Section 4 Data Arithmetic Logic Unit
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
AMD Athlon™ Processor X86 Code Optimization Guide
AMD AthlonTM Processor x86 Code Optimization Guide © 2000 Advanced Micro Devices, Inc. All rights reserved. The contents of this document are provided in connection with Advanced Micro Devices, Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this publication. Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right. AMD’s products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other applica- tion in which the failure of AMD’s product could create a situation where per- sonal injury, death, or severe property or environmental damage may occur. AMD reserves the right to discontinue or make changes to its products at any time without notice. Trademarks AMD, the AMD logo, AMD Athlon, K6, 3DNow!, and combinations thereof, AMD-751, K86, and Super7 are trademarks, and AMD-K6 is a registered trademark of Advanced Micro Devices, Inc. Microsoft, Windows, and Windows NT are registered trademarks of Microsoft Corporation. -
Benchmark Evaluations of Modern Multi Processor Vlsi Ds Pm Ps
1220 Session 1220 Benchmark Evaluations of Modern Multi-Processor VLSI DSPµPs Aaron L. Robinson and Fred O. Simons, Jr. High-Performance Computing and Simulation (HCS) Research Laboratory Electrical Engineering Department Florida A&M University and Florida State University Tallahassee, FL 32316-2175 Abstract - The authors continue their tradition of presenting technical reviews and performance comparisons of the newest multi-processor VLSI DSPµPs with the intention of providing concise focused analyses designed to help established or aspiring DSP analysts evaluate the applicability of new DSP technology to their specific applications. As in the past, the Analog Devices SHARCTM and Texas Instruments TMS320C80 families of DSPµPs will be the focus of our presentation because these manufacturers continue to push the envelop of new DSPµPs (Digital Signal Processing microProcessors) development. However, in addition to the standard performance analyses and benchmark evaluations, the authors will present a new image-processing bench marking technique designed specifically for evaluating new DSPµP image processing capabilities. 1. Introduction The combination of constantly evolving DSP algorithm development and continually advancing DSPuP hardware have formed the basis for an exponential growth in DSP applications. The increased market demand for these applications and their required hardware has resulted in the production of DSPuPs with very powerful components capable of performing a wide range of complicated operations. Due to the complicated architectures of these new processors, it would be time consuming for even the experienced DSP analysts to review and evaluate these new DSPuPs. Furthermore, the inexperienced DSP analysts would find it even more time consuming, and possibly very difficult to appreciate the significance and opportunities for these new components. -
(12) Patent Application Publication (10) Pub. No.: US 2011/0231717 A1 HUR Et Al
US 20110231717A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0231717 A1 HUR et al. (43) Pub. Date: Sep. 22, 2011 (54) SEMICONDUCTOR MEMORY DEVICE Publication Classification (76) Inventors: Hwang HUR, Kyoungki-do (KR): ( 51) Int. Cl. Chang-Ho Do, Kyoungki-do (KR): C. % CR Jae-Bum Ko, Kyoungki-do (KR); ( .01) Jin-Il Chung, Kyoungki-do (KR) (21) Appl. N 13A149,683 (52) U.S. Cl. ................................. 714/718; 714/E11.145 ppl. No.: 9 (22)22) FileFiled: Mavay 31,51, 2011 (57) ABSTRACT Related U.S. Application Data Semiconductor memory device includes a cell array includ (62) Division of application No. 12/154,870, filed on May ing a plurality of unit cells; and a test circuit configured to 28, 2008, now Pat. No. 7,979,758. perform a built-in self-stress (BISS) test for detecting a defect by performing a plurality of internal operations including a (30) Foreign Application Priority Data write operation through an access to the unit cells using a plurality of patterns during a test procedure carried out at a Feb. 29, 2008 (KR) ............................. 