Nuclear Weapons
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Heater Element Specifications Bulletin Number 592
Technical Data Heater Element Specifications Bulletin Number 592 Topic Page Description 2 Heater Element Selection Procedure 2 Index to Heater Element Selection Tables 5 Heater Element Selection Tables 6 Additional Resources These documents contain additional information concerning related products from Rockwell Automation. Resource Description Industrial Automation Wiring and Grounding Guidelines, publication 1770-4.1 Provides general guidelines for installing a Rockwell Automation industrial system. Product Certifications website, http://www.ab.com Provides declarations of conformity, certificates, and other certification details. You can view or download publications at http://www.rockwellautomation.com/literature/. To order paper copies of technical documentation, contact your local Allen-Bradley distributor or Rockwell Automation sales representative. For Application on Bulletin 100/500/609/1200 Line Starters Heater Element Specifications Eutectic Alloy Overload Relay Heater Elements Type J — CLASS 10 Type P — CLASS 20 (Bul. 600 ONLY) Type W — CLASS 20 Type WL — CLASS 30 Note: Heater Element Type W/WL does not currently meet the material Type W Heater Elements restrictions related to EU ROHS Description The following is for motors rated for Continuous Duty: For motors with marked service factor of not less than 1.15, or Overload Relay Class Designation motors with a marked temperature rise not over +40 °C United States Industry Standards (NEMA ICS 2 Part 4) designate an (+104 °F), apply application rules 1 through 3. Apply application overload relay by a class number indicating the maximum time in rules 2 and 3 when the temperature difference does not exceed seconds at which it will trip when carrying a current equal to 600 +10 °C (+18 °F). -
Experience a Lower Total Cost of Ownership
EXPERIENCE A LOWER TOTAL COST OF OWNERSHIP Timken® Spherical Roller Bearings are engineered to give you more of what you need. Lower Operating Temperatures Rollers are guided by cage pockets—not a center guide ring—eliminating a friction point and resulting in 4–10% less rotational torque and 5ºC lower operating temperatures.* Less rotational torque leads to improved efficiency, lower energy consumption and more savings. Lower temperatures reduce the oil oxidation rate by 50% to extend lubricant life. Tougher Protection Hardened steel cages deliver greater fatigue strength, increased wear resistance and tougher protection against shock and acceleration. Optimized Uptime Unique slots in the cage face improve oil flow and purge more contaminants from the bearing to help extend equipment uptime. Minimized Wear Improved profiles reduce internal stresses and optimize load distribution to minimize wear. Improved Lube Film Enhanced surface finishes avoid metal-to-metal contact to reduce friction and result in improved lube film. Higher Loads Longer rollers result in 4–8% higher load ratings or 14–29% longer predicted bearing life. Higher load ratings enable you to carry heavier loads. Brass Cages Available in all sizes; ready when you need extra strength and durability in the most unrelenting conditions, including extreme shock and vibration, high acceleration forces, and minimal lubrication. Increase your operational efficiencies and extend maintenance intervals. Starting now. Visit Timken.com/spherical to find out more. *All results are from head-to-head -
The Maintenance of a Capable, Credible
he maintenance of a capable, size of the deployed strategic arsenal B61 nuclear gravity bomb, carried by credible nuclear deterrent shrinks and the US reviews its nuclear the B-52 and B-2 bomber fleets. seems to have consensus gov- requirements. In the near future, officials want to Ternmental support. Defense and Energy Department lead- consolidate the number of warheads to Despite heavy investment in the nu- ers want to streamline and standardize the curb costs and accommodate an evolving clear mission over the last few years, Air maintenance of the nation’s warheads—a concept of nuclear deterrence, which Force and senior defense officials say process that has long been unpredictable may