History of the Nuclear Stockpile Robert S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(CUWS) Outreach Journal # 1241
USAF Center for Unconventional Weapons Studies (CUWS) Outreach Journal CUWS Outreach Journal 1241 10 November 2016 Feature Item: “AN EVOLVING NARRATIVE: A Report on the Role and Value of U.S. Nuclear Weapons, 1989-Today.” Authored by Rebecca Hersman, Clark Murdock, and Shanelle Van; A report of the CSIS International Security Program; Published by the Center for Strategic & International Studies (CSIS); October 2016; 76 pages. https://csis-prod.s3.amazonaws.com/s3fs-public/publication/Evolving-US-Nuclear-Narrative.pdf This study aims to create a dialogue with the nation’s nuclear personnel about the rationales for the U.S. nuclear arsenal that already exist—some of which have been stated at the highest levels of leadership—to ask what the nuclear forces actually hear, what works and what does not, and what motivates them on a daily basis. Over the last few years, many observers, including key Department of Defense (DoD) officials, have commented on the need for DoD to better communicate a more compelling rationale for why the U.S. nuclear arsenal remains essential to the post–Cold War strategy of the United States and to the security of the American people. Those airmen and sailors who comprise the nuclear workforce, and who are asked to dedicate their lives in service of their mission, deserve a persuasive explanation as to why their unwavering stewardship of the U.S. nuclear arsenal will matter as long as these weapons exist in the world. In the assessment of some, including this study’s authors, a coherent narrative about the fundamental role of U.S. -
Heater Element Specifications Bulletin Number 592
Technical Data Heater Element Specifications Bulletin Number 592 Topic Page Description 2 Heater Element Selection Procedure 2 Index to Heater Element Selection Tables 5 Heater Element Selection Tables 6 Additional Resources These documents contain additional information concerning related products from Rockwell Automation. Resource Description Industrial Automation Wiring and Grounding Guidelines, publication 1770-4.1 Provides general guidelines for installing a Rockwell Automation industrial system. Product Certifications website, http://www.ab.com Provides declarations of conformity, certificates, and other certification details. You can view or download publications at http://www.rockwellautomation.com/literature/. To order paper copies of technical documentation, contact your local Allen-Bradley distributor or Rockwell Automation sales representative. For Application on Bulletin 100/500/609/1200 Line Starters Heater Element Specifications Eutectic Alloy Overload Relay Heater Elements Type J — CLASS 10 Type P — CLASS 20 (Bul. 600 ONLY) Type W — CLASS 20 Type WL — CLASS 30 Note: Heater Element Type W/WL does not currently meet the material Type W Heater Elements restrictions related to EU ROHS Description The following is for motors rated for Continuous Duty: For motors with marked service factor of not less than 1.15, or Overload Relay Class Designation motors with a marked temperature rise not over +40 °C United States Industry Standards (NEMA ICS 2 Part 4) designate an (+104 °F), apply application rules 1 through 3. Apply application overload relay by a class number indicating the maximum time in rules 2 and 3 when the temperature difference does not exceed seconds at which it will trip when carrying a current equal to 600 +10 °C (+18 °F). -
BU97530KVT MAX 445 Segment(89Segx5com)
