The United States and the Metric System

Total Page:16

File Type:pdf, Size:1020Kb

The United States and the Metric System THE UNITED STATES AND THE METRIC SYSTEM A Capsule History The United States is now the only industrialized The General Conference of Weights and country in the world that does not use the metric Measures, the governing body that has overall system as its predominant system of measurement. responsibility for the metric system, and which is made up of the signatory nations to the Treaty of Most Americans think that our involvement with the Meter, approved an updated version of the metric measurement is relatively new. In fact, the metric system in 1960. This modern system is United States has been increasing its use of metric called Le Système International d'Unités or the units for many years, and the pace has accelerated International System of Units, abbreviated SI. in the past three decades. In the early 1800's, the U.S. Coast and Geodetic Survey (the The United Kingdom, began a transition to the government’s surveying and map-making agency) metric system in 1965 to more fully mesh its used meter and kilogram standards brought from business and trade practices with those of the France. In 1866, Congress authorized the use of European Common Market. The conversion of the metric system in this country and supplied the United Kingdom and the Commonwealth each state with a set of standard metric weights nations to SI created a new sense of urgency and measures. regarding the use of metric units in the United States. In 1875, the United States solidified its commitment to the development of the In 1968, Congress authorized a three-year study internationally recognized metric system by of systems of measurement in the U.S., with becoming one of the original seventeen signatory particular emphasis on the feasibility of adopting nations to the Treaty of the Meter. The signing SI. The detailed U.S. Metric Study was of this international agreement concluded five conducted by the Department of Commerce. A years of meetings in which the metric system was 45-member advisory panel consulted with and reformulated, refining the accuracy of its took testimony from hundreds of consumers, standards. The Treaty of the Meter, also know as business organizations, labor groups, the “Metric Convention,@ established the manufacturers, and state and local officials. International Bureau of Weights and Measures (BIPM) in Sèvres, France, to provide standards of The final report of the study, “A Metric measurement for worldwide use. America: A Decision Whose Time Has Come,” concluded that the U.S. would eventually join the In 1893, metric standards, developed through rest of the world in the use of the metric system of international cooperation under the auspices of measurement. The study found that measurement BIPM, were adopted as the fundamental standards in the United States was already based on metric for length and mass in the United States. Our units in many areas and that it was becoming customary measurements -- the foot, pound, quart, more so every day. The majority of study etc. -- have been defined in relation to the meter participants believed that conversion to the metric and the kilogram ever since. system was in the best interests of the Nation, particularly in view of the importance of foreign trade and the increasing influence of technology in American life. The study recommended that the United States The current effort toward national metrication is implement a carefully planned transition to based on the conclusion that industrial and predominant use of the metric system over a ten- commercial productivity, mathematics and science year period. Congress passed the Metric education, and the competitiveness of American Conversion Act of 1975 “to coordinate and plan products and services in world markets, will be the increasing use of the metric system in the United enhanced by completing the change to the metric States.” The Act, however, did not require a ten- system of units. Failure to complete the change year conversion period. A process of voluntary will increasingly handicap the Nation’s industry conversion was initiated, and the U.S. Metric Board and economy. was established. The Board was charged with “devising and carrying out a broad program of planning, coordination, and public education, consistent with other national policy and interests, Questions and Answer with the aim of implementing the policy set forth in Q. What is the metric system? this Act.” The efforts of the Metric Board were largely ignored by the American public, and, in A. The metric system is a decimal-based 1981, the Board reported to Congress that it lacked system of measurement units. Units the clear Congressional mandate necessary to bring for a given quantity, such as length or about national conversion. Due to this apparent mass, are related by factors of 10. ineffectiveness, and in an effort to reduce Federal Calculations involve the simple