be far different from the policies much work lies ahead for the nation’s and irregular, according to a senior USAF and assumptions that dominated the Cold stockpile of nuclear warheads. official working in the Air Staff’s nuclear War. The task is to bring the nuclear Not long ago, ambitious plans were deterrence shop. weapons complex—the nation’s nuclear on the books for a new nuclear earth- warheads and the laboratories and facili- penetrating weapon and the first new- Consolidation ties charged with their care, testing, and build warhead since the Cold War. Then, “We are in a period of transition,” said maintenance—into the 21st century. Administrations changed and the budget Billy W. Mullins, the associate assistant As a result, over the coming decade- crunch hit. chief of staff for strategic deterrence plus, the National Nuclear Security In the aftermath of the New START and nuclear integration on the Air Staff. -
The Benefits of Moving to an All-W87 ICBM Force the NNSA Is Proposing
The Benefits of Moving to an All-W87 ICBM Force The NNSA is proposing to replace the W78 ICBM warhead with a new W87-1 warhead using a “W87- like” pit. A better alternative Replacing the 200 deployed W78s with the some of the 340 W87s in storage would bring several benefits: 1. Enhanced safety—much sooner: A major feature of the W87-1 is that it would use insensitive high explosives (IHE). As NNSA states in its report W78 Replacement Program (W87-1): Cost Estimates and Insensitive High Explosives: “Replacing the conventional high explosives (CHE) in the current W78 warhead with IHE is the single most significant weapon system change that improves the warhead’s safety and security.” But the W87 also uses IHE and could be deployed now, not in several decades. 2. Less demanding pit production schedule: The W87-1 would use new plutonium pits, which requires the NNSA to start up and then quickly ramp up its pit production from the current zero (and none since 2013) to 80 per year by 2030. As the NNSA states, this will be “challenging.” The alternative would obviate or significantly delay the need to produce 80 pits by 2030. 3. More realistic schedule overall: The NNSA faces significant schedule challenges in producing the W87-1, as it states in the FY19 Stockpile Stewardship & Management Plan: “Production is predicated on all newly manufactured components and a nuclear material manufacturing modernization strategy that relies on large, multi-year investments in component and material capabilities.” 4. Reduced NNSA workload: The NNSA and the weapons complex are already struggling to manage five simultaneous major work programs on weapons in the stockpile while also building the UPF and trying to establish a pit production capacity. -
Bob Farquhar
1 2 Created by Bob Farquhar For and dedicated to my grandchildren, their children, and all humanity. This is Copyright material 3 Table of Contents Preface 4 Conclusions 6 Gadget 8 Making Bombs Tick 15 ‘Little Boy’ 25 ‘Fat Man’ 40 Effectiveness 49 Death By Radiation 52 Crossroads 55 Atomic Bomb Targets 66 Acheson–Lilienthal Report & Baruch Plan 68 The Tests 71 Guinea Pigs 92 Atomic Animals 96 Downwinders 100 The H-Bomb 109 Nukes in Space 119 Going Underground 124 Leaks and Vents 132 Turning Swords Into Plowshares 135 Nuclear Detonations by Other Countries 147 Cessation of Testing 159 Building Bombs 161 Delivering Bombs 178 Strategic Bombers 181 Nuclear Capable Tactical Aircraft 188 Missiles and MIRV’s 193 Naval Delivery 211 Stand-Off & Cruise Missiles 219 U.S. Nuclear Arsenal 229 Enduring Stockpile 246 Nuclear Treaties 251 Duck and Cover 255 Let’s Nuke Des Moines! 265 Conclusion 270 Lest We Forget 274 The Beginning or The End? 280 Update: 7/1/12 Copyright © 2012 rbf 4 Preface 5 Hey there, I’m Ralph. That’s my dog Spot over there. Welcome to the not-so-wonderful world of nuclear weaponry. This book is a journey from 1945 when the first atomic bomb was detonated in the New Mexico desert to where we are today. It’s an interesting and sometimes bizarre journey. It can also be horribly frightening. Today, there are enough nuclear weapons to destroy the civilized world several times over. Over 23,000. “Enough to make the rubble bounce,” Winston Churchill said. The United States alone has over 10,000 warheads in what’s called the ‘enduring stockpile.’ In my time, we took care of things Mano-a-Mano. -
