Setting the Deadline for Nuclear Weapon Destruction Under The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Benefits of Moving to an All-W87 ICBM Force the NNSA Is Proposing
The Benefits of Moving to an All-W87 ICBM Force The NNSA is proposing to replace the W78 ICBM warhead with a new W87-1 warhead using a “W87- like” pit. A better alternative Replacing the 200 deployed W78s with the some of the 340 W87s in storage would bring several benefits: 1. Enhanced safety—much sooner: A major feature of the W87-1 is that it would use insensitive high explosives (IHE). As NNSA states in its report W78 Replacement Program (W87-1): Cost Estimates and Insensitive High Explosives: “Replacing the conventional high explosives (CHE) in the current W78 warhead with IHE is the single most significant weapon system change that improves the warhead’s safety and security.” But the W87 also uses IHE and could be deployed now, not in several decades. 2. Less demanding pit production schedule: The W87-1 would use new plutonium pits, which requires the NNSA to start up and then quickly ramp up its pit production from the current zero (and none since 2013) to 80 per year by 2030. As the NNSA states, this will be “challenging.” The alternative would obviate or significantly delay the need to produce 80 pits by 2030. 3. More realistic schedule overall: The NNSA faces significant schedule challenges in producing the W87-1, as it states in the FY19 Stockpile Stewardship & Management Plan: “Production is predicated on all newly manufactured components and a nuclear material manufacturing modernization strategy that relies on large, multi-year investments in component and material capabilities.” 4. Reduced NNSA workload: The NNSA and the weapons complex are already struggling to manage five simultaneous major work programs on weapons in the stockpile while also building the UPF and trying to establish a pit production capacity. -
SANDIA LAB NEWS | August 13, 2021 2
Vol. 73, No. 15, Aug. 13, 2021 Computers donated 4 The hybrid Back to school 8 workplace Mileposts 10 Page 6 Laura Price 11 With redesigned ‘brains,’ W88 nuclear warhead reaches milestone Completion of arming, fuzing and firing assembly precedes first full W88 Alt 370 By Michael Baker the first unit for the W88 Alt 370 arming, fuzing and firing, known as AF&F, assem- andia and its nuclear security enter- bly at the end of May, three days ahead of prise partners recently completed schedule. The first fully operable unit was S the first production unit of a weapon received the next day at the Pantex Plant assembly responsible for key operations of near Amarillo, Texas. That shipment was the W88 nuclear warhead. followed quickly by completion of the “The arming, fuzing and firing assem- system-level first production unit for the bly is the brains of the warhead,” said W88 Alt 370 at Pantex in early July. Dolores Sanchez, Sandia’s senior manager The W88 nuclear warhead entered the for its part of the W88 Alteration 370. stockpile in late 1988 and is deployed on “It looks for the correct code and the cor- the Navy’s Trident II submarine-launched rect environmental signals that will unlock ballistic missile system onboard Ohio-class FULLY TESTED — Sandia performed a drop test the system, and it also ensures that it’s an ballistic missile submarines. The weapon for the W88 Alt 370 program, designed to replicate a authorized flight. In short, it makes sure was beyond its original design life, and crane accidentally dropping the re-entry body onto a it always works when we want it to and several updates were required to address concrete surface. -
Nuclear Weapon Initiatives: Low-Yield R&D, Advanced Concepts, Earth Penetrators, Test Readiness
Order Code RL32130 CRS Report for Congress Received through the CRS Web Nuclear Weapon Initiatives: Low-Yield R&D, Advanced Concepts, Earth Penetrators, Test Readiness Updated March 8, 2004 Jonathan Medalia Specialist in National Defense Foreign Affairs, Defense, and Trade Division Congressional Research Service ˜ The Library of Congress Nuclear Weapon Initiatives: Low-Yield R&D, Advanced Concepts, Earth Penetrators, Test Readiness Summary The Bush Administration completed its congressionally-mandated Nuclear Posture Review in December 2001. The review led to major changes in U.S. nuclear policy. It found that the Cold War relationship with Russia was “very inappropriate” and that this