spending, the Metric Board was disestablished in process of moving the decimal point to the fall of 1982. the right or to the left. This modern system is called Le Système The Board’s demise increased doubts about the International d'Unités or the United States’ commitment to metrication. Public International System of Units, and private sector metric transition slowed at the abbreviated SI. same time that the very reasons for the United States to adopt the metric system -- the increasing Q. Is the metric system hard to learn and competitiveness of other nations and the demands of use? global marketplaces -- made completing the conversion even more important. A. No. In everyday usage, the most common metric units are the meter (m) Congress, recognizing the necessity of the United to measure length, the second (s) to States’ conformance with international standards for measure time, the kilogram (kg) for trade, included new encouragement for U.S. mass (or weight*), the liter (L) for industrial metrication in the Omnibus Trade and volume, and the degree Celsius (EC) Competitiveness Act of 1988. This legislation for temperature. The metric system amended the Metric Conversion Act of 1975 and avoids confusing dual-use of terms, designates the metric system as the Apreferred such as the inch-pound system’s use of system of weights and measures for United States ounces to measure both weight and trade and commerce.” The legislation states that the volume. The metric system also Federal Government has a responsibility to assist avoids the use of multiple units for the industry, especially small business, as it voluntarily same quantity; for instance, the inch- converts to the metric system of measurement. pound system’s multiple units for volume include teaspoons, Federal agencies were required by this legislation, tablespoons, fluid ounces, cups, pints, with certain exceptions, to use the metric system in quarts, and gallons. their procurement, grants and other business-related activities by the end of 1992. While not mandating *In commercial and everyday use, the term “weight” metric use in the private sector, the Federal may be used as a synonym of mass. Weight is Government has sought to serve as a catalyst in the actually the force with which a body is attracted metric conversion of the country’s trade, industry, toward the earth because of gravity. and commerce. Q. Will “thinking metric” be difficult? A. Individuals, groups, and industries decide whether or not to convert and A. Not really. For example, “thinking determine conversion timetables metric” for temperature means relating according to their own needs. zero degrees Celsius (0 ˚C) with the freezing point of water, 20 degrees Q. Why should the United States convert Celsius (20 ˚C) with room temperature, to the metric system? 37 degrees Celsius (37 ˚C) with body temperature, and 100 degrees Celsius A. Since trade and communication with (100 ˚C) with the boiling points of other nations is critical to the health of water. One millimeter (1 mm) is about our economy, adopting the the thickness of a dime, and a centimeter measurement system used by 95 (1 cm) is about the width of a fingernail. percent of the world’s population is Almost everyone easily recognizes one not a matter of choice, but a matter of liter (1 L) and two liter (2 L) soda necessity for the United States. bottles. The contents of that unopened one liter soda bottle “weighs” Q. Why didn't we convert before? approximately one kilogram (1 kg). A. Support for a decimal-based Q. Who decided the United States should measuring system has existed in the convert to the metric system? United States since the 1700s. However, there was no compelling A. No one “decided the United States reason to switch because of our should go metric.” As stated in the geographical isolation and because our amended Metric Conversion Act, principal trading partner, England, did continued use of “traditional systems of not use metric units. In time the weights and measures” is still permitted United States became a dominant force “in nonbusiness activities.” However, in world trade and was able to impose metric system use has become its products, manufactured in their widespread throughout our economy. unconventional units, on other nations. Consumers may be surprised at the Times have changed. We no longer number of items in everyday use that overwhelmingly dominate world trade have been manufactured in metric units and must recognize the need to “fit” for some time. These items are accepted our goods and services into other with little difficulty and include photo- strong markets, including the graphic equipment, automobiles, European Union, the new markets of computers, pharmaceutical products, Eastern Europe, and the expanding wine and distilled spirits, and soft market of the Pacific Rim. These drinks. Also, our scientific and medical markets continually stress their communities use metric units almost preference for products and services exclusively.