Datasheet LCD Segment Drivers Multi-function LCD Segment Drivers BU97530KVT MAX 445 Segment(89SEGx5COM) General Description Key Specifications The BU97530KVT is 1/5, 1/4, 1/3 duty or Static ■ Supply Voltage Range: +2.7V to +6.0V General-purpose LCD driver. The BU97530KVT can ■ Operating Temperature Range: -40°C to +85°C drive up to 445 LCD Segments directly. The ■ Max Segments: 445 Segments BU97530KVT can also control up to 9 General-purpose ■ Display Duty Static, 1/3, 1/4, 1/5 Selectable output pins / 9 PWM output pins. ■ Bias: 1/2, 1/3 Selectable These products also incorporate a key scan circuit that ■ Interface: 3wire Serial Interface accepts input from up to 30 keys to reduce printed circuit board wring. Features Package W (Typ) x D (Typ) x H (Max) Key Input Function for up to 30 Keys (A key scan is performed only when a key is pressed.) Either 1/5, 1/4, 1/3 Duty or Static Can be Selected with the Serial Control Data. 1/5 Duty Drive: Up to 445 Segments can be Driven 1/4 Duty Drive: Up to 360 Segments can be Driven 1/3 Duty Drive: Up to 270 Segments can be Driven Static Drive: Up to 90 Segments can be Driven Selectable Display Frame Frequency for Common and Segment Output Waveforms. Configurable Output Pin to Segment Output / PWM Output / General-purpose Output.(Max 9 Pins) Built-in OSC Circuit TQFP100V Integrated Voltage Detection Type Reset Circuit 16.00mm x 16.00mm x 1.20mm (VDET) No External Component Low Power Consumption Design Supports Line and Frame Inversion Applications Car Audio, Home Electrical Appliance, Meter Equipment etc. -
Experience a Lower Total Cost of Ownership
EXPERIENCE A LOWER TOTAL COST OF OWNERSHIP Timken® Spherical Roller Bearings are engineered to give you more of what you need. Lower Operating Temperatures Rollers are guided by cage pockets—not a center guide ring—eliminating a friction point and resulting in 4–10% less rotational torque and 5ºC lower operating temperatures.* Less rotational torque leads to improved efficiency, lower energy consumption and more savings. Lower temperatures reduce the oil oxidation rate by 50% to extend lubricant life. Tougher Protection Hardened steel cages deliver greater fatigue strength, increased wear resistance and tougher protection against shock and acceleration. Optimized Uptime Unique slots in the cage face improve oil flow and purge more contaminants from the bearing to help extend equipment uptime. Minimized Wear Improved profiles reduce internal stresses and optimize load distribution to minimize wear. Improved Lube Film Enhanced surface finishes avoid metal-to-metal contact to reduce friction and result in improved lube film. Higher Loads Longer rollers result in 4–8% higher load ratings or 14–29% longer predicted bearing life. Higher load ratings enable you to carry heavier loads. Brass Cages Available in all sizes; ready when you need extra strength and durability in the most unrelenting conditions, including extreme shock and vibration, high acceleration forces, and minimal lubrication. Increase your operational efficiencies and extend maintenance intervals. Starting now. Visit Timken.com/spherical to find out more. *All results are from head-to-head -
The Benefits of Moving to an All-W87 ICBM Force the NNSA Is Proposing
The Benefits of Moving to an All-W87 ICBM Force The NNSA is proposing to replace the W78 ICBM warhead with a new W87-1 warhead using a “W87- like” pit. A better alternative Replacing the 200 deployed W78s with the some of the 340 W87s in storage would bring several benefits: 1. Enhanced safety—much sooner: A major feature of the W87-1 is that it would use insensitive high explosives (IHE). As NNSA states in its report W78 Replacement Program (W87-1): Cost Estimates and Insensitive High Explosives: “Replacing the conventional high explosives (CHE) in the current W78 warhead with IHE is the single most significant weapon system change that improves the warhead’s safety and security.” But the W87 also uses IHE and could be deployed now, not in several decades. 2. Less demanding pit production schedule: The W87-1 would use new plutonium pits, which requires the NNSA to start up and then quickly ramp up its pit production from the current zero (and none since 2013) to 80 per year by 2030. As the NNSA states, this will be “challenging.” The alternative would obviate or significantly delay the need to produce 80 pits by 2030. 3. More realistic schedule overall: The NNSA faces significant schedule challenges in producing the W87-1, as it states in the FY19 Stockpile Stewardship & Management Plan: “Production is predicated on all newly manufactured components and a nuclear material manufacturing modernization strategy that relies on large, multi-year investments in component and material capabilities.” 4. Reduced NNSA workload: The NNSA and the weapons complex are already struggling to manage five simultaneous major work programs on weapons in the stockpile while also building the UPF and trying to establish a pit production capacity. -