nation must be able to deal with new threats. It planned to retain Cold War-era nuclear weapons, which would suffice for many contingencies, though at reduced numbers. To complement these weapons so as to improve U.S. ability to deal with new, more dispersed threats in various countries, the Administration sought to explore additional nuclear capabilities. Accordingly, the FY2004 request included four nuclear weapon initiatives: (1) rescinding the ban that Congress imposed in 1993 on R&D on low-yield nuclear weapons; (2) $6 million for the Advanced Concepts Initiative (ACI) to begin certain studies of weapon-related science and technology; (3) $15 million to continue a study of the Robust Nuclear Earth Penetrator (RNEP), in which an existing bomb would be converted into a weapon able to penetrate into the ground before detonating to improve its ability to destroy buried targets; and (4) $25 million to enable the United States to conduct a nuclear test within 18 months of a presidential order to test, and for related purposes, as compared with the current 24-36 month time that was set shortly after the end of the Cold War. -
Nuclear Weapons Databook, Volume I 3 Stockpile
3 Stockpile Chapter Three USNuclear Stockpile This section describes the 24 types of warheads cur- enriched uranium (oralloy) as its nuclear fissile material rently in the U.S. nuclear stockpile. As of 1983, the total and is considered volatile and unsafe. As a result, its number of warheads was an estimated 26,000. They are nuclear materials and fuzes are kept separately from the made in a wide variety of configurations with over 50 artillery projectile. The W33 can be used in two differ- different modifications and yields. The smallest war- ent yield configurations and requires the assembly and head is the man-portable nuclear land mine, known as insertion of distinct "pits" (nuclear materials cores) with the "Special Atomic Demolition Munition" (SADM). the amount of materials determining a "low" or '4high'' The SADM weighs only 58.5 pounds and has an explo- yield. sive yield (W54) equivalent to as little as 10 tons of TNT, In contrast, the newest of the nuclear warheads is the The largest yield is found in the 165 ton TITAN I1 mis- W80,5 a thermonuclear warhead built for the long-range sile, which carries a four ton nuclear warhead (W53) Air-Launched Cruise Missile (ALCM) and first deployed equal in explosive capability to 9 million tons of TNT, in late 1981. The W80 warhead has a yield equivalent to The nuclear weapons stockpile officially includes 200 kilotons of TNT (more than 20 times greater than the only those nuclear missile reentry vehicles, bombs, artil- W33), weighs about the same as the W33, utilizes the lery projectiles, and atomic demolition munitions that same material (oralloy), and, through improvements in are in "active service."l Active service means those electronics such as fuzing and miniaturization, repre- which are in the custody of the Department of Defense sents close to the limits of technology in building a high and considered "war reserve weapons." Excluded are yield, safe, small warhead. -
Disarmament, 2013 Monitoring Report
IMPLEMENTATION OF THE CONCLUSIONS AND RECOMMENDATIONS FOR FOLLOW-ON ACTIONS ADOPTED AT THE 2010 NPT REVIEW CONFERENCE DISARMAMENT ACTIONS 1-22 2013 M R Gaukhar Mukhatzhanova JAMES MARTIN CENTER FOR NONPROLIFERATION STUDIES This report was prepared with the financial support from the William and Flora Hewlett Foundation and the Carnegie Corporation of New York. CNS also thanks the Swiss Federal Department of Foreign Affairs for the support provided to the Center’s NPT-related work. The views, assessments, judgments, and conclusions in this report are the sole representations of the author and do not necessarily represent either the official position or policy or bear the endorsement of the James Martin Center for Nonproliferation Studies, the Monterey Institute of International Studies, or the President and Trustees of Middlebury College. JAMES MARTIN CENTER FOR NONPROLIFERATION STUDIES nonproliferation.org The James Martin Center for Nonproliferation Studies (CNS) strives to combat the spread of weapons of mass destruction by training the next generation of nonproliferation specialists and disseminating timely information and analysis. CNS at the Monterey Institute of International Studies is the largest nongovernmental organization