Recommended publications
  • The Metric System: America Measures Up. 1979 Edition. INSTITUTION Naval Education and Training Command, Washington, D.C
    DOCONENT RESUME ED 191 707 031 '926 AUTHOR Andersonv.Glen: Gallagher, Paul TITLE The Metric System: America Measures Up. 1979 Edition. INSTITUTION Naval Education and Training Command, Washington, D.C. REPORT NO NAVEDTRA,.475-01-00-79 PUB CATE 1 79 NOTE 101p. .AVAILABLE FROM Superintendent of Documents, U.S. Government Printing .Office, Washington, DC 2040Z (Stock Number 0507-LP-4.75-0010; No prise quoted). E'DES PRICE MF01/PC05 Plus Postage. DESCRIPTORS Cartoons; Decimal Fractions: Mathematical Concepts; *Mathematic Education: Mathem'atics Instruction,: Mathematics Materials; *Measurement; *Metric System; Postsecondary Education; *Resource Materials; *Science Education; Student Attitudes: *Textbooks; Visual Aids' ABSTRACT This training manual is designed to introduce and assist naval personnel it the conversion from theEnglish system of measurement to the metric system of measurement. The bcokteliswhat the "move to metrics" is all,about, and details why the changeto the metric system is necessary. Individual chaPtersare devoted to how the metric system will affect the average person, how the five basic units of the system work, and additional informationon technical applications of metric measurement. The publication alsocontains conversion tables, a glcssary of metric system terms,andguides proper usage in spelling, punctuation, and pronunciation, of the language of the metric, system. (MP) ************************************.******i**************************** * Reproductions supplied by EDRS are the best thatcan be made * * from
    [Show full text]
  • 5 Military Rucking Rules Every Backpacker Should Know 1. One
    5 Military Rucking Rules Every Backpacker Should Know The military has spent years studying the best way to move under a load (aka “rucking”). Here are 5 military rucking rules that translate well to hikers. “Rucking” is the military term for hiking under load. As you can imagine, this is a huge issue for the military, as soldiers must wear body armor and carry weapons, ammo, water, communications equipment, and other gear as they conduct patrols and missions. Rucking performance and injury prevention are hugely important for military operations and personnel. Movement over ground under load is also a key for hiking and backpacking. In reviewing the research the military has already done on this subject, we discovered five rules. Read on to make sure you’re following these military rucking rules on your next backcountry adventure. 1. One pound on your feet equals five pounds on your back. This old backpacking thumb rule holds true, according to a 1984 study from the U.S. Army Research Institute. They tested how much more energy was expended with different footwear (boots and shoes) and concluded that it take 4.7 to 6.4 times as much energy to move at a given pace when weight is carried on the shoe versus on the torso. In practical terms, this means you could carry half a gallon more of water (a little over 4 pounds) if you buy boots that are a pound lighter, which isn’t hard to do; and that’s a lot of water. Now imagine the energy savings of backpacking in light trail running shoes rather than heavy, leather backpacking boots over the course of 7- day backpacking trip.
    [Show full text]
  • Metric System Units of Length
    Math 0300 METRIC SYSTEM UNITS OF LENGTH Þ To convert units of length in the metric system of measurement The basic unit of length in the metric system is the meter. All units of length in the metric system are derived from the meter. The prefix “centi-“means one hundredth. 1 centimeter=1 one-hundredth of a meter kilo- = 1000 1 kilometer (km) = 1000 meters (m) hecto- = 100 1 hectometer (hm) = 100 m deca- = 10 1 decameter (dam) = 10 m 1 meter (m) = 1 m deci- = 0.1 1 decimeter (dm) = 0.1 m centi- = 0.01 1 centimeter (cm) = 0.01 m milli- = 0.001 1 millimeter (mm) = 0.001 m Conversion between units of length in the metric system involves moving the decimal point to the right or to the left. Listing the units in order from largest to smallest will indicate how many places to move the decimal point and in which direction. Example 1: To convert 4200 cm to meters, write the units in order from largest to smallest. km hm dam m dm cm mm Converting cm to m requires moving 4 2 . 0 0 2 positions to the left. Move the decimal point the same number of places and in the same direction (to the left). So 4200 cm = 42.00 m A metric measurement involving two units is customarily written in terms of one unit. Convert the smaller unit to the larger unit and then add. Example 2: To convert 8 km 32 m to kilometers First convert 32 m to kilometers. km hm dam m dm cm mm Converting m to km requires moving 0 .