2008-OO18761 wafer-level. O 2 FAD MoDE PE, FRS PWD PADX8 GENERATOR EAELER PEC 3. PD) PWDC CRECKCCES CKCKB RASCASECSCE SISTE CLOCKBUFFER CEE e EST CLK BSI RASCASECSCKE WREFB ESTE s ACTF 32 P 8:W 4. 38t.A 3. se. A(2) FIRST REFRESH AKE13A2) REFIREFA CONTROR ROWANC RSBSAApp.12BS ARS BA255612.ESE E L - ww.i. 33 EE 3. PE PWDA RAE7(3) ECS issi: OLREFB SECOND LAK:2) BSDT DATABUFFERG08 EABLER REFIREFA SECON REFRESH BSE Y ADDRC CONTROLLER BST YEADDK)) PWS Testaposs WKB811-12 BAADDICBAAD BSYBRST (88.11:12) "Of BST CLK 380 3. -
Arithmetic and Logical Unit Design for Area Optimization for Microcontroller Amrut Anilrao Purohit 1,2 , Mohammed Riyaz Ahmed 2 and R
et International Journal on Emerging Technologies 11 (2): 668-673(2020) ISSN No. (Print): 0975-8364 ISSN No. (Online): 2249-3255 Arithmetic and Logical Unit Design for Area Optimization for Microcontroller Amrut Anilrao Purohit 1,2 , Mohammed Riyaz Ahmed 2 and R. Venkata Siva Reddy 2 1Research Scholar, VTU Belagavi (Karnataka), India. 2School of Electronics and Communication Engineering, REVA University Bengaluru, (Karnataka), India. (Corresponding author: Amrut Anilrao Purohit) (Received 04 January 2020, Revised 02 March 2020, Accepted 03 March 2020) (Published by Research Trend, Website: www.researchtrend.net) ABSTRACT: Arithmetic and Logic Unit (ALU) can be understood with basic knowledge of digital electronics and any engineer will go through the details only once. The advantage of knowing ALU in detail is two- folded: firstly, programming of the processing device can be efficient and secondly, can design a new ALU architecture as per the various constraints of the use cases. The miniaturization of digital circuits can be achieved by either reducing the size of transistor (Moore’s law) or by optimizing the gate count of the circuit. The first has been explored extensively while the latter has been ignored which deals with the application of Boolean rules and requires sound knowledge of logic design. The ultimate outcome is to have an area optimized architecture/approach that optimizes the circuit at gate level. The design of ALU is for various processing devices varies with the device/system requirements. The area optimization places a significant role in the chip design. Here in this work, we have attempted to design an ALU which is area efficient while being loaded with additional functionality necessary for microcontrollers. -
Unit 8 : Microprocessor Architecture
Unit 8 : Microprocessor Architecture Lesson 1 : Microcomputer Structure 1.1. Learning Objectives On completion of this lesson you will be able to : ♦ draw the block diagram of a simple computer ♦ understand the function of different units of a microcomputer ♦ learn the basic operation of microcomputer bus system. 1.2. Digital Computer A digital computer is a multipurpose, programmable machine that reads A digital computer is a binary instructions from its memory, accepts binary data as input and multipurpose, programmable processes data according to those instructions, and provides results as machine. output. 1.3. Basic Computer System Organization Every computer contains five essential parts or units. They are Basic computer system organization. i. the arithmetic logic unit (ALU) ii. the control unit iii. the memory unit iv. the input unit v. the output unit. 1.3.1. The Arithmetic and Logic Unit (ALU) The arithmetic and logic unit (ALU) is that part of the computer that The arithmetic and logic actually performs arithmetic and logical operations on data. All other unit (ALU) is that part of elements of the computer system - control unit, register, memory, I/O - the computer that actually are there mainly to bring data into the ALU to process and then to take performs arithmetic and the results back out. logical operations on data. An arithmetic and logic unit and, indeed, all electronic components in the computer are based on the use of simple digital logic devices that can store binary digits and perform simple Boolean logic operations. Data are presented to the ALU in registers. These registers are temporary storage locations within the CPU that are connected by signal paths of the ALU. -
