Microcomputers: NQS PUBLICATIONS Introduction to Features and Uses

Total Page:16

File Type:pdf, Size:1020Kb

Microcomputers: NQS PUBLICATIONS Introduction to Features and Uses of Commerce Computer Science National Bureau and Technology of Standards NBS Special Publication 500-110 Microcomputers: NQS PUBLICATIONS Introduction to Features and Uses QO IGf) .U57 500-110 NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act ot Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides; (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is per- formed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology. THE NATIONAL MEASUREMENT LABORATORY provides the national system of physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and distributes Standard Reference Materials; and provides calibration services. The Laboratory consists of the following centers: Absolute Physical Quantities-^ — Radiation Research — Chemical Physics — Analytical Chemistry — Materials Science THE NATIONAL ENGINEERING LABORATORY provides technology and technical ser- vices to the public and private sectors to address national needs and to solve national problems; conducts' research in engineering and applied science in support of these efforts; builds and maintains competence in the necessary disciplines required to carry out this research and technical service; develops engineering data and measurement capabilities; provides engineering measurement traceability services; develops test methods and proposes engineering standards and code changes; develops and proposes new engineering practices; and develops and improves mechanisms to transfer results of its research to the ultimate user. The Laboratory consists of the following centers: Applied Mathematics — Electronics and Electrical Engineering^ — Manufacturing Engineering — Building Technology — Fire Research — Chemical Engineering-^ THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides scientific and technical services to aid Federal agencies in the selection, acquisition, application, and use of computer technology to improve effectiveness and economy in Government operations in accordance with Public Law 89-306 (40 U.S.C. 759), relevant Executive Orders, and other directives; carries out this mission by managing the Federal Information Processing Standards Program, developing Federal ADP standards guidelines, and managing Federal participation in ADP voluntary standardization activities; provides scientific and technological advisory services and assistance to Federal agencies; and provides the technical foundation for computer-related policies of the Federal Government. The Institute consists of the following centers; Programming Science and Technology — Computer Systems Engineering. 'Headquarters and Laboratories at Gailhersburg, MD, unless otherwise noted; mailing address Washington, DC 20234. ^Some divisions within the center are located at Boulder, CO 80303. 1 OF STAUD/iJiDS Computer Science gc^ and Technology I 00 '500 - NBS Special Publication 500-110 Microcomputers: Introduction to Features and Uses Myron Hecht Herbert Hecht Laurence Press SoHaR Incorporated 1040 South LaJolla Avenue Los Angeles, CA 90035 Sponsored by: Institute for Computer Sciences and Technology National Bureau of Standards Washington, DC 20234 U.S. DEPARTMENT OF COMMERCE Malcoim Baldrige, Secretary National Bureau of Standards Ernest Ambler, Director Issued March 1984 Reports on Computer Science and Technology The National Bureau of Standards has a special responsibility within the Federal Government for computer science and technology activities. The programs of the NBS Institute for Computer Sciences and Technology are designed to provide ADP standards, guidelines, and technical advisory services to improve the effectiveness of computer utilization in the Federal sector, and to perform appropriate research and development efforts as foundation for such activities and programs. This publication series will report these NBS efforts to the Federal computer community as well as to interested specialists in the academic and private sectors. Those wishing to receive notices of publications in this series should complete and return the form at the end of this publication. National Bureau of Standards Special Publication 500-110 Natl. Bur. Stand. (U.S.), Spec. Publ. 500-110, 144 pages (Mar. 1984) CODEN: XNBSAV Library of Congress Catalog Card Number: 84-601005 U.S GOVERNMENT PRINTING OFFICE WASHINGTON: 1984 For sale by the Superintendent ol Documents, U S, Government Printing Oltice, Washington. DC 20402 TABLE OF OONTEKIS LIST OF FIGURES V LIST OF TABLES ......... vi EXECUTIVE SUMMARY viii ABSTRACT AND KEYWORDS 1 1 INTRODUCnCW 2 1.1. Motivation 2 1.2. Federal Regulations Affecting Microcomputer Procuronent and Use 4 1.3. Contents of this Report. 