Bob Farquhar
1 2 Created by Bob Farquhar For and dedicated to my grandchildren, their children, and all humanity. This is Copyright material 3 Table of Contents Preface 4 Conclusions 6 Gadget 8 Making Bombs Tick 15 ‘Little Boy’ 25 ‘Fat Man’ 40 Effectiveness 49 Death By Radiation 52 Crossroads 55 Atomic Bomb Targets 66 Acheson–Lilienthal Report & Baruch Plan 68 The Tests 71 Guinea Pigs 92 Atomic Animals 96 Downwinders 100 The H-Bomb 109 Nukes in Space 119 Going Underground 124 Leaks and Vents 132 Turning Swords Into Plowshares 135 Nuclear Detonations by Other Countries 147 Cessation of Testing 159 Building Bombs 161 Delivering Bombs 178 Strategic Bombers 181 Nuclear Capable Tactical Aircraft 188 Missiles and MIRV’s 193 Naval Delivery 211 Stand-Off & Cruise Missiles 219 U.S. Nuclear Arsenal 229 Enduring Stockpile 246 Nuclear Treaties 251 Duck and Cover 255 Let’s Nuke Des Moines! 265 Conclusion 270 Lest We Forget 274 The Beginning or The End? 280 Update: 7/1/12 Copyright © 2012 rbf 4 Preface 5 Hey there, I’m Ralph. That’s my dog Spot over there. Welcome to the not-so-wonderful world of nuclear weaponry. This book is a journey from 1945 when the first atomic bomb was detonated in the New Mexico desert to where we are today. It’s an interesting and sometimes bizarre journey. It can also be horribly frightening. Today, there are enough nuclear weapons to destroy the civilized world several times over. Over 23,000. “Enough to make the rubble bounce,” Winston Churchill said. The United States alone has over 10,000 warheads in what’s called the ‘enduring stockpile.’ In my time, we took care of things Mano-a-Mano. -
Nuclear Weapons
United States Government Accountability Office Report to Congressional Committees November 2018 NUCLEAR WEAPONS NNSA Has Taken Steps to Prepare to Restart a Program to Replace the W78 Warhead Capability GAO-19-84 November 2018 NUCLEAR WEAPONS NNSA Has Taken Steps to Prepare to Restart a Program to Replace the W78 Warhead Capability Highlights of GAO-19-84, a report to congressional committees Why GAO Did This Study What GAO Found The Department of Defense and NNSA The Department of Energy’s National Nuclear Security Administration (NNSA) have sought for nearly a decade to has taken steps to prepare to restart a life extension program (LEP) to replace replace the capabilities of the aging the capabilities of the Air Force’s W78 nuclear warhead—a program which was W78 nuclear warhead used by the U.S. previously suspended. According to NNSA officials, these steps are typically Air Force. NNSA undertakes LEPs to needed to conduct any LEP. Therefore, they can be undertaken despite the refurbish or replace the capabilities of current uncertainty about whether the final program will develop the warhead for nuclear weapons components. In fiscal the Air Force only or for both the Air Force and the Navy. Specifically, NNSA has year 2014, NNSA was directed to taken the steps described below: suspend a program that was evaluating a capability that could • Program management. NNSA has begun to establish the program replace the W78 and also be used by management functions needed to execute a W78 replacement program, as the U.S. Navy. NNSA’s most recent required by NNSA’s program execution instruction. -
SANDIA LAB NEWS | August 13, 2021 2
