High Density Brines for Use in Wellbore Fluids

Total Page:16

File Type:pdf, Size:1020Kb

High Density Brines for Use in Wellbore Fluids (19) TZZ ¥ _T (11) EP 2 325 277 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C09K 8/06 (2006.01) C09K 8/36 (2006.01) 13.05.2015 Bulletin 2015/20 (21) Application number: 11157578.3 (22) Date of filing: 14.12.2005 (54) High density brines for use in wellbore fluids SALZLÖSUNGEN HOHER DICHTE ZUR VERWENDUNG IN BOHRLOCHFLÜSSIGKEITEN SAUMURES HAUTE DENSITE EMPLOYEES DANS DES FLUIDES DE FORAGES (84) Designated Contracting States: (72) Inventors: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR • Zhang, Hui HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI Sugar Land, TX 77478 (US) SK TR • Horton, Robert, L. Sugar Land, TX 77479 (US) (30) Priority: 14.12.2004 US 635858 P • Prasek, Bethicia, B. The Woodlands, TX 77380 (US) (43) Date of publication of application: • Dimataris, Mary, L.K. 25.05.2011 Bulletin 2011/21 Houston, TX 77077 (US) (62) Document number(s) of the earlier application(s) in (74) Representative: Gill, Stephen Charles et al accordance with Art. 76 EPC: Mewburn Ellis LLP 05854181.4 / 1 833 941 33 Gutter Lane London EC2V 8AS (GB) (73) Proprietor: M-I L.L.C. Houston, (56) References cited: TX 77072 (US) WO-A1-93/19849 US-A- 4 381 241 US-A1- 2003 114 318 US-B1- 6 620 341 Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 2 325 277 B1 Printed by Jouve, 75001 PARIS (FR) EP 2 325 277 B1 Description [0001] The use of sodium, potassium, and cesium tungstates in brine solutions are disclosed in U. S. utility patent application, No. 20030114318, to make dense solutions; but at the higher concentrations the brines are caustic due to 5 the manufacturing techniques. These brines are not stable when exposed to CO2 or other acidic materials, forming water insoluble compounds such as tungstic acid, W03, or polytungstic acids. [0002] As a consequence, we created the idea of making a Lewis salt of tungstate and some Lewis base. The Lewis definition of acids and bases is the broadest definition, so any acid or base by less general definition is also a Lewis acid or base. Some conventional bases like sodium, potassium, and cesium hydroxide are also Lewis bases. The sodium, 10 potassium, and cesium salts of phosphoric and silicic acids and triethanolamine, and the like are, also Lewis bases. [0003] Our idea is to react the Lewis acids, sodium, potassium, or cesium tungstate with a Lewis base to obtain a Lewis salt that will make a dense brine with a pH that is 7 or higher so that additives will be more stable in the brines. The Lewis salt of the Lewis acid sodium tungstate and the Lewis base disodium hydrogen phosphate is already known and is termed a phosphotungstate compound. Similarly, the Lewis salt of the Lewis acid sodium tungstate and the Lewis 15 base sodium hydrogen silicate is already known and is termed a silicotungstate compound. The phosphotungstates and silicotungstates make dense brines, and we think that other such Lewis salts will also make dense brines. The phos- photungstates and silicotungstates are sometimes termed, respectively, tungstophosphates and tungstosilicates. The addition of a complexing agent to these systems is optional. [0004] Fluids, such as completion or drilling fluids, containing at least one alkali metal salt of a transition metal oxy- 20 anion or polyoxy-anion, such as, for example, an alkali metal polytungstate are described. Methods of preparing a dense or heavy liquid comprising an aqueous solution of transition metal salts, such as, for example, polytungstate are also n+ x- described, wherein the aqueous solution contains anionic moieties having the formula [A BmOk] , where (A) is selected from group IV elements, group V elements, transition metal elements and rare earth elements; (B) is one or more transition metal elements having an atomic weight between 50 and 201 inclusive, O is oxygen, m is an integer between 25 6 and 18 inclusive, k is an integer between 24 and 62 inclusive, and x is a small integer, typically between 1 and 10 depending on the selections of A, B, m, and k, said dense liquid also comprising in said aqueous solution cationic moieties capable of forming salts of said anionic moieties. The cation values may be lithium, sodium, potassium, cesium, or a mixture thereof, with a small amount of hydrogen cations provided by free acid anionic moieties. The most preferred 4- anionic moiety is [SiW12O40] . The atom designated (B) alternatively may be molybdenum, vanadium, niobium or 30 tantalum. A drilling fluid or mud is also described wherein the drilling fluid contains at least one alkali metal polytungstate . The drilling fluid may be brine-based (also referred to as water-based) or may preferably further contain at least one emulsifier or surfactant and at least one hydrocarbon-based fluid. The various fluids of the present invention can contain other conventional ingredients such as, for example, viscosifiers, eomplexing agents, fluid loss control additives, pH buffers, corrosion inhibitors, and oxygen scavengers. The present invention permits the completion fluids to be essentially 35 free of suspended solids due to the use of the soluble alkali metal polytungstate or heteropolytungkate, and permits the drilling fluids to be quite low in suspended solids because they derive most of their density from the dissolved alkali metal polytungstate or heteropolytungstate. [0005] Unlike the teachings of the prior art, the present invention teaches the use of these aqueous solutions of n+ x- transition metal salts, wherein the aqueous solution contains anionic moieties having the formula [A BmOk] , where 40 the cations may be lithium, sodium, potassium, cesium, or a mixture thereof, or with a small amount of hydrogen cations provided by free acid anionic moieties, and especially where said salts are a major component of the solution and not merely an additive thereto. The present invention teaches, in particular, the sodium, potassium, and cesium salts of the heteropolytungstates and the blends of these salts with the heteropolytungstic acids. It has been observed that these salts are not readily water soluble, but surprisingly, we have developed methods to make brine containing potassium, 45 sodium, and cesium salts of the heteropoly anions. The aqueous solutions in accordance with the present invention may further include optional halide salts as additives, such as, for example, LiCl, LiBr, LiI, NaCl, NaBr, Nal, KCl, KBr, KI, RbCl, RbBr, RbI, CsCl, CsBr, CsI, MgCl2, MgBr2, CaCl2, CaBr2, ScCl2, SrBr2, ZnCl2, ZnBr2, and mixtures thereof, and similar compounds which should be well known to those of skill in the art. In addition to developing methods to make said brines, we have further developed methods to adjust the true crystallization temperature (TCT) and water activity 50 of said brines, to make the brines stable in the pH range 3-10. The TCT is also referred to as the Thermodynamic Crystallization Temperature to distinguish it from any phase transition producing a metastable solid rather than the thermodynamic equilibrium phase. By stating that the brines are stable, it should be noted that we have tested the ambient temperature and high temperature stability to 177 °C (350°F) and have found the brines to be stable; and expect further high temperature stability, although higher temperatures have not yet been tested. We have found that these 55 brines appear to be less toxic than zinc brines such as 2045 kg/m3 (20.5 lbm/gal) ZnHr2 or 1916 kg/m3 (19.2 lbm/gal) ZnBr2/CaBr2 brines, and possess a relatively favorable environmental, health and safety profile. We find that we can offer these products in a variety of colors, therefore they may have use as an optical tracer or to make themselves useful for readily making displacement efficiency visible and apparent. 2 EP 2 325 277 B1 [0006] We have observed that these brines display high temperature stability to 177 °C (350°F) and perhaps beyond, corrosion inhibition, complete compatibility with monovalent brines and magnesium chloride brines and some compat- ibility with calcium and zinc brines, the ability to buoyantly suspend solids, for example to prevent barite packing off, the ability to dissolve scale, the ability to deliver fluids of density up to 2494 kg/m3 (25m lb/gal), giving the potential for 5 shipping the brines as extremely heavy brine concentrates and later diluting on location to the density needed. [0007] We have observed that these brines can provide 1896 kg/m3 (19-lb m/gal) brines having surprisingly high water activities as compared to zinc brines or cesium formate brines of comparable density, making the brines in accordance with the present invention more useful than conventional brines as a base brine for brine-based drilling fluids (also known as water-based drilling fluids) and more useful than conventional brines as an internal phase in invert emulsion drilling 10 fluids including oil-based drilling fluids and synthetic-based drilling fluids and ester-based drilling fluids. [0008] ’WARP Fluids Technology’, which is a commercialized system of M-I, L.L.C., is a system of water based and oil based drilling and completion fluids that are weighted up with a high density weighting agent. The WARP particles impart a high density to the fluid and may be barite or other weighting agents that have been subjected to a proprietary process.
