Single Chip Microcomputer Mos Sc/Mp Now Offered Gi
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Great Telecom Meltdown for a Listing of Recent Titles in the Artech House Telecommunications Library, Turn to the Back of This Book
The Great Telecom Meltdown For a listing of recent titles in the Artech House Telecommunications Library, turn to the back of this book. The Great Telecom Meltdown Fred R. Goldstein a r techhouse. com Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the U.S. Library of Congress. British Library Cataloguing in Publication Data Goldstein, Fred R. The great telecom meltdown.—(Artech House telecommunications Library) 1. Telecommunication—History 2. Telecommunciation—Technological innovations— History 3. Telecommunication—Finance—History I. Title 384’.09 ISBN 1-58053-939-4 Cover design by Leslie Genser © 2005 ARTECH HOUSE, INC. 685 Canton Street Norwood, MA 02062 All rights reserved. Printed and bound in the United States of America. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher. All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Artech House cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark. International Standard Book Number: 1-58053-939-4 10987654321 Contents ix Hybrid Fiber-Coax (HFC) Gave Cable Providers an Advantage on “Triple Play” 122 RBOCs Took the Threat Seriously 123 Hybrid Fiber-Coax Is Developed 123 Cable Modems -
Zilog Developer Studio II
Z8 Encore!® Microcontroller Zilog Developer Studio II Product Brief PB009708-1010 Zilog Developer Studio II ZDS II Products Integrated for the Z8 Encore! Assembler ez8asm Introduction Compiler ez8cc Zilog Developer Studio II (ZDS II) Integrated Linker ez8link Development Environment is a complete stand- Librarian ez8lib alone system that provides a state-of-the-art devel- opment environment. Based on standard Windows Simulator Yes user interfaces, ZDS II integrates a language-sensi- Flash Loader Yes tive editor, project manager, C-Compiler, assem- Host Communication RS-232, USB, Ethernet bler, linker, librarian, and source-level symbolic debugger to provide a development solution specif- Figure 1 illustrates a typical display interface ically tailored to the Z8 Encore! line of microcon- showing many of the features of ZDS II. trollers. Figure 1. ZDS II’s Easy-To-Use Interface ZiLOG Worldwide Headquarters • 1590 Buckeye Drive • Milpitas, CA 95035 Telephone: 408.513.1500 • Fax: 408.365.8535 • www.zilog.com Zilog Developer Studio II for the Z8 Encore!® Microcontroller Product Brief 2 Easy-To-Use Interface • Download, Execute, Debug, and Analyze ZDS II provides a standard user interface with • Language-sensitive editor intuitive, easy-to-use controls commonly found in • Print the disassembly, call stack, symbol, ® Windows -based environments. The system con- memory and register window outputs for tains an integrated set of windows, document future reference views, menus, and toolbars to create, test and refine applications without having to alternate • Symbolic source-level debugging for C and between different systems. assembly languages • Online Help Flexible and Adaptable Design • Full-featured assembler and linker Capabilities • Interleaved source and disassembly Designed to use the multithreading capability of the host operating system, multiple operations can • Makefile generation be performed efficiently and easily with ZDS II. -
Oral History Panel on the Development and Promotion of the Zilog Z8000 Microprocessor