Vol. 73, No. 15, Aug. 13, 2021 Computers donated 4 The hybrid Back to school 8 workplace Mileposts 10 Page 6 Laura Price 11 With redesigned ‘brains,’ W88 nuclear warhead reaches milestone Completion of arming, fuzing and firing assembly precedes first full W88 Alt 370 By Michael Baker the first unit for the W88 Alt 370 arming, fuzing and firing, known as AF&F, assem- andia and its nuclear security enter- bly at the end of May, three days ahead of prise partners recently completed schedule. The first fully operable unit was S the first production unit of a weapon received the next day at the Pantex Plant assembly responsible for key operations of near Amarillo, Texas. That shipment was the W88 nuclear warhead. followed quickly by completion of the “The arming, fuzing and firing assem- system-level first production unit for the bly is the brains of the warhead,” said W88 Alt 370 at Pantex in early July. Dolores Sanchez, Sandia’s senior manager The W88 nuclear warhead entered the for its part of the W88 Alteration 370. stockpile in late 1988 and is deployed on “It looks for the correct code and the cor- the Navy’s Trident II submarine-launched rect environmental signals that will unlock ballistic missile system onboard Ohio-class FULLY TESTED — Sandia performed a drop test the system, and it also ensures that it’s an ballistic missile submarines. The weapon for the W88 Alt 370 program, designed to replicate a authorized flight. In short, it makes sure was beyond its original design life, and crane accidentally dropping the re-entry body onto a it always works when we want it to and several updates were required to address concrete surface. -
BU91530KVT-M : Display Drivers
Datasheet LCD Segment Drivers Multi-function LCD Segment Drivers BU91530KVT-M MAX 445 Segment(89SEGx5COM) General Description Key Specifications The BU91530KVT-M is 1/5, 1/4, 1/3 or 1/1 duty ■ Supply Voltage Range: +2.7V to +6.0V general-purpose LCD driver that can be used for ■ Operating Temperature Range: -40°C to +85°C frequency display in electronic tuners under the control of ■ Max Segments: 445 Segments a microcontroller. The BU91530KVT-M can drive up to ■ Display Duty 1/1, 1/3, 1/4, 1/5 Selectable 445 LCD Segments directly. The BU91530KVT-M can ■ Bias: 1/2, 1/3 Selectable also control up to 9 general-purpose output ports. ■ Interface: 3wire Serial Interface These products also incorporate a key scan circuit that accepts input from up to 30 keys to reduce printed circuit board wring. Package W (Typ.) x D (Typ.) x H (Max.) Features AEC-Q100 Qualified (Note1) Key input function for up to 30 keys (A key scan is performed only when a key is pressed.) Either 1/5, 1/4, 1/3 or 1/1 duty (static) can be selected with the serial control data. 1/5 duty drive: Up to 445 segments can be driven 1/4 duty drive: Up to 360 segments can be driven 1/3 duty drive: Up to 270 segments can be driven 1/1 duty drive: Up to 90 segments can be driven Serial Data Control of frame frequency for common and segment output waveforms. Serial data control of switching between the segment TQFP100V output port , PWM output port and general-purpose 16.00mm x 16.00mm x 1.20mm output port functions.(Max 9 ports) Built-in OSC circuit Integrated Power-on Reset Circuit No external component Low power consumption design Supports Line and Frame Inversion (Note1) Grade 3 Applications Car Audio, Home Electrical Appliance, Meter Equipment etc. -
Gao-20-703, Nuclear Weapons
United States Government Accountability Office Report to Congressional Requesters September 2020 NUCLEAR WEAPONS NNSA Should Further Develop Cost, Schedule, and Risk Information for the W87-1 Warhead Program GAO-20-703 September 2020 NUCLEAR WEAPONS NNSA Should Further Develop Cost, Schedule, and Risk Information for the W87-1 Warhead Program Highlights of GAO-20-703, a report to congressional requesters Why GAO Did This Study What GAO Found The Department of Defense (DOD) The National Nuclear Security Administration (NNSA) did not consider cost and NNSA restarted a program in fiscal estimates in early major design decisions for the W87-1 warhead because it was year 2019 to replace the capabilities of not required to do so, but NNSA has since changed its guidance to require that the aging W78 nuclear warhead with cost be considered, according to a May 2019 NNSA review of program the W87-1. NNSA made key design documentation. The design decisions that remain for features that would achieve decisions for this weapon from 2010 either minimum or enhanced requirements for the W87-1 could affect cost, until the program was paused in 2014. according to NNSA officials (see table). We found, however, that NNSA did not NNSA estimated in December 2018 yet have study plans for assessing the costs and benefits of the remaining that the W87-1 would cost $8.6 billion decisions consistent with best practices as detailed in NNSA’s analysis of to $14.8 billion, which could make it the alternatives business procedure. NNSA does not require and only recommends most expensive warhead modernization program to date. -