The Reliable Replacement Warhead Program and the Life Extension Program
Order Code RL33748 Nuclear Warheads: The Reliable Replacement Warhead Program and the Life Extension Program Updated December 3, 2007 Jonathan Medalia Specialist in National Defense Foreign Affairs, Defense, and Trade Division Nuclear Warheads: The Reliable Replacement Warhead Program and the Life Extension Program Summary Current U.S. nuclear warheads were deployed during the Cold War. The National Nuclear Security Administration (NNSA) maintains them with a Life Extension Program (LEP). NNSA questions if LEP can maintain them indefinitely on grounds that an accretion of minor changes introduced in replacement components will inevitably reduce confidence in warhead safety and reliability over the long term. Congress mandated the Reliable Replacement Warhead (RRW) program in 2004 “to improve the reliability, longevity, and certifiability of existing weapons and their components.” Since then, Congress has specified more goals for the program, such as increasing safety, reducing the need for nuclear testing, designing for ease of manufacture, and reducing cost. RRW has become the principal program for designing new warheads to replace current ones. The program’s first step was a design competition. The winning design was selected in March 2007. If the program continues, NNSA would advance the design of the first RRW, assess its technical feasibility, and estimate cost and schedule in FY2008; start engineering development by FY2010; and produce the first deployable RRW between FY2012 and FY2016. Congressional actions on the FY2008 national defense authorization bills (H.R. 1585, S. 1547) and energy and water appropriations bills (H.R. 2641, S. 1751) have called this schedule into question. For details, see CRS Report RL32929, The Reliable Replacement Warhead Program: Background and Current Developments, which provides background and tracks legislation and developments. -
Gao-20-703, Nuclear Weapons
United States Government Accountability Office Report to Congressional Requesters September 2020 NUCLEAR WEAPONS NNSA Should Further Develop Cost, Schedule, and Risk Information for the W87-1 Warhead Program GAO-20-703 September 2020 NUCLEAR WEAPONS NNSA Should Further Develop Cost, Schedule, and Risk Information for the W87-1 Warhead Program Highlights of GAO-20-703, a report to congressional requesters Why GAO Did This Study What GAO Found The Department of Defense (DOD) The National Nuclear Security Administration (NNSA) did not consider cost and NNSA restarted a program in fiscal estimates in early major design decisions for the W87-1 warhead because it was year 2019 to replace the capabilities of not required to do so, but NNSA has since changed its guidance to require that the aging W78 nuclear warhead with cost be considered, according to a May 2019 NNSA review of program the W87-1. NNSA made key design documentation. The design decisions that remain for features that would achieve decisions for this weapon from 2010 either minimum or enhanced requirements for the W87-1 could affect cost, until the program was paused in 2014. according to NNSA officials (see table). We found, however, that NNSA did not NNSA estimated in December 2018 yet have study plans for assessing the costs and benefits of the remaining that the W87-1 would cost $8.6 billion decisions consistent with best practices as detailed in NNSA’s analysis of to $14.8 billion, which could make it the alternatives business procedure. NNSA does not require and only recommends most expensive warhead modernization program to date. -
Iow Imtx Dpa Ndv Eab Eon Rbs Mzv Bdf Mzv Imdw