Recommended publications
  • Standard X-Ray Diffraction Powder Patterns
    NBS MONOGRAPH 25 — SECTION 1 Standard X-ray Diffraction U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS Functions and Activities The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scien- tific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover. Publications The results of the Bureau's research are published either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions provides data for determining the best frequencies to use for radio communications throughout the world.
    [Show full text]
  • Inorganic Syntheses
    INORGANIC SYNTHESES Volume 27 .................... ................ Board of Directors JOHN P. FACKLER, JR. Texas A&M University BODlE E. DOUGLAS University of Pittsburgh SMITH L. HOLT, JR. Oklahoma State Uniuersity JAY H. WORRELL University of South Florida RUSSELL N. GRIMES University of Virginia ROBERT J. ANGELIC1 Iowa State University Future Volumes 28 ROBERT J. ANGELIC1 Iowa State University 29 RUSSELL N. GRIMES University of Virginia 30 LEONARD V. INTERRANTE Rensselaer Polytechnic Institute 31 ALLEN H. COWLEY University of Texas, Austin 32 MARCETTA Y. DARENSBOURG Texas A&M University International Associates MARTIN A. BENNETT Australian National University, Canberra FAUSTO CALDERAZZO University of Pisa E. 0. FISCHER Technical University. Munich JACK LEWIS Cambridge University LAMBERTO MALATESTA University of Milan RENE POILBLANC University of Toulouse HERBERT W. ROESKY University of Gottingen F. G. A. STONE University of Bristol GEOFFREY WILKINSON Imperial College of Science and Technology. London AKlO YAMAMOTO Tokyo Institute 01 Technology. Yokohama Editor-in-Chief ALVIN P. GINSBERG INORGANIC SYNTHESES Volume 27 A Wiley-Interscience Publication JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore A NOTE TO THE READER This book has been electronically reproduced from digital idormation stored at John Wiley h Sons, Inc. We are phased that the use of this new technology will enable us to keep works of enduring scholarly value in print as long as there is a reasonable demand for them. The content of this book is identical to previous printings. Published by John Wiley & Sons, Inc. Copyright $? 1990 Inorganic Syntheses, Inc. All rights reserved. Published simultaneously in Canada. Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.
    [Show full text]
  • Amélioration De La Maîtrise Des Ressources Françaises En Tungstène Improvement in Control of French Tungsten Resources BRGM
    ^ **' Amélioration de la maîtrise des ressources françaises en tungstène Improvement in control of french tungsten resources BRGM Rapport final M. SAVE M. PASTOR R 30346 Diffusion : MIN DAM 90 DG 1 ex page de garde, résumé, table mat., conclusions January 1990 LOG/D 1 ex non relié SGN/DIG 2 ex DS (M. Sustrac) 1 ex DAM/0P4 (M. Dumas) 1 ex DAM/MP (M. Snoep) 1 ex DAM/MIN : MM. Save 1 ex Morizot 1 ex Hau/Ollivier 1 ex chrono A.F.M.E. (M. Marcé) 6 ex CERMeP (M. Pastor) 1 ex IRCHA (Mme Presvot) 1 ex BUREAU DE RECHERCHES GÉOLOGIQUES ET MINIÈRES DIRECTION DES Activités minières Département Minéralurgie B.P. 6009 - 45060 ORLÉANS CEDEX 2 - France -Tél. : (33) 38.64.34.34 AMELIORATION DE LA MAITRISE DES RESSOURCES FRANÇAISES EN TUNGSTENE Responsable Scientifique : G. MORIZOT N* de contrat A.F.M.E. : 7.02.0035 Objet : Amélioration de la maîtrise de ressources françaises en tungstène Date de notification : 30/12/1987 Durée du contrat : 32 mois Montant du contrat : 1 600 000 F.F. H.T. Responsable A.F.M.E. : M. BEUTIN Service Industrie - Matières Premières RAPPORT CONFIDENTIEL BUREAU DE RECHERCHES GÉOLOGIQUES ET MINIÈRES DIRECTION DES ACTIVITÉS MINIERES Département Minêmlurqie B.P. G003 • 4E0H0 OKLEANS ŒDEX 2 - n.inc.* - îi'l.: (13) 23 ru IMJ.I R E S U M E Un programme général visant à améliorer la maîtrise des ressources françaises en tungstène a été entrepris par le B.R.G.M. et la Société EUROTUNGSTENE POUDRES (E.T.P.). Les études ont débuté le 1er octobre 1985 dans le cadre d'une première convention A.F.M.E.