    [Show full text]
  • Weights and Measures Standards of the United States: a Brief History
    1 .0 11 8 1.25 1.4 I 6_ DOCUMENT RESUME ED 142 418 SE 022 719 AUTHOE Judson, Lewis V. TITLE Weights and Measures Standards of the United States: A Brief History. Updated Edition. INSTITUTION National Bureau of Standards (DOC) ,Washington, D.C. REPORT NO NBS-SP-447 PUB DATE Mar 76 NOTE 42p.; Contains occasional small print; Photographs may not reproduce well AVAILABLE FROM Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (Stock Number 003-0O3-01654-3, $1.00) EDRS PRICE MF-$0.83 HC-$2.06 Plus Postage. DESCRIPTORS Government Publications; History; *Mathematics Education; *Measurement; *Metric System; *Science History; *Standards ABSTRACT This document was published by the National Bureau of Standards to meet the current demand for information on the history of weights and measures in the United States. It includes an illustrated discussion of this history through 1962 followed by an addendum covering the period 1963-1975. Appendices provide a bibliography and photographic copies of eight documents important to the development of official standards of measurement. (SD) *********************************************************************** Documents acquired by ERIC include many informal unpublished * materials not available from other sources. ERIC makes every effort * * -to obtain the best copy available. Nevertheless, items of marginal * * reproducibility are often encountered and this affects the quality * * of the microfiche and hardcopy reproductions ERIC makes available * via the ERIC Document Reproduction Service (EDRS). EDRS is not * responsible for the quality of the original document. Reproductions * * supplied by EDRS are the best that can be made from the original. *********************************************************************** U.S. DEPARTMENT OF HEALTH.
    [Show full text]
  • Forestry Commission Booklet: Forest Mensuration Handbook
    Forestry Commission ARCHIVE Forest Mensuration Handbook Forestry Commission Booklet 39 KEY TO PROCEDURES (weight) (weight) page 36 page 36 STANDING TIMBER STANDS SINGLE TREES Procedure 7 page 44 SALE INVENTORY PIECE-WORK THINNING Procedure 8 VALUATION PAYMENT CONTROL page 65 Procedure 9 Procedure 10 Procedure 11 page 81 page 108 page 114 N.B. See page 14 for further details Forestry Commission Booklet No. 39 FOREST MENSURATION HANDBOOK by G. J. Hamilton, m sc FORESTRY COMMISSION London: Her Majesty’s Stationery Office © Crown copyright 1975 First published 1975 Third impression 1988 ISBN 0 11 710023 4 ODC 5:(021) K eyw ords: Forestry, Mensuration ACKNOWLEDGEMENTS The production of the various tables and charts contained in this publication has been very much a team effort by members of the Mensuration Section of the Forestry Commission’s Research & Development Division. J. M. Christie has been largely responsible for initiating and co-ordinating the development and production of the tables and charts. A. C. Miller undertook most of the computer programming required to produce the tables and was responsible for establishing some formheight/top height and tariff number/top height relationships, and for development work in connection with assortment tables and the measurement of stacked timber. R. O. Hendrie prepared the single tree tariff charts and analysed various data concerning timber density, stacked timber, and bark. M. D. Witts established most of the form height/top height and tariff number/top height relationships and investigated bark thickness in the major conifers. Assistance in checking data was given by Miss D. Porchet, Mrs N.
    [Show full text]
  • Guide for the Use of the International System of Units (SI)
    Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S.