(MDWAY6.MDW) 08157 CHICAGO MIDWAY INTL (MDW) MIDWAY SIX DEPARTURE SL-81 (FAA) CHICAGO, ILLINOIS ATIS TAKEOFF MINIMUMS: BADGER 132.75 PETTY 116.4 BAE B Rwys 4L/R, 13C/L, A N42 49.64' CLNC DEL E Chan 111 W87 38.04' 121.85 22L/R, 31C/R, STANDARD. L-28 GND CON Rwys 13R, 31L, NA, ATC. N43^ 07.01' - W88^17.06' 121.65 L-28, H-5 GIPPER MIDWAY TOWER SIMMN DUPAGE 115.4 GIJ G 118.7 226.3 N41 58.84' JI MIDWAY DEP CON W88 52.71' 108.4 DPA APD Chan 101 118.4 388.0 L-28 Chan 21 N41^ 46.12' - W86^ 19.11' N41^ 53.42' - W88^ 21.01' POLO L-28, H-5-10 L-28 LEWKE 111.2 PLL M VZ N41^ 45.72' Chan 49 W87^ 03.80' R-096 N41^ 57.94' 1500 L-28 W89^ 31.45' 315^ 100 L-28 2400 LOCALIZER 109.9 I-MXT IM TX LOCALIZER 109.9 Chan 36 IOWA CITY I-MDW DMI 116.2 IOW I W WO Chan 36 Chan 109 NOTE: Radar required. 135^ N41^ 31.14' NOTE: Chart not to scale. W91^ 36.80' 224^ EC-3, 03 JUL 2008 to 31 L-28, H-5 1400 1300 4 D M E EARND N41^ 25.52' W87^ 34.33' DENNT MOLINE L-28, H-5 N41^ 25.15' 114.4 MZV ZM V CMSKY W87^ 43.48' Chan 91 BACEN N41^ 19.26' N41^ 24.78' L-28, H-5 ACITO N41^ 24.40' W90^ 38.28' W87^ 52.63' N41^23.92' W88^ 01.78' L-27, H-5 L-28, H-5 W88^11.0' L-28, H-5 PEOTONE L-28, H-5 113.2 EON NEO Chan 79 N41^ 16.18' - W87^ 47.46' NEWTT L-28 N41 03.54' BRADFORD W88 04.60' DANVILLE 114.7 BDF B ROBERTS L-27 111.0 DNV D FD N EC-3, 03 JUL 2008 to 31 Chan 94 V 116.8 RBS R Chan 47 B GUIDO N41^ 09.58' S Chan 115 N40^ 17.42' N40 17.63' W89^ 35.27' N40^ 34.90' - W88^ 09.86' W87^ 51.81' W87 33.43' L-27, H-5 L-27, H-5 H-5 L-27, H-5 T DEPARTURE ROUTE DESCRIPTION TAKE-OFF RWYS 4L/R: Northbound departures assigned headings 360^ (CW) thru 080^, Climbing right turn to 2400 heading 100^ before proceeding on course, thence. -
China: Suspected Acquisition of U.S
Order Code RL30143 CRS Report for Congress Received through the CRS Web China: Suspected Acquisition of U.S. Nuclear Weapon Secrets Updated February 1, 2006 Shirley A. Kan Specialist in National Security Policy Foreign Affairs, Defense, and Trade Division Congressional Research Service ˜ The Library of Congress China: Suspected Acquisition of U.S. Nuclear Weapon Secrets Summary This CRS Report discusses China’s suspected acquisition of U.S. nuclear weapon secrets, including that on the W88, the newest U.S. nuclear warhead. This serious controversy became public in early 1999 and raised policy issues about whether U.S. security was further threatened by China’s suspected use of U.S. nuclear weapon secrets in its development of nuclear forces, as well as whether the Administration’s response to the security problems was effective or mishandled and whether it fairly used or abused its investigative and prosecuting authority. The Clinton Administration acknowledged that improved security was needed at the weapons labs but said that it took actions in response to indications in 1995 that China may have obtained U.S. nuclear weapon secrets. Critics in Congress and elsewhere argued that the Administration was slow to respond to security concerns, mishandled the too narrow investigation, downplayed information potentially unfavorable to China and the labs, and failed to notify Congress fully. On April 7, 1999, President Clinton gave his assurance that partly “because of our engagement, China has, at best, only marginally increased its deployed nuclear threat in the last 15 years” and that the strategic balance with China “remains overwhelmingly in our favor.” On April 21, 1999, Director of Central Intelligence (DCI) George Tenet, reported the Intelligence Community’s damage assessment. -
NSS Spring 2019.Indd
PHOTOBOMB ▼ The accelerators at the Dual-Axis Radiographic Hydrodynamic Test (DARHT) facility produce intense, high-energy electron beams that generate radiographs (x-rays) of nuclear-type explosions. These images help validate computer simulations of nuclear weapon performance. Photo: Michael Pierce IN THIS ISSUE 2 Letters: Innovation National security depends on pioneering scientists and engineers who respond to challenges with new, o en-surprising, ideas. 4 Abstracts: Notes and news from around the Lab Director om Mason takes the helm at Los Alamos, the Laboratory 2 4 wins eight “Oscars of Invention”, and more. FEATURES 10 Faces of innovation: Meet 10 seven scientists and engineers whose 24 groundbreaking ideas, experiments, and data have big implications for national security. 24 Beyond Trinity: 75 years of weapons advances In addition to creating the world’s rst nuclear device, Los Alamos has made nuclear weapons more e ective, safe, and speci c to military needs. 34 Additive manufacturing: The power of powder At the Laboratory’s Sigma Complex, metal components are created with powder, layer by layer, to 34 withstand extreme environments. 