsh conditions such as long term use outdoors in sunny conditions. And our team of engineers have developed dedicated tapes using adhesives and label materials for more demanding applications such as textured surfaces or wrapping around cables - ensuring your labels stay attached whatever your labelling needs. The following pages show the tests that were performed and how our laminated labels were put through their paces. -
Decreased Wet Strength in Retorted Liquid Packaging Board Master of Science Thesis in the Master Degree Programme Materials and Nanotechnology
Decreased Wet Strength in Retorted Liquid Packaging Board Master of Science thesis in the Master Degree Programme Materials and Nanotechnology MARIA GUNNARSSON Department of Chemical and Biological Engineering Division of Organic chemistry CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2012 Report No. 2012:001 Decreased wet strength in retorted liquid packaging board Master of Science Thesis MARIA GUNNARSSON SUPERVISOR: Gunnar Westman EXAMINER: Gunnar Westman Department of Chemical and Biological engineering CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden, 2012 Decreased wet strength in retorted liquid packaging board MARIA GUNNARSSON ©MARIA GUNNARSSON, 2012 Report no 2012:001 Department of Chemical and Biological Engineering Chalmers University of Technology SE-412 96 Göteborg Sweden Telephone +46 (0)31-7721000 Cover: The Tetra Recart packaging. Department of Chemical and Biological Engineering Göteborg, Sweden 2012 Decreased wet strength in retorted liquid packaging board Maria Gunnarsson Department of Chemical and Biological Engineering Division of Organic Chemistry CHALMERS UNIVERSITY OF TECHNOLOGY ABSTRACT The Tetra Recart is a retortable food packaging, suitable for high viscous products, making it able to replace most food cans used for storage of food today. The packaging is built up by a paperboard, consisting of an unbleached bottom layer and a bleached top layer. Polymers and aluminium further cover the paperboard in order to protect the food against moisture and light, causing degradation. During the retorting process, the packaging develops a certain wet strength making it hard to disintegrate the pulp fibres in the board. The phenomenon of the developed wet strength is of high interest when inventing and developing new packaging materials. To investigate why and how the phenomenon occurs, a series of trials were made through production of laboratory sheets with subsequent disintegration. -
The Repulping of Wet-Strength Paperboard
Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 12-1997 The Repulping of Wet-Strength Paperboard Angelo N. Melchiorre Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Wood Science and Pulp, Paper Technology Commons Recommended Citation Melchiorre, Angelo N., "The Repulping of Wet-Strength Paperboard" (1997). Master's Theses. 4929. https://scholarworks.wmich.edu/masters_theses/4929 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. THE REPULPING OF WET-STRENGTH PAPERBOARD by Angelo N. Melchiorre A Thesis Submitted to the Faculty of the Graduate College in partial fulfillmentof the requirements forthe Degree of Master of Science Department of Paper and Printing Science and Engineering Western Michigan University Kalamazoo, Michigan December 1997 Copyright by AngeloN. Melchiorre 1997 ACKNOWLEDGMENTS I would like to express my sincere thanks to my mother Rosemary, my sister Doreen, my wifeClaudia and my son Andres' for their emotional and financial support throughout my collegiate career: and to my committee members Professor Dr. Brian Scheller, Dr. Ellsworth Schriver and Dr. David Peterson for their advice and guidance throughout this project. Special thanks to Dr. Raja Aravamuthan and Barb Valenski, for their advice, encouragement and support. Lastly, I would like to thank Todd Fytczyk and the pilot plant fortheir assistance. Angelo N. Melchiorre 11 TIIE REPULPINGOF WET-STRENGTH PAPERBOARD Angelo N. -
Printing Presses in the Graphic Arts Collection
Printing Presses in the Graphic Arts Collection THE NATIONAL MUSEUM OF AMERICAN HISTORY 1996 This page blank Printing Presses in the Graphic Arts Collection PRINTING, EMBOSSING, STAMPING AND DUPLICATING DEVICES Elizabeth M. Harris THE NATIONAL MUSEUM OF AMERICAN HISTORY, SMITHSONIAN INSTITUTION WASHINGTON D.C. 1996 Copies of this catalog may be obtained from the Graphic Arts Office, NMAH 5703, Smithsonian Institution, Washington D.C. 20560 Contents Type presses wooden hand presses 7 iron hand presses 18 platen jobbers 29 card and tabletop presses 37 galley proof and hand cylinder presses 47 printing machines 50 Lithographic presses 55 Copperplate presses 61 Braille printers 64 Copying devices, stamps 68 Index 75 This page blank Introduction This catalog covers printing apparatus from presses to rubber stamps, as well as some documentary material relating to presses, in the Graphic Arts Collection of the National Museum of American History. Not listed here are presses outside the accessioned collections, such as two Vandercook proof presses (a Model 4T and a Universal III) that are now earning an honest living in the office printing shop. At some future time, no doubt, they too will be retired into the collections. The Division of Graphic Arts was established in 1886 as a special kind of print collection with the purpose of representing “art as an industry.” For many years collecting was centered around prints, together with the plates and tools that made them. Not until the middle of the twentieth century did the Division begin to collect printing presses systematically. Even more recently, the scope of collecting has been broadened to include printing type and type-making apparatus. -
Corrugated 101! ! !Corrugated Vs