    [Show full text]
  • Measuring in Metric Units BEFORE Now WHY? You Used Metric Units
    Measuring in Metric Units BEFORE Now WHY? You used metric units. You’ll measure and estimate So you can estimate the mass using metric units. of a bike, as in Ex. 20. Themetric system is a decimal system of measurement. The metric Word Watch system has units for length, mass, and capacity. metric system, p. 80 Length Themeter (m) is the basic unit of length in the metric system. length: meter, millimeter, centimeter, kilometer, Three other metric units of length are themillimeter (mm) , p. 80 centimeter (cm) , andkilometer (km) . mass: gram, milligram, kilogram, p. 81 You can use the following benchmarks to estimate length. capacity: liter, milliliter, kiloliter, p. 82 1 millimeter 1 centimeter 1 meter thickness of width of a large height of the a dime paper clip back of a chair 1 kilometer combined length of 9 football fields EXAMPLE 1 Using Metric Units of Length Estimate the length of the bandage by imagining paper clips laid next to it. Then measure the bandage with a metric ruler to check your estimate. 1 Estimate using paper clips. About 5 large paper clips fit next to the bandage, so it is about 5 centimeters long. ch O at ut! W 2 Measure using a ruler. A typical metric ruler allows you to measure Each centimeter is divided only to the nearest tenth of into tenths, so the bandage cm 12345 a centimeter. is 4.8 centimeters long. 80 Chapter 2 Decimal Operations Mass Mass is the amount of matter that an object has. The gram (g) is the basic metric unit of mass.
    [Show full text]
  • Maße & Gewichte
    Maße & Gewichte Die Geschichte der Maße und Gewichte Inhaltsverzeichnis 0.1 Geschichte der Maße und Gewichte .................................. 1 0.1.1 Überblick ........................................... 1 0.1.2 Längeneinheiten ....................................... 1 0.1.3 Gewichtseinheiten ...................................... 1 0.1.4 Beispiel der Vielfalt ..................................... 1 0.1.5 Einheiten für Zeit und Winkel ................................ 2 0.1.6 Angelsächsische Maßeinheiten ................................ 2 0.1.7 Das metrische System .................................... 3 0.1.8 Typografische Maßeinheiten ................................. 3 0.1.9 Listen von historischen Maßen und Gewichten ........................ 3 0.1.10 Gebräuchliche Masseeinheiten ................................ 4 0.1.11 Siehe auch .......................................... 4 0.1.12 Literatur ........................................... 4 0.1.13 Weblinks ........................................... 4 0.1.14 Einzelnachweise ....................................... 5 1 Die Anfänge des Messens in der Frühzeit des Menschen 6 1.1 Kognitive Archäologie ......................................... 6 1.1.1 Entstehung .......................................... 6 1.1.2 Kognitive Archäologie heute ................................. 6 1.1.3 Kognitive Archäologie im deutschsprachigen Raum ..................... 7 1.1.4 Kognitive Archäologie in der Diskussion ........................... 7 1.1.5 Literatur ........................................... 7 1.1.6
    [Show full text]
  • Fundamentals of Math CHAPTER 1
    © Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION Fundamentals of Math CHAPTER 1 OBJECTIVES ■ Understand the difference between the Arabic and Roman numeral systems ■ Translate Arabic numerals to Roman numerals ■ Translate Roman numerals to Arabic numerals ■ Understand the metric system ■ Understand the apothecary system ■ Be able to convert metric to apothecary ■ Be able to convert apothecary to metric ARABIC NUMERALS The Arabic number system uses the numerals 1, 2, 3, 4, 5, 6, 7, 8, 9, and zero (0). It is also known as the decimal system. Depending on how these numbers are arranged determines the value of the number. For example, digits 4, 7, and 2 placed together (472) represent the number four hundred seventy-two. A decimal point (.) separates whole numbers, or units, from fractional num- bers, or fractional units. All numbers on the left side of the decimal point are considered whole numbers. All numbers placed on the right of the decimal point are considered fractional units, or less than one whole unit. The following num- ber line shows the relationship of Arabic numerals based on their position in a number. Ten-thousands hundreds ones tenths thousandths hundred-thousandths -----5------8------2-----4-----3---- . ----6------7------9------3------2-------------- thousands tens hundredths ten-thousandths The number 43.6 contains the numerals 4, 3, and 6. This represents forty-three units of one and six-tenths of one unit. Decimals will be covered in more detail in Chapter 2. 1 59612_CH01_FINAL.indd 1 8/20/09 7:38:45 PM © Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION 2 Chapter 1 ■ Fundamentals of Math ROMAN NUMERALS The Roman numeral system does not utilize numerals.