Computer Architecture Out-Of-Order Execution
Computer Architecture Out-of-order Execution By Yoav Etsion With acknowledgement to Dan Tsafrir, Avi Mendelson, Lihu Rappoport, and Adi Yoaz 1 Computer Architecture 2013– Out-of-Order Execution The need for speed: Superscalar • Remember our goal: minimize CPU Time CPU Time = duration of clock cycle × CPI × IC • So far we have learned that in order to Minimize clock cycle ⇒ add more pipe stages Minimize CPI ⇒ utilize pipeline Minimize IC ⇒ change/improve the architecture • Why not make the pipeline deeper and deeper? Beyond some point, adding more pipe stages doesn’t help, because Control/data hazards increase, and become costlier • (Recall that in a pipelined CPU, CPI=1 only w/o hazards) • So what can we do next? Reduce the CPI by utilizing ILP (instruction level parallelism) We will need to duplicate HW for this purpose… 2 Computer Architecture 2013– Out-of-Order Execution A simple superscalar CPU • Duplicates the pipeline to accommodate ILP (IPC > 1) ILP=instruction-level parallelism • Note that duplicating HW in just one pipe stage doesn’t help e.g., when having 2 ALUs, the bottleneck moves to other stages IF ID EXE MEM WB • Conclusion: Getting IPC > 1 requires to fetch/decode/exe/retire >1 instruction per clock: IF ID EXE MEM WB 3 Computer Architecture 2013– Out-of-Order Execution Example: Pentium Processor • Pentium fetches & decodes 2 instructions per cycle • Before register file read, decide on pairing Can the two instructions be executed in parallel? (yes/no) u-pipe IF ID v-pipe • Pairing decision is based… On data -
Thread Scheduling in Multi-Core Operating Systems Redha Gouicem
Thread Scheduling in Multi-core Operating Systems Redha Gouicem To cite this version: Redha Gouicem. Thread Scheduling in Multi-core Operating Systems. Computer Science [cs]. Sor- bonne Université, 2020. English. tel-02977242 HAL Id: tel-02977242 https://hal.archives-ouvertes.fr/tel-02977242 Submitted on 24 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ph.D thesis in Computer Science Thread Scheduling in Multi-core Operating Systems How to Understand, Improve and Fix your Scheduler Redha GOUICEM Sorbonne Université Laboratoire d’Informatique de Paris 6 Inria Whisper Team PH.D.DEFENSE: 23 October 2020, Paris, France JURYMEMBERS: Mr. Pascal Felber, Full Professor, Université de Neuchâtel Reviewer Mr. Vivien Quéma, Full Professor, Grenoble INP (ENSIMAG) Reviewer Mr. Rachid Guerraoui, Full Professor, École Polytechnique Fédérale de Lausanne Examiner Ms. Karine Heydemann, Associate Professor, Sorbonne Université Examiner Mr. Etienne Rivière, Full Professor, University of Louvain Examiner Mr. Gilles Muller, Senior Research Scientist, Inria Advisor Mr. Julien Sopena, Associate Professor, Sorbonne Université Advisor ABSTRACT In this thesis, we address the problem of schedulers for multi-core architectures from several perspectives: design (simplicity and correct- ness), performance improvement and the development of application- specific schedulers. -
Reverse Engineering X86 Processor Microcode