in the United States devoted exclusively to research and training on nonproliferation issues. Monterey Institute of International Studies www.miis.edu The Monterey Institute of International Studies, a graduate school of Middlebury College, provides international professional education in areas of critical importance to a rapidly changing global community, including international policy and management, translation and interpretation, language teaching, sustainable development, and nonproliferation. We prepare students from all over the world to make a meaningful impact in their chosen fields through degree programs characterized by immersive and collaborative learning, and opportunities to acquire and apply practical professional skills. -
A Low-Yield, Submarine-Launched Nuclear Warhead: Overview of the Expert Debate
Updated January 5, 2021 A Low-Yield, Submarine-Launched Nuclear Warhead: Overview of the Expert Debate The Low-Yield D-5 Warhead argue that adversaries might mistakenly believe the United The Trump Administration developed a new low-yield States would be self-deterred from responding with nuclear version of the W-76 warhead for existing submarine- weapons after an adversary’s nuclear use in a regional launched Trident II (D-5) missiles. Unclassified sources conflict, and therefore could be coerced into withdrawing state that the existing W76-1 warhead has an explosive from the fight if an adversary threatened nuclear use. They yield of around 100 kilotons. The National Nuclear Security contend that Russia in particular might threaten to escalate Administration (NNSA) has said the low-yield version, the to nuclear weapons if it were losing a conventional conflict, W76-2, would be configured “for primary-only detonation.” and note that Russia has exercised the use of low-yield This could mean a yield of less than 10 kilotons. nuclear weapons for this type of contingency. They argue that if Russia pursued this approach, the United States Congress appropriated $65 million for the W76-2 warhead would only be able to respond with the higher-yield in FY2019 and $10 million to complete work in FY2020. It weapons like those currently deployed on submarine- also authorized $19.6 million in FY2020 for the Navy to launched missiles. The deployment of a low-yield D-5 integrate the warhead into the submarine force. NNSA warhead would therefore bolster deterrence by convincing completed the first modified warhead in February 2019, Russia that the United States could respond with a began delivering warheads to the Navy by late 2019, and proportional, limited attack. -
Report Is Available on the UCS Website At
Making Smart Security Choices The Future of the U.S. Nuclear Weapons Complex Making Smart SecurityChoices The Future of the U.S. Nuclear Weapons Complex Lisbeth Gronlund Eryn MacDonald Stephen Young Philip E. Coyle III Steve Fetter OCTOBER 2013 Revised March 2014 ii UNION OF CONCERNED SCIENTISTS © 2013 Union of Concerned Scientists All rights reserved Lisbeth Gronlund is a senior scientist and co-director of the Union of Concerned Scientists (UCS) Global Security Program. Eryn MacDonald is an analyst in the UCS Global Security Program. Stephen Young is a senior analyst in the UCS Global Security Program. Philip E. Coyle III is a senior science fellow at the Center for Arms Control and Non-Proliferation. Steve Fetter is a professor in the School of Public Policy at the University of Maryland. The Union of Concerned Scientists puts rigorous, independent science to work to solve our planet’s most pressing problems. Joining with citizens across the country, we combine technical analysis and effective advocacy to create innovative, practical solutions for a healthy, safe, and sustainable future. More information about UCS and the Global Security Program is available on the UCS website at www.ucsusa.org/nuclear_weapons_and_global_security. The full text of this report is available on the UCS website at www.ucsusa.org/smartnuclearchoices. DESIGN & PROductiON DG Communications/www.NonprofitDesign.com COVER image Department of Defense/Wikimedia Commons Four B61 nuclear gravity bombs on a bomb cart at Barksdale Air Force Base in Louisiana. Printed on recycled paper. MAKING SMART SECURITY CHOICES iii CONTENTS iv Figures iv Tables v Acknowledgments 1 Executive Summary 4 Chapter 1. -
Tickling the Sleeping Dragon's Tail: Should We Resume Nuclear Testing?