5 1.4. Disclaimer and Trademark Identifications 6 2 OVERVIEW OF MICROOOMPUTERS 7 2.1. What Is a Microcomputer 7 2.2. Microcomputer Hardware . 7 2.3. Systems Software 25 2.4. Programming Languages 30 2.5. The User Interface 36 2.6 Types of Microconputers 38 3 FEDERM. USERS 42 3.1. Clerical Users 45 3.2. Administrative Users 47 3.3. Professional Users . , . , 49 3.4. Technical Users. 52 4 MICROCBMEOTER APPLICATIONS 54 4.1. Word Processing 55 4.2. Data Management Software 58 4.3. Spread Sheet Processors 64 4.4. Graphics Software 68 4.5. Microcomputer Canmunications 77 4.6. Specialized Software 85 4.7. Application Integration 86 iii lABLE OF OGNTOnS (continued) 5 mxPGEMEtrr issues of MCROGQMFUTERS 90 5.1. Motivation for Using Microcomputers 90 5.2. Costs of Microcomputer Systems 92 5.3. Risks of Microconputers 94 5.4. Prevention of Problems 97 5.5. Sources of Microconputers 100 6 OCNCLUSION 105 6.1. Summary of Key Points 105 6.2. Useful Areas for Guidelines and Standardization Activities . .107 REFERENCES Ill APPENDIX A - GLOSSARY 118 APPENDIX B - ANNOTATED BIBLIOGRAPHY 127 iv LIST OF FIGORES Figure Title Page 1-1 Projected Growth of Microcomputer Installations 3 2-1 Microcomputer Hardware Devices 8 2-2 ASCII Characters Displayed as a Series of Dots 17 2-3 Integrated Circuit and Socket 23 2-4 Printed Circuit Board 23 2-5 Assembly Language and High Order Language Representations of a Division of IWo Numbers 31 4-1 Representation of Data in a File Management Syston 59 4-2 Report Created by the Data Managonent System 60 4-3 Sample Spread Sheet Model 65 4-4 Types of Graphics for Display of Numerical Data 69 4-5 Scatter Plot Produced by Character Printer 71 4-6 Scatter Plot Produced by Dot Matrix Printer with Software Controlling Each Dot Individually 72 4-7 Plot Produced by Fully Formed Character Printer with Precision Position Control 73 4-8 Scatter Plot Produced by Plotter 74 4-9 Topologies for Local Area Networks 83 V LIST OF OyVBLES Table Title Page 2-1 Major Microcanputer Hardware Components 9 2-2 Cannon Microprocessors 11 2-3 Floppy Disks 13 2-4 Camion Pointing Devices 15 2-5 Types of Integrated Circuits 24 2-6 General Functions of Systems Software 26 2-7 Configurations of Operating Systems 28 2-8 Common Higher Order Languages Used in Microcomputers 33 3-1 Job Functions of the User Classifications 43 3-2 Characteristics of User Classes 44 3-3 Clerical User Characteristics and Desirable Syston Attributes 46 3-4 Administrative User Characteristics and Desirable System Attributes 48 3-5 Professional User Characteristics and Desirable System Attributes 50 3-6 Technical User Characteristics and Desirable Syston Attributes 53 vi LIST OF TABLES (continued) Table Title Page 4-1 Types of /^plication Software 54 4-2 Uses of Word Processing 56 4-3 Classes of Microcomputer- Based Data Management Software 61 4-4 Uses of File and Data Base Management Software 63 4-5 Uses of Spread Sheet Programs 67 4-6 Characteristics of Graphics Hard Copy Output 70 4-7 Graphics Software i^lications 76 4-8 implications of Communications Software 78 4-9 i^lication Integration 88 6-1 implications of Microcomputers to Classes of Users 91 6-2 Microcomputer Cost Factors 92 vii Executive Surnnary EXECUTIVE SUMMARY This report describes microcomputers, their uses, and costs. Its objectives are to introduce microcomputers to readers with some knowledge j of computing ! but little or no background in microccmputers and to identify important issues associated with their implementation in Government agencies. Because of their low cost, microconputers provide an opportunity to automate | activities in ways that had previously not been achievable. In addition, they can provide a Icwer cost alternative to executing similar programs on larger ; systems while providing users with more control over the computer. Microcomputers pose a particular management challenge because of their » dispersion