Reverse Engineering x86 Processor Microcode Philipp Koppe, Benjamin Kollenda, Marc Fyrbiak, Christian Kison, Robert Gawlik, Christof Paar, and Thorsten Holz, Ruhr-University Bochum https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/koppe This paper is included in the Proceedings of the 26th USENIX Security Symposium August 16–18, 2017 • Vancouver, BC, Canada ISBN 978-1-931971-40-9 Open access to the Proceedings of the 26th USENIX Security Symposium is sponsored by USENIX Reverse Engineering x86 Processor Microcode Philipp Koppe, Benjamin Kollenda, Marc Fyrbiak, Christian Kison, Robert Gawlik, Christof Paar, and Thorsten Holz Ruhr-Universitat¨ Bochum Abstract hardware modifications [48]. Dedicated hardware units to counter bugs are imperfect [36, 49] and involve non- Microcode is an abstraction layer on top of the phys- negligible hardware costs [8]. The infamous Pentium fdiv ical components of a CPU and present in most general- bug [62] illustrated a clear economic need for field up- purpose CPUs today. In addition to facilitate complex and dates after deployment in order to turn off defective parts vast instruction sets, it also provides an update mechanism and patch erroneous behavior. Note that the implementa- that allows CPUs to be patched in-place without requiring tion of a modern processor involves millions of lines of any special hardware. While it is well-known that CPUs HDL code [55] and verification of functional correctness are regularly updated with this mechanism, very little is for such processors is still an unsolved problem [4, 29]. known about its inner workings given that microcode and the update mechanism are proprietary and have not been Since the 1970s, x86 processor manufacturers have throughly analyzed yet. -
Reconfigurable Accelerators in the World of General-Purpose Computing
Reconfigurable Accelerators in the World of General-Purpose Computing Dissertation A thesis submitted to the Faculty of Electrical Engineering, Computer Science and Mathematics of Paderborn University in partial fulfillment of the requirements for the degree of Dr. rer. nat. by Tobias Kenter Paderborn, Germany August 26, 2016 Acknowledgments First and foremost, I would like to thank Prof. Dr. Christian Plessl for the advice and support during my research. As particularly helpful, I perceived his ability to communicate suggestions depending on the situation, either through open questions that give room to explore and learn, or through concrete recommendations that help to achieve results more directly. Special thanks go also to Prof. Dr. Marco Platzner for his advice and support. I profited especially from his experience and ability to systematically identify the essence of challenges and solutions. Furthermore, I would like to thank: • Prof. Dr. João M. P. Cardoso, for serving as external reviewer for my dissertation. • Prof. Dr. Friedhelm Meyer auf der Heide and Dr. Matthias Fischer for serving on my oral examination committee. • All colleagues with whom I had the pleasure to work at the PC2 and the Computer Engineering Group, researchers, technical and administrative staff. In a variation to one of our coffee kitchen puns, I’d like to state that research without colleagues is possible, but pointless. However, I’m not sure about the first part. • My long-time office mates Lars Schäfers and Alexander Boschmann for particularly extensive discussions on our research and far beyond. • Gavin Vaz, Heinrich Riebler and Achim Lösch for intensive and productive collabo- ration on joint research interests. -
Dsp56156 Overview
Freescale Semiconductor, Inc... MOTOROLA 1 - DSP56156 OVERVIEW Freescale Semiconductor,Inc. F o r M o r G e o I SECTION 1 n t f o o : r w m w a t w i o . f n r e O e n s c T a h l i e s . c P o r o m d u c t , Freescale Semiconductor, Inc. SECTION CONTENTS 1.1 INTRODUCTION . 1-3 1.2 DSP56100 CORE BLOCK DIAGRAM DESCRIPTION . 1-5 1.3 MEMORY ORGANIZATION. 1-12 1.4 EXTERNAL BUS, I/O, AND ON-CHIP PERIPHERALS. 1-12 1.5 OnCE . 1-18 1.6 PROGRAMMING MODEL . 1-18 1.7 INSTRUCTION SET SUMMARY . 1-26 . c n I , r o t c u d n o c i m e S e l a c s e e r F 1 - 2 DSP56156 OVERVIEW MOTOROLA For More Information On This Product, Go to: www.freescale.com Freescale Semiconductor, Inc. INTRODUCTION 1.1 INTRODUCTION This manual is intended to be used with the DSP56100 Family Manual (see Figure 1-1). The DSP56100 Family Manual provides a description of the components of the DSP56100 CORE56100 CORE processor (see Figure 1-2) which is common to all DSP56100 family processors (except for the DSP56116) and includes a detailed descrip- tion of the basic DSP56100 CORE instruction set. The DSP56156 User’s Manual and DSP56166 User’s Manual (see Figure 1-1) provide a brief overview of the core processor and detailed descriptions of the memory and peripherals that are chip specific. -