Corrugated 101! ! !Corrugated vs. Cardboard! • The term "cardboard box" is commonly misused when referring to a corrugated box. The correct technical term is "corrugated fiberboard carton.”! • Cardboard boxes are really chipboard boxes, and used primarily for packaging lightweight products, such as cereal or board games.! • Corrugated fiberboard boxes are widely utilized in retail packaging, shipping cartons, product displays and many other applications ! requiring lightweight, but sturdy materials.! !Corrugated Composition! Corrugated fiberboard is comprised of linerboard and heavy paper medium. Linerboard is the flat, outer surface that adheres to the medium. The medium is the wavy, fluted paper between the liners. Both are made of a special kind of heavy paper called !containerboard. Board strength will vary depending on the various linerboard and medium combinations.! • Single Face: Medium glued to 1 linerboard; flutes exposed! • Single Wall: Medium between 2 liners! • Double Wall: Varying mediums layered between 3 liners! !• Triple Wall: Varying mediums layered between 4 liners! !Flute Facts! !Corrugated board can be created with several different flute profiles. The five most common flute profiles are:! • A-Flute: Original corrugated flute design. Contains about 33 flutes per foot.! • B-Flute: Developed primarily for packaging canned goods. Contains about 47 flutes per foot and measures 1/8" thick! • C-Flute: Commonly used for shipping cartons. Contains about 39 flutes per foot and measures 5/32" thick! • E-Flute: Contains about 90 flutes per foot and measures 1/16" thick! • F-Flute: Developed for small retail packaging. Contains about 125 flutes per foot and measures 1/32" thick! • Generally, larger flute profiles deliver greater vertical compression strength and cushioning. -
ITP Forest Products: Development of Screenable Pressure Sensitive Adhesives
Development of Screenable Pressure Sensitive Adhesives Final Report for Project DE-FC07-00ID13881 By Steven J. Severtson (Principal Investigator) XinPing Wang, Michael J. Nowak and Jihui Guo Department of Wood and Paper Science, University of Minnesota 2004 Folwell Avenue, St. Paul, MN 55108 Mark S. Kroll H.B. Fuller Company, 1200 Willow Lake Boulevard, St. Paul, MN 55110 Jennifer A. Lien Boise Paper Solutions, 400 Second Street, International Falls, MN 56649 Carl J. Houtman and Karen L. Scallon USDA Forest Service, Forest Products Laboratory, One Gifford Pinchot Drive Madison, WI 53705 November 28, 2003 Executive Summary Several approaches were examined for meeting the project objective of developing pressure sensitive adhesive (PSA) products that are engineered for enhanced removal during the processing of recycled fiber, also known as environmentally benign PSAs. These included the 1.) design of environmentally benign PSA films, 2.) development of paper face stock with high screening removal efficiencies that retain attached PSA films and 3.) modification of face stock surface properties to enhance the removal of PSA films. All three approaches yielded promising laboratory results that were confirmed at the pilot scale and appear to be commercially viable. Most of this study focused on hot-melt formulations, which compose a smaller portion of the PSA label market than water-based formulations. However, hot-melt formulations are considerably less complex and allow great flexibility for property modifications. The results of this research -
Self-Adhesive Materials for Plastic Surfaces
TECHNICAL INFO N° 7 SELF-ADHESIVE MATERIALS FOR PLASTIC SURFACES KEY WORDS : - INHIBITING COMPONENTS - MIGRATORY COMPONENTS - RECYCLING - SURFACE ENERGY Plastics, which are so common in our daily life, differ tremendously because of their : Â chemical composition. Â manufacturing process. Â end-use, either as a flexible packaging film or as a rigid or semi-rigid object such as those used for the packaging of liquids (food and non-food applications), housewares, furniture, electronics, etc... End-use conditions may include : Â hot or cold labelling. Â wet or dry surface. Â smooth or rough surface. Â flat or curved surface. Â outdoor or indoor use. Â long-term or short-term application. It is therefore essential to test the self-adhesive material on the specific substrate and in the correct end-use conditions. Specifically there are a few questions that you may want to ask to help you choose the right self- adhesive product for the job. 1) Is the surface high or low energy ? The energy level of the surface will affect adhesion. High energy surfaces such as polyesters, PVC or polycarbonates usually pose no problems. However it may be more difficult to get good label adhesion on plastics with low energy surfaces such as polyethylene or polypropylene, also called polyolefins. A rubber based adhesive may provide stronger adhesion on low energy surfaces than most acrylics. But if the product will be used outdoors or will be exposed to UV light then opt for a high tack acrylic. The table below gives a comparison between the energy levels of certain plastics. -
Manufacturing of Paperboard and Corrugated Board Packages
Lecture 9: Manufacturing of paperboard and corrugated board packages Converting operations: printing, die-cutting, folding, gluing, deep-drawing After lecture 9 you should be able to • describe the most important converting operations in paper and paperboard package manufacturing • discuss important runnability considerations in paperboard package handling • relate factors affecting runnability to pppaperboard app earance and pyphysical performance quality parameters 1 Literature • Pulp and Paper Chemistry and Technology - Volume 4, Paper Products Physics and Technology, Chapter 10 • Paperboard Reference Manual, p. 157-225 • Fundamentals of packaging technology Chapters 4, 6, 15 and 18 Paperboard Packaging Design is the result of • Personal creativity plus – Knowledge and understanding of packaging materials, including: • Structural properties • Graphic capabilities • Converting processes and converting properties • Customer packaging systems • Marketing objectives • Distribution requirements • Retail outlet expectations • Needs and desires of end user • How end user will use the product • Many people may contribute to the design 2 Overall, the design must provide: • Containment of product • Protection of product • Ease in handling through distribution • Prevention of product spoilage • Tamper evidence • Consumer convenience • Brand identification • Communications for the consumer: – Instructions for product use – Coding for quality assurance, expiration dates – Dietary and nutritional information The design should consider: 1. Converting -