Recommended publications
  • The Control of Routine Fish Maneuvers: Connecting Midline Kinematics to Turn Outcomes
    Received: 16 June 2020 | Accepted: 17 June 2020 DOI: 10.1002/jez.2398 RESEARCH PAPER The control of routine fish maneuvers: Connecting midline kinematics to turn outcomes Stephen P. Howe | Henry C. Astley Department of Biology, Biomimicry Research and Innovation Center, University of Akron, Abstract Akron, Ohio Maneuverability is an important factor in determining an animal's ability to navigate Correspondence its environment and succeed in predator–prey interactions. Although fish are cap- Stephen P. Howe, Department of Biology, Biomimicry Research and Innovation Center, able of a wide range of maneuvers, most of the literature has focused on escape University of Akron, 235 Carroll St., Rm D401, maneuvers while less attention has been paid to routine maneuvers, such as those Akron, OH 44325‐3908. Email: [email protected] used for habitat navigation. The quantitative relationships between body deforma- tions and maneuver outcomes (displacement of the center of mass and change in trajectory) are fundamental to understanding how fish control their maneuvers, yet remain unknown in routine maneuvers. We recorded high‐speed video of eight giant danios (Devario aquepinnatus) performing routine and escape maneuvers and quan- tified the deformation of the midline, the heading of the anterior body, and the kinematics of the centroid (a proxy for center of mass). We found that both routine and escape behaviors used qualitatively similar independent body bending events, which we curvature pulses, that propagate from head to tail but show quantitative differences in midline kinematics and turn outcomes. In routine maneuvers, the direction change and acceleration of the fish are influenced by both the magnitude of the bending pulse and by the duration of the pulse, whereas in escape maneuvers, only pulse duration influenced direction change and turn acceleration.
    [Show full text]
  • Analysis of Server-Smartphone Application Communication Patterns
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aaltodoc Publication Archive Aalto University School of Science Degree Programme in Computer Science and Engineering Péter Somogyi Analysis of server-smartphone application communication patterns Master’s Thesis Budapest, June 15, 2014 Supervisors: Professor Jukka Nurminen, Aalto University Professor Tamás Kozsik, Eötvös Loránd University Instructor: Máté Szalay-Bekő, M.Sc. Ph.D. Aalto University School of Science ABSTRACT OF THE Degree programme in Computer Science and MASTER’S THESIS Engineering Author: Péter Somogyi Title: Analysis of server-smartphone application communication patterns Number of pages: 83 Date: June 15, 2014 Language: English Professorship: Data Communication Code: T-110 Software Supervisor: Professor Jukka Nurminen, Aalto University Professor Tamás Kozsik, Eötvös Loránd University Instructor: Máté Szalay-Bekő, M.Sc. Ph.D. Abstract: The spread of smartphone devices, Internet of Things technologies and the popularity of web-services require real-time and always on applications. The aim of this thesis is to identify a suitable communication technology for server and smartphone communication which fulfills the main requirements for transferring real- time data to the handheld devices. For the analysis I selected 3 popular communication technologies that can be used on mobile devices as well as from commonly used browsers. These are client polling, long polling and HTML5 WebSocket. For the assessment I developed an Android application that receives real-time sensor data from a WildFly application server using the aforementioned technologies. Industry specific requirements were selected in order to verify the usability of this communication forms. The first one covers the message size which is relevant because most smartphone users have limited data plan.