The Weird Nukes of Yesteryear
The Cold War produced some oddball weapons. Here are three of them. The “Davy Crockett,” shown here mounted on a tripod at Aberdeen Proving Ground in Maryland, was the smallest nuclear warhead ever developed by the US. The Weird Nukes DOD photo end of a series of thermonuclear bombs initiated in 1950. This followed the Soviet detonation of an atomic bomb of Yesteryear in 1949, several years before Western By Norman Polmar and Robert S. Norris intelligence agencies expected such an event. y the time the Cold War reached some concern about whether they could It was the era of “bigger is better.” its height in the late 1960s, the be carried in aircraft, due to size. The The zenith of “big bombs” would be American nuclear arsenal had “Little Boy” dropped on Hiroshima seen on Oct. 30, 1961, when the Soviet grown to more than 31,000 tipped the scales at 9,700 pounds, and Union detonated (at Novaya Zemlya in Bweapons. The Army, Navy, Air Force, the “Fat Man” dropped on Nagasaki the Arctic) a thermonuclear bomb that and even the Marine Corps worked weighed 10,300 pounds. The immediate produced an explosion equivalent to to acquire weapons for the “nuclear follow-on bombs were about the same 58 megatons—the largest man-made battlefield,” whether in the air, on the size or smaller. explosion ever achieved. Soviet Premier ground, on water, or underwater. However, the development of ther- Nikita Khrushchev would later write Three of the more unusual—and in monuclear or hydrogen bombs led to in his memoirs: “It was colossal, just the end impractical—of these weapons much larger weapons, with the largest incredible! Our experts later explained were the enormous Mk 17 hydrogen US nuclear weapon being the Mk 17 to me that if you took into account the bomb, the Navy’s drone anti-submarine hydrogen bomb. -
China: Suspected Acquisition of U.S
Order Code RL30143 CRS Report for Congress Received through the CRS Web China: Suspected Acquisition of U.S. Nuclear Weapon Secrets Updated February 1, 2006 Shirley A. Kan Specialist in National Security Policy Foreign Affairs, Defense, and Trade Division Congressional Research Service ˜ The Library of Congress China: Suspected Acquisition of U.S. Nuclear Weapon Secrets Summary This CRS Report discusses China’s suspected acquisition of U.S. nuclear weapon secrets, including that on the W88, the newest U.S. nuclear warhead. This serious controversy became public in early 1999 and raised policy issues about whether U.S. security was further threatened by China’s suspected use of U.S. nuclear weapon secrets in its development of nuclear forces, as well as whether the Administration’s response to the security problems was effective or mishandled and whether it fairly used or abused its investigative and prosecuting authority. The Clinton Administration acknowledged that improved security was needed at the weapons labs but said that it took actions in response to indications in 1995 that China may have obtained U.S. nuclear weapon secrets. Critics in Congress and elsewhere argued that the Administration was slow to respond to security concerns, mishandled the too narrow investigation, downplayed information potentially unfavorable to China and the labs, and failed to notify Congress fully. On April 7, 1999, President Clinton gave his assurance that partly “because of our engagement, China has, at best, only marginally increased its deployed nuclear threat in the last 15 years” and that the strategic balance with China “remains overwhelmingly in our favor.” On April 21, 1999, Director of Central Intelligence (DCI) George Tenet, reported the Intelligence Community’s damage assessment.