Oral History Panel on the Development and Promotion of the Zilog Z8000 Microprocessor Moderator: Michael Slater Panelists: Federico Faggin Bernard Peuto Masatoshi Shima Ralph Ungermann Recorded: April 27, 2007 Mountain View, California CHM Reference number: X4022.2007 © 2007 Computer History Museum Michael Slater: We have with us today [April 27, 2007] four people who were involved in its [Zilog Z8000 microprocessor] creation: Ralph Ungermann, Bernard Peuto, Federico Faggin, and Masatoshi Shima. We’ve heard about the backgrounds from Shima-san, Federico and Ralph in the previous tape [oral history by the Z80 team], so we’ll start with Bernard. Could you tell us about your educational background, your experience before you came to this project? Bernard Peuto: Yes. I was born in France where I got an engineering education in radio and in computers in 1967 and 1968. I came to Berkeley to do a Ph.D. In 1969, I had my Master of Arts from Berkeley in computer science and I passed my prelim. I went back to do my military duties and then I came back and got a Ph.D. in computer science in 1974. My dissertation was about memory protection, which will come back as a subject later. As my first job I joined Amdahl Corporation from 1973 to 1976. The reason I joined Amdahl Corporation was that Charlie Bass was sharing an office with me when he was an assistant professor at Berkeley and I was a Ph.D. student and Charlie Bass had a good friend of his that was working at Fujitsu so through that connection I was hired as a computer architect at Amdahl Corporation. -
Microprocessors in the 1970'S
Part II 1970's -- The Altair/Apple Era. 3/1 3/2 Part II 1970’s -- The Altair/Apple era Figure 3.1: A graphical history of personal computers in the 1970’s, the MITS Altair and Apple Computer era. Microprocessors in the 1970’s 3/3 Figure 3.2: Andrew S. Grove, Robert N. Noyce and Gordon E. Moore. Figure 3.3: Marcian E. “Ted” Hoff. Photographs are courtesy of Intel Corporation. 3/4 Part II 1970’s -- The Altair/Apple era Figure 3.4: The Intel MCS-4 (Micro Computer System 4) basic system. Figure 3.5: A photomicrograph of the Intel 4004 microprocessor. Photographs are courtesy of Intel Corporation. Chapter 3 Microprocessors in the 1970's The creation of the transistor in 1947 and the development of the integrated circuit in 1958/59, is the technology that formed the basis for the microprocessor. Initially the technology only enabled a restricted number of components on a single chip. However this changed significantly in the following years. The technology evolved from Small Scale Integration (SSI) in the early 1960's to Medium Scale Integration (MSI) with a few hundred components in the mid 1960's. By the late 1960's LSI (Large Scale Integration) chips with thousands of components had occurred. This rapid increase in the number of components in an integrated circuit led to what became known as Moore’s Law. The concept of this law was described by Gordon Moore in an article entitled “Cramming More Components Onto Integrated Circuits” in the April 1965 issue of Electronics magazine [338]. -
Texas Ethics Commission 2020 Lobbyist with Clients Ordered by Lobbyist Name Printed on Oct 2, 2021 Key for Compensation Amount Codes
Texas Ethics Commission 2020 Lobbyist With Clients Ordered By Lobbyist Name Printed On Oct 2, 2021 Key for Compensation Amount Codes LOBBCOMPEQZERO $0 LOBBCOMP05 $100,000 - $149,999.99 LOBBCOMP10 $350,000 - $399,999.99 LOBBCOMP01 Less than $10,000 LOBBCOMP06 $150,000 - $199, 999.99 LOBBCOMP11 $400,000 - $449,999.99 LOBBCOMP02 $10,000 - $24,999.99 LOBBCOMP07 $200,000 - $249, 999.99 LOBBCOMP12 $450,000 - $499,999.99 LOBBCOMP03 $25,000 - $49,000.99 LOBBCOMP08 $250,000 - $299,999.99 LOBBCOMP13 Over $500,000 LOBBCOMP04 $50,000 - $99,999.99 LOBBCOMP09 $300,000 - $349,999.99 LOBBCOMPEXACTAMT 70358 #1 Abbott, Sean (Mr.) Attorney 100 Congress Avenue Suite 1300 Austin TX (512)4352334 MODIFIED 3 B&J Municipal Utility District c/o Armbrust & Brown, PLLC 100 Congress Austin TX 78701 LOBBCOMP01 PAID 01/01/2020 to12/31/2020 Avenue, Suite 1300 Bell County Municipal Utility District No. 1 c/o Armbrust & Brown, PLLC 100 Congress Austin TX 78701 LOBBCOMP01 PAID 01/01/2020 to12/31/2020 Avenue, Suite 1300 Bell County Municipal Utility District No. 2 c/o Armbrust & Brown, PLLC 100 Congress Austin TX 78701 LOBBCOMP01 PAID 01/01/2020 to12/31/2020 Avenue, Suite 1300 Berry Creek Highlands Municipal Utility District c/o Armbrust & Brown, PLLC 100 Congress Austin TX 78701 LOBBCOMP01 PAID 01/01/2020 to12/31/2020 Avenue, Suite 1300 Blake Magee Company 1011 North Lamar Austin TX 78704 LOBBCOMP01 PAID 01/01/2020 to12/31/2020 Block House Municipal Utility District c/o Armbrust & Brown, PLLC 100 Congress Austin TX 78701 LOBBCOMP01 PAID 01/01/2020 to12/31/2020 Avenue, Suite 1300 Bonzo, LP 3939 Bee Caves Rd. -