TICKLING THE SLEEPING DRAGON’S TAIL Should We Resume Nuclear Testing? National Security Report Michael Frankel | James Scouras | George Ullrich TICKLING THE SLEEPING DRAGON’S TAIL Should We Resume Nuclear Testing? Michael Frankel James Scouras George Ullrich Copyright © 2021 The Johns Hopkins University Applied Physics Laboratory LLC. All Rights Reserved. “Tickling the sleeping dragon’s tail” is a metaphor for risking severe consequences by taking an unnecessary provocative action. Its origin can be traced to the last year of the Manhattan Project at Los Alamos National Laboratory (LANL) in 1946. When investigating the critical mass of plutonium, LANL scientists usually brought two halves of a beryllium reflecting shell surrounding a fissile core closer together, observing the increase in reaction rate via a scintillation counter. They manually forced the two half-shells closer together by gripping them through a thumbhole at the top, while as a safety precaution, keeping the shells from completely closing by inserting shims. However, the habit of Louis Slotin was to remove the shims and keep the shells separated by manually inserting a screwdriver. Enrico Fermi is reported to have warned Slotin and others that they would be “dead within a year” if they continued this procedure. One day the screwdriver slipped, allowing the two half-shells to completely close, and the increased reflectivity drove the core toward criticality. Slotin immediately flipped the top half-shell loose with a flick of the screwdriver, but by then he had endured -
Nuclear- and Missile-Related Trade and Developments for Selected Countries, November 1996-February 1997
Nuclear and Missile Trade and Developments NUCLEAR- AND MISSILE-RELATED TRADE AND DEVELOPMENTS FOR SELECTED COUNTRIES, NOVEMBER 1996-FEBRUARY 1997 by Wyn Bowen, Kimber Cramer, Andrew Koch, and Adam Moody The material in this overview is drawn from selected abstracts that appear in the Center for Nonproliferation Studies’ nuclear and missile databases. Transactions of nuclear and missile technologies, parts, and materials are listed according to the recipient country. Other developments are listed according to the country where the event or development took place. The new, streamlined format of this section indicates a decision by the Monitoring Proliferation Threats Project to focus on only key information in the overview and to offer more in-depth analysis in the “Reports” section of the journal. From 12/5/96 to 12/18/96, Chinese Defense been at Liaoning. The project will be partly Minister Chi Haotian made his first trip to financed by a $2.5 billion loan from Russia. ASIA the United States, meeting with U.S. Presi- Russian technicians will assist in the con- dent Bill Clinton and Secretary of Defense struction. Russia and China also discussed William Perry. Chi discussed recent U.S. the construction of a gas centrifuge plant in weapons sales to Taiwan and China’s re- China and planned a 4/97 summit meeting. ported missile and nuclear transfers to Iran Washington Times, 12/28/96, p. A1; Nuclear News, BRUNEI and Pakistan. 12/96, p. 35; BBC Monitoring Summary Of World Broadcasts, 12/11/96; Nucleonics Week, 1/23/97, pp. Washington Times, [Online] http://www.wash- Missile 1, 11. -
UCRL-LR-107454: Assessment of the Safety of US Nuclear Weapons And
Fvl+- UCRL-LR-I07454I Report to Congress: Assessment of the Safety of u.S. Nuclear Weapons and Related .c\ Nuclear Test Requirements ,.., R. E. Kidder July 26, 199'::1 '1 Contents Abstract 1 Introduction 1 Principal Meansof Providing NuclearWarhead Safety 2 One-PointSafety : 3 NuclearPlutonium SafetyDispersal Safety 3 SafetyStandards for NuclearWeapons 3 ComparativeSafety of U.S. NuclearWeapons 3 The Minuteman Missiles 5 The Trident Missiles 5 Fire-ResistantPits 5 SeparableComponents 6 Responseto Congressmens'Questions 6 Summaryand Conclusions 10 Recommendations 12 References 12 AbbreviationsUsed 13 Appendix A. Letter from Edward M. Kennedyto JohnNuckolls A-l Appendix B. Letter from Les Aspin to the HonorableJames D. Watkins B-l Appendix C. Nuclear SafetyCriteria C-l Appendix D. SafetyStandards for NuclearWeapons D-l Appendix E. A Summaryof AccidentsInvolving U.S. NuclearWeapons