Study, Design and Implementation of an Application Specific Instruction Set Processor for a Specific DSP Task
Study, Design and Implementation of an Application Specific Instruction Set Processor for a Specific DSP Task Master thesis in Electronics Systems at Linköping Institute of Technology by VIVEK PACKIARAJ LiTH-ISY-EX--09/4089--SE Linköping 2008 Study, Design and Implementation of an Application Specific Instruction Set Processor for a Specific DSP Task Master thesis in Electronics Systems at Linköping Institute of Technology by VIVEK PACKIARAJ LiTH-ISY-EX--09/4089--SE Linköping 2008 Supervisor: Kent Palmkvist ISY, Linköping Universitet. Examinator: Kent Palmkvist ISY, Linköping Universitet. Linköping, 4th November, 2008 Presentation Date Department and Division 04 – November - 2008 Department of Electrical Engineering Publishing Date (Electronic version) Electronics Systems Language Type of Publication ISBN (Licentiate thesis) X English Licentiate thesis ISRN LiTH-ISY-EX—09/4089—SE Other (specify below) Degree thesis Thesis C-level X Thesis D-level Title of series (Licentiate thesis) Report Number of Pages Other (specify below) 78 Series number/ISSN (Licentiate thesis) URL, Electronic Version http://www.ep.liu.se Publication Title Study, Design and Implementation of an Application Specific Instruction Set processor for Specific DSP Task Author Vivek Packiaraj Abstract There is a lot of literature already available describing well-structured approach for embedded design and implementation of Application Specific Integrated Processor (ASIP) micro processor core. This concept features hardware structured approach for implementation of processor core from minimal instruction set, encoding standards, hardware mapping, and micro architecture design, coding conventions, RTL,verification and burning into a FPGA. The goal is to design an ASIP processor core (Micro architecture design and RTL) which can perform DSP task, e.g., FIR. -
Predictable, Low-Power Arithmetic Logic Unit for the 8051 Microcontroller Using Asynchronous Logic D
1 Predictable, Low-power Arithmetic Logic Unit for the 8051 Microcontroller using Asynchronous Logic D. Mc Carthy, N. Zeinolabedini, J. Chen, E. Popovici Abstract| Modern embedded systems require all their components, including their microcontroller, to be opti- mised with respect to the power budget. Two properties are desirable. The first is low power usage and the sec- ond is predicable power usage, for improved estimation of firmware performance. In this paper we present all the arithmetic circuits for an ALU of an 8051 microcontroller implemented in Asynchronous Charge Sharing Logic (ACSL). This im- plementation seeks to give these two desirable proper- ties for a processor for embedded systems. The first, low power usage, obtained through charge sharing. The Fig. 1. Block diagram of an 8051 microcontroller. second, predictable power usage, is sought by ensuring that the power required to complete an operation is in- dependent of its inputs. The experimental techniques used in designing ACSL were also improved in the execution of this work, allow- ing the ACSL circuits to be entered using Verilog for fast The 8051 is an 8-bit microcontroller designed by In- initial testing and then translated to SPICE for detailed tel in 1980. A block diagram is shown in Figure 1. simulation. Through implementation and simulation, it was deter- This microcontroller was chosen for this work because mined that the use of ACSL can offer power predictabil- it is a very common microcontroller. 8051 compatible ity. parts are available from a wide variety of sources. More background of the 8051 will be discussed in section II.