Microcomputers: NQS PUBLICATIONS Introduction to Features and Uses
of Commerce Computer Science National Bureau and Technology of Standards NBS Special Publication 500-110 Microcomputers: NQS PUBLICATIONS Introduction to Features and Uses QO IGf) .U57 500-110 NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act ot Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides; (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is per- formed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology. THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and -
The State Board of Education
THE STAte OF the RELIGIOUS RIGht { 2008 } THE STATE BOARD OF EDUCATION: DRAGGING TEXAS SCHOOLS INTO THE CULTURE WARS THE STAte OF the RELIGIOUS RIGht { 2008 } THE STATE BOARD OF EDUCATION: DRAGGING TEXAS SCHOOLS INTO THE CULTURE WARS A R E p ort f ro m the T exas f R E E D O m N etwor k E ducation f U N D kathy miller, TFN president Dan Quinn, TFN communications director Bren Gorman, researcher Judie Niskala, researcher Emily Sentilles, researcher A bout the T f N E ducation f U N D The Texas Freedom Network Education Fund is a 501(c)(3) tax-exempt, nonprofit corporation. Created in 1996, the TFN Education Fund researches the agenda, activities and funding of the religious right. It also educates mainstream people of faith in how to formulate and to advocate a faith-based response to the religious right’s policy agenda. TfN Education fund Board of Directors Rebecca Lightsey, chair Janis pinnelli, treasurer Rev. Dr. Larry Bethune Grace Garcia Diane Ireson Dale Linebarger Table Of Contents Introduction. .2. Watch List: 2008. .5 1: The State Board of Education in Texas. .11 2: A History of Censorship in Texas. .17 3: The Right Ascendant. 21 4: Targeting Curriculum Standards (TEKS). .25 Appendices Appendix A: Who’s Who in Texas Textbook Censorship . .30 Appendix B: Textbook Censorship in Texas: A Timeline. .32 Appendix C: Textbook Censorship in Texas: The Record. .35 Appendix D: They Really Said It: Quoting the Religious Right in 2007 .. .. .. .. .. .. .. ...36 Appendix E: Organizations of the Religious Right in Texas. -
Extracting and Mapping Industry 4.0 Technologies Using Wikipedia
Computers in Industry 100 (2018) 244–257 Contents lists available at ScienceDirect Computers in Industry journal homepage: www.elsevier.com/locate/compind Extracting and mapping industry 4.0 technologies using wikipedia T ⁎ Filippo Chiarelloa, , Leonello Trivellib, Andrea Bonaccorsia, Gualtiero Fantonic a Department of Energy, Systems, Territory and Construction Engineering, University of Pisa, Largo Lucio Lazzarino, 2, 56126 Pisa, Italy b Department of Economics and Management, University of Pisa, Via Cosimo Ridolfi, 10, 56124 Pisa, Italy c Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Largo Lucio Lazzarino, 2, 56126 Pisa, Italy ARTICLE INFO ABSTRACT Keywords: The explosion of the interest in the industry 4.0 generated a hype on both academia and business: the former is Industry 4.0 attracted for the opportunities given by the emergence of such a new field, the latter is pulled by incentives and Digital industry national investment plans. The Industry 4.0 technological field is not new but it is highly heterogeneous (actually Industrial IoT it is the aggregation point of more than 30 different fields of the technology). For this reason, many stakeholders Big data feel uncomfortable since they do not master the whole set of technologies, they manifested a lack of knowledge Digital currency and problems of communication with other domains. Programming languages Computing Actually such problem is twofold, on one side a common vocabulary that helps domain experts to have a Embedded systems mutual understanding is missing Riel et al. [1], on the other side, an overall standardization effort would be IoT beneficial to integrate existing terminologies in a reference architecture for the Industry 4.0 paradigm Smit et al. -