44 Analysis: The science of policy ree members of the National Nuclear Security Administration (NNSA) share their thoughts on innovation and how having a science background is important for shaping policy. 44 46 Being Essential: The need for speed Je rey Luehring is all about parts —weapons parts for his job in materials management and boat parts for the jet boat he drag races. 48 Accolades: e distinguished 46 achievements of Los Alamos employees. 49 Looking Back: A scuba diver explores the wreckage of the USS Arkansas, which ABOUT THE COVER: was sunk during the 1946 Baker test of Technical Area 3—the administrative 49 Operation Crossroads. -
Nuclear Weapons Databook, Volume I 3 Stockpile
3 Stockpile Chapter Three USNuclear Stockpile This section describes the 24 types of warheads cur- enriched uranium (oralloy) as its nuclear fissile material rently in the U.S. nuclear stockpile. As of 1983, the total and is considered volatile and unsafe. As a result, its number of warheads was an estimated 26,000. They are nuclear materials and fuzes are kept separately from the made in a wide variety of configurations with over 50 artillery projectile. The W33 can be used in two differ- different modifications and yields. The smallest war- ent yield configurations and requires the assembly and head is the man-portable nuclear land mine, known as insertion of distinct "pits" (nuclear materials cores) with the "Special Atomic Demolition Munition" (SADM). the amount of materials determining a "low" or '4high'' The SADM weighs only 58.5 pounds and has an explo- yield. sive yield (W54) equivalent to as little as 10 tons of TNT, In contrast, the newest of the nuclear warheads is the The largest yield is found in the 165 ton TITAN I1 mis- W80,5 a thermonuclear warhead built for the long-range sile, which carries a four ton nuclear warhead (W53) Air-Launched Cruise Missile (ALCM) and first deployed equal in explosive capability to 9 million tons of TNT, in late 1981. The W80 warhead has a yield equivalent to The nuclear weapons stockpile officially includes 200 kilotons of TNT (more than 20 times greater than the only those nuclear missile reentry vehicles, bombs, artil- W33), weighs about the same as the W33, utilizes the lery projectiles, and atomic demolition munitions that same material (oralloy), and, through improvements in are in "active service."l Active service means those electronics such as fuzing and miniaturization, repre- which are in the custody of the Department of Defense sents close to the limits of technology in building a high and considered "war reserve weapons." Excluded are yield, safe, small warhead. -
Corso Sectional Series
Corso Sectional Series DESIGN YOUR OWN SERIES Contemporary style with modular flexibility, this Corso sectional provides both extreme comfort and the opportunity to change your configuration on demand. Shown in the 42-inch depth but add further dimension with the optional 38-inch opportunity. SHOWN: (5) U2A1-SBC Corso Armless Chairs (1) U2E1-SBC Cosro Sectional Chair Seat height: 16 Finish: Modern Elm BUILD YOUR CORSO SECTIONAL IN 6 EASY STEPS STEP 1: Select your Upholstery STEP 4: Select your Seat Style STEP 2: Select your Depth S - Single Bench Cushion U2 Depth: 42" M - Multi, Three Seat Cushion U8 Depth: 38" STEP 5: Select your Back Style STEP 3: Select your Frame B - Box (loose) O1 - Ottoman K - Knife (loose) SL - Left Arm Sofa W=93" STEP 6: Select your Base Style SR - Right Arm Sofa W=93 W - Wood Foot DL - Left Arm Davenport Corner Sofa W=107" C - Concealed foot DR - Right Arm Davenport Corner Sofa W=107" LL - Left Arm Loveseat W=65" LR - Right Arm Loveseat W=65" NOTE: Additional 13" x 23" Kidney Pillows are E1 - Sectional Chair W=42" eliminated on the #U8 (38" depth) frame styles. A1 - Armless Chair W=28" SHOWN: U8SL-MBW Corso Left Arm Sofa U801-SXW Corso Ottoman U8SR-MBW Corso Right Arm Sofa Arm height: 25 / Seat height: 16 Finish: Modern Elm Corso Sectional Elements 1/4" = 1' Scale U2 U8 Depth Depth = 42" = 38 " U2A1 Corso Armless Chair U2E1 Corso Corner U2SL Corso Left Arm Sofa Overall: W28 D42 H35 Inside: W28 D24 H21 Overall: W42 D42 H35 W93 D42 H35 Inside: W24 D24 H21 Inside: W84 D24 H21 U8A1 Corso Armless Chair Overall: W28