Wide Format Playlist
WIDE FORMAT PLAYLIST EVERYTHING WIDE FORMAT TABLE OF CONTENTS LATEX, ECO SOLVENT, UV CURABLE SELF ADHESIVE VINYL Economy PSA Vinyl .................................................................................................................3 Intermediate PSA Vinyl ............................................................................................................3 Premium PSA Vinyl ..................................................................................................................3 Retail Window Perforated Film .................................................................................................4 Specialty PSA Vinyl ..................................................................................................................4 Specialty PSA Window Vinyl ....................................................................................................4 Specialty PSA Wall Vinyl ..........................................................................................................5 Specialty PSA Floor Vinyl .........................................................................................................5 LATEX, ECO SOLVENT, UV CURABLE FLEET & VEHICLE WRAP VINYL Fleet PSA Vinyl ........................................................................................................................5 Vehicle Wrap PSA Vinyl & Laminate .........................................................................................5 Vehicle Window Perforated & Laminate ...................................................................................5 -
4. Printing and Converting Performance
4. Printing and converting performance Paperboard converting 147 Clean edges and surfaces 155 Handling paperboard 158 Offset lithography 160 UV-offset 161 Waterless offset 162 Hybrid offset 162 Flexography 163 Screen printing 164 Digital printing 165 Gravure printing 166 Hot foil stamping 169 Embossing 171 Die-cutting & creasing 174 Lasercutting 178 Scoring 182 Creasabilty & foldability 186 Gluing 194 Binding in practice - the last link 199 Heat sealing 206 Packaging operation 203 Deep drawing 212 146 Reference Manual | IGGESUND PAPERBOARD Paperboard converting Paperboard converting Paperboard has the ability to achieve or exceed the same The increasing demands in the brand promotion process excellent image reproduction as for the best fine papers. for graphic design and the use of non-print surface enhance- Paperboard offers equal possibilities to achieve new, ment are creating innovative shapes and multi-sensory ex- challenging shapes as competing packaging materials. periences for the consumer or user who hand les the product. However, increasing demands on performance of the An understanding of the interaction between paper- material in various converting processes have become board properties and converting effi ciency is essential for evident when speeds in both printing processes and post- designers and converters, since the ultimate design of the press converting have increased. Additionally, the accept- product together with the choice of paperboard will impact ance level for impurities or slight deviations in quality in the on crucial conversion factors like printability, fl atness, and fi nal product has dropped noticeably as a result of both creasing/folding properties. Considering all the variables, end-user demands and the use of modern quality control it is probably true to say that consistency in the behaviour equipment in the various converting machines. -
ARTWORK Guidelines for Medical Packaging Graphic Design
6153C West Mulford St. Niles, IL 60714 USA Our Quality, Our Performace, Toll Free Phone: 855-966-6100 Fax: 847-966-6168 Your Success. peelmaster.com ARTWORK Guidelines for Medical Packaging Graphic Design • Background • Print in the heat seal area – Avoid if possible • Close registration and “traps” – Discouraged, but possible • Screens and halftones – Recommended screen: 80 line; gradients/vignettes discouraged • Small type – 6 pt. or larger recommended • Color specifications – Use Pantone uncoated for paper, Tyvek®; Pantone coated for films • Large solids – Large solid area of print are discouraged • Metallic Inks – Discouraged, and may incur extra expense • Electronic artwork – Vector based format (see page 2 for further details) Background: Because medical packaging materials (particularly Tyvek®) can be of uneven thicknesses, there are some limitations on printing that graphic designers should take into consideration when designing artwork for medical packaging. PeelMaster is one of the best printers in the medical packaging business, and can provide expert assistance in your design process. No matter what the challenge, we will give our best efforts. However, often it is possible to reduce or eliminate potential problems with proper design in the first place. For this reason, to assist you, we have assembled the following guidelines: 1. PeelMaster uses a web-fed (roll-to-roll) flexographic printing process. 2. We can print up to 4 colors in register on one side of the web, or can print in register on both sides, 2 colors on one side, one color on the other. (Note: Most medical packaging is one or two colors. If more colors are needed, up to 4 colors can be printed on each side of the web–in two print passes–but the image on one side will randomly located on the package.) 3.