A History of the Personal Computer Index/11
A History of the Personal Computer 6100 CPU. See Intersil Index 6501 and 6502 microprocessor. See MOS Legend: Chap.#/Page# of Chap. 6502 BASIC. See Microsoft/Prog. Languages -- Numerals -- 7000 copier. See Xerox/Misc. 3 E-Z Pieces software, 13/20 8000 microprocessors. See 3-Plus-1 software. See Intel/Microprocessors Commodore 8010 “Star” Information 3Com Corporation, 12/15, System. See Xerox/Comp. 12/27, 16/17, 17/18, 17/20 8080 and 8086 BASIC. See 3M company, 17/5, 17/22 Microsoft/Prog. Languages 3P+S board. See Processor 8514/A standard, 20/6 Technology 9700 laser printing system. 4K BASIC. See Microsoft/Prog. See Xerox/Misc. Languages 16032 and 32032 micro/p. See 4th Dimension. See ACI National Semiconductor 8/16 magazine, 18/5 65802 and 65816 micro/p. See 8/16-Central, 18/5 Western Design Center 8K BASIC. See Microsoft/Prog. 68000 series of micro/p. See Languages Motorola 20SC hard drive. See Apple 80000 series of micro/p. See Computer/Accessories Intel/Microprocessors 64 computer. See Commodore 88000 micro/p. See Motorola 80 Microcomputing magazine, 18/4 --A-- 80-103A modem. See Hayes A Programming lang. See APL 86-DOS. See Seattle Computer A+ magazine, 18/5 128EX/2 computer. See Video A.P.P.L.E. (Apple Pugetsound Technology Program Library Exchange) 386i personal computer. See user group, 18/4, 19/17 Sun Microsystems Call-A.P.P.L.E. magazine, 432 microprocessor. See 18/4 Intel/Microprocessors A2-Central newsletter, 18/5 603/4 Electronic Multiplier. Abacus magazine, 18/8 See IBM/Computer (mainframe) ABC (Atanasoff-Berry 660 computer. -
Computer Development in the Socialist Countries: Members of the Council for Mutual Economic Assistance (CMEA)
Computer Development in the Socialist Countries: Members of the Council for Mutual Economic Assistance (CMEA) A.Y. Nitusov Köln/Cologne, Germany; Moscow, Russia [email protected] Abstract. Achievements of the East European Socialist countries in computing -although considerable- remained little known in the West until recently. Retarded by devastations of war, economic weakness and very different levels of national science, computing ranged „from little to nothing‟ in the 1950-s. However, full-scale collective cooperation with the USSR based on principles of equal rights and mutual assistance was aimed at increasing of common creative power. Centralised planning and ability to concentrate efficiently national resources on priority issues, state support for science and progressive educational system accessible for everybody played decisive role. The progress was impressive. Some (GDR) reached world‟s level in science and engineering such as some (in Hungary) – advanced computer education, programming and efficient usage and some (in Bulgaria, Cuba) starting “from zero point” turned into reputable manufacturers. In 1970-1990, 300,000 people as the united team of eight countries jointly designed and produced advanced family of compatible computers ES. Given general review also displays some important technical and organisational details. Keywords: Computer development, East European countries, computer family ES, free education, cooperation 1 Introduction Little was written abroad computer development in the East European1 socialist countries – partners of the USSR, during relatively long period, although some of their achievements were of considerable interest. The lack of foreign attention was primarily caused by natural desire to display first the own pioneer discoveries and most important inventions. The results of the East- European (outside the USSR) computer research appeared notably later than in the “great powers”, what could be another reason of “the silence”. -