    [Show full text]
  • Student Academic Learning Services Pounds Mass and Pounds Force
    Student Academic Learning Services Page 1 of 3 Pounds Mass and Pounds Force One of the greatest sources of confusion in the Imperial (or U.S. Customary) system of measurement is that both mass and force are measured using the same unit, the pound. The differentiate between the two, we call one type of pound the pound-mass (lbm) and the other the pound-force (lbf). Distinguishing between the two, and knowing how to use them in calculations is very important in using and understanding the Imperial system. Definition of Mass The concept of mass is a little difficult to pin down, but basically you can think of the mass of an object as the amount of matter contain within it. In the S.I., mass is measured in kilograms. The kilogram is a fundamental unit of measure that does not come from any other unit of measure.1 Definition of the Pound-mass The pound mass (abbreviated as lbm or just lb) is also a fundamental unit within the Imperial system. It is equal to exactly 0.45359237 kilograms by definition. 1 lbm 0.45359237 kg Definition of Force≡ Force is an action exerted upon an object that causes it to accelerate. In the S.I., force is measured using Newtons. A Newton is defined as the force required to accelerate a 1 kg object at a rate of 1 m/s2. 1 N 1 kg m/s2 Definition of ≡the Pound∙ -force The pound-force (lbf) is defined a bit differently than the Newton. One pound-force is defined as the force required to accelerate an object with a mass of 1 pound-mass at a rate of 32.174 ft/s2.
    [Show full text]
  • U5 Determining Density
    Presentation Name Course Name Unit # – Lesson #.# – Lesson Name Density • Density is a measure of the amount of matter per unit of volume Determining Density High Density Low Density – Objects more dense than water sink – Objects less dense than water float Matter: Mass vs. Weight Matter: Mass vs. Weight Mass and Weight are often confused • Mass is the amount of matter in an object or the • An example using SI units quantity of the inertia of the object – A man has a mass of 100 kg • Weight is the force of gravity on mass W = mg W = mg 2 W = (100 kg)(9.8 m/sec ) W = weight = 980 Newton m = mass g = acceleration of gravity – He weighs 980 N • Many materials are purchased by weight Project Lead The Way, Inc. Copyright 2010 1 Presentation Name Course Name Unit # – Lesson #.# – Lesson Name Matter: Mass vs. Weight Mass vs. Weight Mass and Weight are often confused • Pound-mass (lbm) is a unit of mass • US Customary units example . 1 lbm = 0.45359237 kg (by definition) – A woman weighs 100 pounds . 1 kg = 2.205 lbm (formula sheet) . 1 slug = 32.2 lbm (formula sheet) W = mg W Formula Sheet m = g 100 lb = = 3.1 slugs ft 32.2 s2 – Her mass is 3.1 slugs Mass vs. Weight Mass vs. Weight • Pound-force (lb) is a unit of force • How are pound-mass and pound-force . The gravitational force exerted on a mass of related? 2 one lbm on the surface of the Earth – On Earth (g = 32.174 ft/s ) .
    [Show full text]
  • The International System of Units (SI)
    NAT'L INST. OF STAND & TECH NIST National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce NIST Special Publication 330 2001 Edition The International System of Units (SI) 4. Barry N. Taylor, Editor r A o o L57 330 2oOI rhe National Institute of Standards and Technology was established in 1988 by Congress to "assist industry in the development of technology . needed to improve product quality, to modernize manufacturing processes, to ensure product reliability . and to facilitate rapid commercialization ... of products based on new scientific discoveries." NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry's competitiveness; advance science and engineering; and improve public health, safety, and the environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national standards of measurement, and provide the means and methods for comparing standards used in science, engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized by the Federal Government. As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic and applied research in the physical sciences and engineering, and develops measurement techniques, test methods, standards, and related services. The Institute does generic and precompetitive work on new and advanced technologies. NIST's research facilities are located at Gaithersburg, MD 20899, and at Boulder, CO 80303.
    [Show full text]