    [Show full text]
  • Project Management © Adrienne Watt
    Project Management © Adrienne Watt This work is licensed under a Creative Commons-ShareAlike 4.0 International License Original source: The Saylor Foundation http://open.bccampus.ca/find-open-textbooks/?uuid=8678fbae-6724-454c-a796-3c666 7d826be&contributor=&keyword=&subject= Contents Introduction ...................................................................................................................1 Preface ............................................................................................................................2 About the Book ..............................................................................................................3 Chapter 1 Project Management: Past and Present ....................................................5 1.1 Careers Using Project Management Skills ......................................................................5 1.2 Business Owners ...............................................................................................................5 Example: Restaurant Owner/Manager ..........................................................................6 1.2.1 Outsourcing Services ..............................................................................................7 Example: Construction Managers ..........................................................................8 1.3 Creative Services ................................................................................................................9 Example: Graphic Artists ...............................................................................................10
    [Show full text]
  • Implementation of Embedded Web Server Based on ARM11 and Linux Using Raspberry PI
    International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-3 Issue-3, July 2014 Implementation of Embedded Web Server Based on ARM11 and Linux using Raspberry PI Girish Birajdar Abstract— As ARM processor based web servers not uses III. HARDWARE USED computer directly, it helps a lot in reduction of cost. In this We will use different hardware to implement this embedded project our aim is to implement an Embedded Web Server (EWS) based on ARM11 processor and Linux operating system using web server, which are described in this section. Raspberry Pi. it will provide a powerful networking solution with 1. Raspberry Pi : The Raspberry Pi is low cost ARM wide range of application areas over internet. We will run web based palm-size computer. The Raspberry Pi has server on an embedded system having limited resources to serve microprocessor ARM1176JZF-S which is a member of embedded web page to a web browser. ARM11 family and has ARMv6 architecture. It is build Index Terms— Embedded Web Server, Raspberry Pi, ARM, around a BCM2835 broadcom processor. ARM processor Ethernet etc. operates at 700 MHz & it has 512 MB RAM. It consumes 5V electricity at 1A current due to which power I. INTRODUCTION consumption of raspberry pi is less. It has many peripherals such as USB port, 10/100 ethernet, GPIO, HDMI & With evolution of World-Wide Web (WWW), its composite video outputs and SD card slot.SD card slot is application areas are increasing day by day. Web access used to connect the SD card which consist of raspberry linux functionality can be embedded in a low cost device which operating system.
    [Show full text]
  • Computer Organization and Architecture Designing for Performance Ninth Edition
    COMPUTER ORGANIZATION AND ARCHITECTURE DESIGNING FOR PERFORMANCE NINTH EDITION William Stallings Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo Editorial Director: Marcia Horton Designer: Bruce Kenselaar Executive Editor: Tracy Dunkelberger Manager, Visual Research: Karen Sanatar Associate Editor: Carole Snyder Manager, Rights and Permissions: Mike Joyce Director of Marketing: Patrice Jones Text Permission Coordinator: Jen Roach Marketing Manager: Yez Alayan Cover Art: Charles Bowman/Robert Harding Marketing Coordinator: Kathryn Ferranti Lead Media Project Manager: Daniel Sandin Marketing Assistant: Emma Snider Full-Service Project Management: Shiny Rajesh/ Director of Production: Vince O’Brien Integra Software Services Pvt. Ltd. Managing Editor: Jeff Holcomb Composition: Integra Software Services Pvt. Ltd. Production Project Manager: Kayla Smith-Tarbox Printer/Binder: Edward Brothers Production Editor: Pat Brown Cover Printer: Lehigh-Phoenix Color/Hagerstown Manufacturing Buyer: Pat Brown Text Font: Times Ten-Roman Creative Director: Jayne Conte Credits: Figure 2.14: reprinted with permission from The Computer Language Company, Inc. Figure 17.10: Buyya, Rajkumar, High-Performance Cluster Computing: Architectures and Systems, Vol I, 1st edition, ©1999. Reprinted and Electronically reproduced by permission of Pearson Education, Inc. Upper Saddle River, New Jersey, Figure 17.11: Reprinted with permission from Ethernet Alliance. Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page within text. Copyright © 2013, 2010, 2006 by Pearson Education, Inc., publishing as Prentice Hall. All rights reserved. Manufactured in the United States of America.