and Nuclear WeaponsSystems E-l AppendixF. Biography F-l iii Report to Congress: Assessment of the Safety of U.S. ~ Nuclear Weapons and Related Nuclear Test Requirements Abstract.The principal safety features included in the design of modern nuclear weapons are described briefly, and each nuclear weapon currently in the stockpile or under development is given a comparative safetyI rating from "A" through "D," indicating the extent to which these safety features are included in its design. The list is then narrowed by deleting weapons currently scheduled for retirement and short-range, surface-to-surface tactical nuclear weapons that will likely be returned to the U.S. and placed in storage. With the exception of the Minuteman and Trident ballistic missile warheads, all warheads in this projected future stockpile will have both of the most important design features that contribute to nuclear weapon safety: enhanced electrical isolation (EEl) and insensitive high explosive (IHE). -
Trident Replacement: the Practical Implications
Trident Replacement: the practical implications Presentation to British Pugwash AGM 8 April 2008 J ohn Ainslie Coordinator, Scottish CND Trident Replacement Submarine Missile Warhead Targeting “Successor” Submarine New submarine Timeline 2007 2008 2009 2010 2011 2012 2013 2014 Concept Design Initial Design Detail Design Outputs Initial Gate Build Main Gate Nuclear-Powered Submarines 10 12 14 16 18 20 22 24 26 28 Astut Successor MUFC e Reactor for “Successor” Rolls Royal Royce Navy PWR2 New Design New Generation Nuclear Propulsion Plant (NGNPP) “avoid pumped flow systems” Steve Ludham RR “a modern & much simpler plant” Rear Admiral Matthews USS Narwhal (1969 – 1999) When built - quietest submarine Continuous Patrols One armed submarine on patrol at all times Alert – “measured in days” non-verifiable “our planned future programme should take us up to 750 [patrols]” Rear Admiral Matthews Patrols 1968-2007 300 2008-2060 ? 450 Total 750 Infrastructure - Devonport Refit Dockyard Infrastructure - Derby Fuel Rod Fabrication Infrastructure - Faslane Submarine Base and Shiplift Infrastructure - Coulport Explosives Handling J etty Infrastructure - Dounreay Submarine Reactor Prototype & overhaul of coolant pumps The Scottish Question “the Parliament … calls on the UK Government not to go ahead at this time with the proposal in the White Paper, The Future of the United Kingdom’s Nuclear Deterrent” 14 June 2007 71 for 16 against 39 abstained 2 did not vote If not Scotland where ? 1963 Polaris option - Falmouth Trident Replacement Submarine Missile -
The Role of Nuclear Weapons in Counterproliferation
what wrongs our armsmay do The Role of Nuclear Weapons in Counterproliferation AUGUST 2003 Martin Butcher, Director of Security Programs PHYSICIANS FOR SOCIAL RESPONSIBILITY what wrongs our armsmay do The Role of Nuclear Weapons in Counterproliferation © Physicians for Social Responsibility and Martin Butcher AUGUST 2003 Martin Butcher, Director of Security Programs PHYSICIANS FOR SOCIAL RESPONSIBILITY Table of Contents Acknowledgements ..................................................................................................................................... 6 Glossary......................................................................................................................................................... 7 Executive Summary .................................................................................................................................... 11 Introduction ................................................................................................................................................ 17 Chapter One: NBC Weapons Threats to the United States and its Allies ............................................ 23 The Ballistic Missile Threat .......................................................................................................... 25 NBC Weapons and Bunkers ........................................................................................................ 27 21st Century Proliferation: State Actors ....................................................................................