Clemson University TigerPrints All Dissertations Dissertations 12-2015 Production and Characterization of Cut Resistant Acrylic/Copolyaramid Fibers Via Bicomponent Wet Spinning Stephen Hipp Clemson University,
[email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Part of the Polymer Chemistry Commons Recommended Citation Hipp, Stephen, "Production and Characterization of Cut Resistant Acrylic/Copolyaramid Fibers Via Bicomponent Wet Spinning" (2015). All Dissertations. 1587. https://tigerprints.clemson.edu/all_dissertations/1587 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact
[email protected]. PRODUCTION AND CHARACTERIZATION OF CUT RESISTANT ACRYLIC/COPOLYARAMID FIBERS VIA BICOMPONENT WET SPINNING A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Polymer and Fiber Science by Stephen James Hipp December 2015 Accepted by: Dr. Philip Brown, Committee Chair Dr. Gary Lickfield Dr. Olin Mefford Dr. Julia Sharp Abstract A composite fiber system consisting of a sheath core bicomponent polymer fiber loaded with hard ceramic particles was developed and characterized for use in cut protective clothing. The core component was comprised of a copolyaramid in order to provide high base cut resistance. An acrylic-copolyaramid polymer blend was used for the sheath component to improve processability and provide potential benefits such as dyeability. Lastly, aluminum oxide particles were incorporated into the fiber core to deflect and deform the cutting edge, further improving cut resistance. A series of designed experiments was used to explore the effects of the wet spinning and heat treatment processes on the structure and properties of the bicomponent fiber.