Assessment of Data Rates on the Internal and External Cpu Interfaces and Its Applications for Wireless Network-On-Chip Development
MARIIA KOMAR ASSESSMENT OF DATA RATES ON THE INTERNAL AND EXTERNAL CPU INTERFACES AND ITS APPLICATIONS FOR WIRELESS NETWORK-ON-CHIP DEVELOPMENT Master of Science thesis Examiner: Prof. Yevgeni Koucheryavy, Dr. Dmitri Moltchanov Examiner and topic approved by the Faculty Council of the Faculty of Computing and Electrical Engineering on 27th September 2017 I ABSTRACT MARIIA KOMAR: Assessment of data rates on the internal and external CPU interfaces and its applications for Wireless Network-on-Chip development Tampere University of Technology Master of Science thesis, 56 pages November 2017 Master's Degree Programme in Information Technology Major: Information Technology Examiner: Prof. Yevgeni Koucheryavy, Dr. Dmitri Moltchanov Keywords: central processing unit, CPU, CPU performance, Wireless Networks-on-Chip, WNoC, data rates assessment Nowadays central processing units (CPUs) are the major part of the personal com- puters, and usually their progress denes personal computers (PCs) progress. How- ever, modern CPU architecture has a set of limitations mentioned in this thesis. As a result, new CPU architectures are now under development. Most prospective solution in this eld are based on a proposed concept of Wireless Networks-on-Chip (WNoCs), where part of wired connections is changed into wireless links. However in order to design and develop this kind of system, information about data rates on the internal and external CPU interfaces of modern CPUs is needed. Main goals set in the beginning of working on this thesis were to get this data rates assessment and give an assessment of suitable wireless technologies for milticore CPUs with dierent number of cores. In this thesis CPU evolution is described and peculiarities of modern CPU archi- tectures are mentioned. -
Low Cost Video for Distance Education Michael J
Nova Southeastern University NSUWorks CEC Theses and Dissertations College of Engineering and Computing 1996 Low Cost Video For Distance Education Michael J. Simpson Nova Southeastern University, [email protected] This document is a product of extensive research conducted at the Nova Southeastern University College of Engineering and Computing. For more information on research and degree programs at the NSU College of Engineering and Computing, please click here. Follow this and additional works at: https://nsuworks.nova.edu/gscis_etd Part of the Computer Sciences Commons Share Feedback About This Item NSUWorks Citation Michael J. Simpson. 1996. Low Cost Video For Distance Education. Doctoral dissertation. Nova Southeastern University. Retrieved from NSUWorks, Graduate School of Computer and Information Sciences. (842) https://nsuworks.nova.edu/gscis_etd/842. This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and Dissertations by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Low Cost Video for Distance Education by Michael J. Simpson A Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy School of Computer and Information Sciences Nova Southeastern University 1996 We hereby certify that this dissertation, submitted by Michael J. Simpson, conforms to acceptable standards and is fully adequate in scope and quality to fulfill the dissertation requirements for the degree of Doctor of Philosophy. _______________________________________________________ Jacques C. Levin, Ph.D. Date Chairman of Dissertation Committee _______________________________________________________ John A. Scigliano, Ed.D. Date Dissertation Committee Member _______________________________________________________ Steven R. Terrell, Ed.D.