    [Show full text]
  • Data Management for Portable Media Players
    Data Management for Portable Media Players Table of Contents Introduction..............................................................................................2 The New Role of Database........................................................................3 Design Considerations.................................................................................3 Hardware Limitations...............................................................................3 Value of a Lightweight Relational Database.................................................4 Why Choose a Database...........................................................................5 An ITTIA Solution—ITTIA DB........................................................................6 Tailoring ITTIA DB for a Specific Device......................................................6 Tables and Indexes..................................................................................6 Transactions and Recovery.......................................................................7 Simplifying the Software Development Process............................................7 Flexible Deployment................................................................................7 Working with ITTIA Toward a Successful Deployment....................................8 Conclusion................................................................................................8 Copyright © 2009 ITTIA, L.L.C. Introduction Portable media players have evolved significantly in the decade that has
    [Show full text]
  • The Video Game Industry an Industry Analysis, from a VC Perspective
    The Video Game Industry An Industry Analysis, from a VC Perspective Nik Shah T’05 MBA Fellows Project March 11, 2005 Hanover, NH The Video Game Industry An Industry Analysis, from a VC Perspective Authors: Nik Shah • The video game industry is poised for significant growth, but [email protected] many sectors have already matured. Video games are a large and Tuck Class of 2005 growing market. However, within it, there are only selected portions that contain venture capital investment opportunities. Our analysis Charles Haigh [email protected] highlights these sectors, which are interesting for reasons including Tuck Class of 2005 significant technological change, high growth rates, new product development and lack of a clear market leader. • The opportunity lies in non-core products and services. We believe that the core hardware and game software markets are fairly mature and require intensive capital investment and strong technology knowledge for success. The best markets for investment are those that provide valuable new products and services to game developers, publishers and gamers themselves. These are the areas that will build out the industry as it undergoes significant growth. A Quick Snapshot of Our Identified Areas of Interest • Online Games and Platforms. Few online games have historically been venture funded and most are subject to the same “hit or miss” market adoption as console games, but as this segment grows, an opportunity for leading technology publishers and platforms will emerge. New developers will use these technologies to enable the faster and cheaper production of online games. The developers of new online games also present an opportunity as new methods of gameplay and game genres are explored.
    [Show full text]
  • IEEE Spectrum: 25 Microchip
    IEEE Spectrum: 25 Microchips That Shook the World http://www.spectrum.ieee.org/print/8747 Sponsored By Select Font Size: A A A 25 Microchips That Shook the World By Brian R. Santo This is part of IEEE Spectrum 's Special Report: 25 Microchips That Shook the World . In microchip design, as in life, small things sometimes add up to big things. Dream up a clever microcircuit, get it sculpted in a sliver of silicon, and your little creation may unleash a technological revolution. It happened with the Intel 8088 microprocessor. And the Mostek MK4096 4-kilobit DRAM. And the Texas Instruments TMS32010 digital signal processor. Among the many great chips that have emerged from fabs during the half-century reign of the integrated circuit, a small group stands out. Their designs proved so cutting-edge, so out of the box, so ahead of their time, that we are left groping for more technology clichés to describe them. Suffice it to say that they gave us the technology that made our brief, otherwise tedious existence in this universe worth living. We’ve compiled here a list of 25 ICs that we think deserve the best spot on the mantelpiece of the house that Jack Kilby and Robert Noyce built. Some have become enduring objects of worship among the chiperati: the Signetics 555 timer, for example. Others, such as the Fairchild 741 operational amplifier, became textbook design examples. Some, like Microchip Technology’s PIC microcontrollers, have sold billions, and are still doing so. A precious few, like Toshiba’s flash memory, created whole new markets.
    [Show full text]
  • The Great Telecom Meltdown for a Listing of Recent Titles in the Artech House Telecommunications Library, Turn to the Back of This Book
    The Great Telecom Meltdown For a listing of recent titles in the Artech House Telecommunications Library, turn to the back of this book. The Great Telecom Meltdown Fred R. Goldstein a r techhouse. com Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the U.S. Library of Congress. British Library Cataloguing in Publication Data Goldstein, Fred R. The great telecom meltdown.—(Artech House telecommunications Library) 1. Telecommunication—History 2. Telecommunciation—Technological innovations— History 3. Telecommunication—Finance—History I. Title 384’.09 ISBN 1-58053-939-4 Cover design by Leslie Genser © 2005 ARTECH HOUSE, INC. 685 Canton Street Norwood, MA 02062 All rights reserved. Printed and bound in the United States of America. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher. All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Artech House cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark. International Standard Book Number: 1-58053-939-4 10987654321 Contents ix Hybrid Fiber-Coax (HFC) Gave Cable Providers an Advantage on “Triple Play” 122 RBOCs Took the Threat Seriously 123 Hybrid Fiber-Coax Is Developed 123 Cable Modems
    [Show full text]
  • MOSTEK 1980 CIRCUITS and SYSTEMS PRODUCT GUIDE Mostek Reserves the Right to Make Changes in Specifications at Any Time and Without Notice
    MOSTEK 1980 CIRCUITS AND SYSTEMS PRODUCT GUIDE Mostek reserves the right to make changes in specifications at any time and without notice. The information furnished by Mostek in this publication is believedto be accurate and reliable. However, no responsibility is assumed by Mostek for its use; nor for any infringements of patents or other rights of third parties resulting from its use. No license is granted under any patents or patent rights of Mostek. The "PRELIMINARY" designation on a Mostek data sheet indicates that the product is not characterized. The specifications are subject to change, are based on design goals or preliminary part evaluation, and are not guaranteed. Mostek Corporation or an authorized sales representative should be consulted for current information before using this product. No responsibility is assumed by Mostek for its use; nor for any infringements of patents and trademarks or other rights ofthird parties resulting from its use. No license is granted under any patents, patent rights, or trademarks of Mostek. Mostek reserves the right to make changes in specifications at anytime and without notice. PRINTED IN USA April 1980 Publication Number Trade Marks Registered® STD No 01009 Copyright © 1980 Mostek Corporation (All rights reserved) II ~~~~~~~;;;;' Table of Contents '~~~~~~;;;;; Table of Contents ................................................... 111 Numerical Index ...................................................VIII Alphabetical Index . ................................................. x Mostek Profile
    [Show full text]
  • Implementing Concurrent Engineering and QFD Method to Achieve Realization of Sustainable Project
    sustainability Article Implementing Concurrent Engineering and QFD Method to Achieve Realization of Sustainable Project Lidija Rihar and Janez Kušar * Faculty of Mechanical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia; [email protected] * Correspondence: [email protected] Abstract: In this paper, we present the impact of concurrent engineering strategies, methods, and tools on product sustainability. Concurrent engineering can be used to achieve the primary goals of a product realization project: lower costs, shorter times, high quality, and increasing value. Currently, it is important that new products also meet product sustainability goals, such as economic, environmental, and social goals. The sustainability of a product can be influenced the most in the early stages of product development, so in this paper, we present a customized quality function deployment (QFD) method called the house of sustainability, which translates sustainability requirements into technical solutions for a product. A seven-step process for implementing a sustainable product realization project is also proposed, in which the house of sustainability is one of the most important tools. The proposed process is illustrated with an example of a concurrent product realization project in engineering to order production. Keywords: concurrent engineering; product sustainability; production sustainability; new product development; QFD Citation: Rihar, L.; Kušar, J. 1. Introduction Implementing Concurrent Sustainability has lately become one of the key features of new products. Sustainabil- Engineering and QFD Method to ity implies product properties that characterize it from the idea, through development, Achieve Realization of Sustainable production, use, and maintenance, to the end of the life of the product (disposal).
    [Show full text]
  • Classification of Computers
    Chapter-2 Classification of Computers Computers can be classified many different ways -- by size, by function, or by processing capacity. Functionality wise 4 types a) Micro computer b) Mini Computer c) Mainframe Computer d) Super Computer Microcomputers Microcomputers are connected to networks of other computers. The price of a microcomputer varies from each other depending on the capacity and features of the computer. Microcomputers make up the vast majority of computers. Single user can interact with this computer at a time. It is a small and general purpose computer. Mini Computer Mini Computer is a small and general purpose computer. It is more expensive than a micro computer. It has more storage capacity and speed. It designed to simultaneously handle the needs of multiple users. Mainframe Computer Large computers are called Mainframes. Mainframe computers process data at very high rates of speed, measured in the millions of instructions per second. They are very expensive than micro computer and mini computer. Mainframes are designed for multiple users and process vast amounts of data quickly. Examples: - Banks, insurance companies, manufacturers, mail-order companies, and airlines are typical users. Super Computers The largest computers are Super Computers. They are the most powerful, the most expensive, and the fastest. They are capable of processing trillions of instructions per second. It uses governmental agencies, such as:- Chemical analysis in laboratory Space exploration National Defense Agency National Weather Service Bio-Medical research Design of many other machines Limitations of Computer Computer cannot take over all activities simply because they are less flexible than humans. It does not hold intelligence of its own.
    [Show full text]