    [Show full text]
  • Geokniga-Introduction-Mineral-Exploration.Pdf
    Introduction to Mineral Exploration Second Edition Edited by Charles J. Moon, Michael K.G. Whateley & Anthony M. Evans With contributions from William L. Barrett Timothy Bell Anthony M. Evans John Milsom Charles J. Moon Barry C. Scott Michael K.G. Whateley introduction to mineral exploration Introduction to Mineral Exploration Second Edition Edited by Charles J. Moon, Michael K.G. Whateley & Anthony M. Evans With contributions from William L. Barrett Timothy Bell Anthony M. Evans John Milsom Charles J. Moon Barry C. Scott Michael K.G. Whateley Copyright © 2006 by Charles J. Moon, Michael K.G. Whateley, and Anthony M. Evans BLACKWELL PUBLISHING 350 Main Street, Malden, MA 02148-5020, USA 9600 Garsington Road, Oxford OX4 2DQ, UK 550 Swanston Street, Carlton, Victoria 3053, Australia The rights of Charles J. Moon, Michael K.G. Whateley, and Anthony M. Evans to be identified as the Authors of this Work have been asserted in accordance with the UK Copyright, Designs, and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs, and Patents Act 1988, without the prior permission of the publisher. First edition published 1995 by Blackwell Publishing Ltd Second edition published 2006 1 2006 Library of Congress Cataloging-in-Publication Data Introduction to mineral exploration.–2nd ed. / edited by Charles J. Moon, Michael K.G. Whateley & Anthony M. Evans; with contributions from William L. Barrett . [et al.]. p. cm.
    [Show full text]
  • High Purity Inorganics
    High Purity Inorganics www.alfa.com INCLUDING: • Puratronic® High Purity Inorganics • Ultra Dry Anhydrous Materials • REacton® Rare Earth Products www.alfa.com Where Science Meets Service High Purity Inorganics from Alfa Aesar Known worldwide as a leading manufacturer of high purity inorganic compounds, Alfa Aesar produces thousands of distinct materials to exacting standards for research, development and production applications. Custom production and packaging services are part of our regular offering. Our brands are recognized for purity and quality and are backed up by technical and sales teams dedicated to providing the best service. This catalog contains only a selection of our wide range of high purity inorganic materials. Many more products from our full range of over 46,000 items are available in our main catalog or online at www.alfa.com. APPLICATION FOR INORGANICS High Purity Products for Crystal Growth Typically, materials are manufactured to 99.995+% purity levels (metals basis). All materials are manufactured to have suitably low chloride, nitrate, sulfate and water content. Products include: • Lutetium(III) oxide • Niobium(V) oxide • Potassium carbonate • Sodium fluoride • Thulium(III) oxide • Tungsten(VI) oxide About Us GLOBAL INVENTORY The majority of our high purity inorganic compounds and related products are available in research and development quantities from stock. We also supply most products from stock in semi-bulk or bulk quantities. Many are in regular production and are available in bulk for next day shipment. Our experience in manufacturing, sourcing and handling a wide range of products enables us to respond quickly and efficiently to your needs. CUSTOM SYNTHESIS We offer flexible custom manufacturing services with the assurance of quality and confidentiality.
    [Show full text]
  • Cha Kuin Taiteit Van Et
    CHA KUIN TAITEIT US009776210B2VAN ET (12 ) United States Patent ( 10 ) Patent No. : US 9 ,776 ,210 B2 Sarver et al. (45 ) Date of Patent: Oct . 3 , 2017 6 , 171, 383 B11 / 2001 Sakoske et al . ( 54 ) LASER ABSORBING COMPOUNDS 6 , 221 , 147 B1 4 /2001 Sakoske et al . 6 , 238, 847 B1 5 /2001 Axtell , III et al . (71 ) Applicant : Ferro Corporation , Mayfield Heights , 6 ,313 ,436 B1 11/ 2001 Harrison OH (US ) 6 , 416, 868 B1 7 /2002 Sullivan et al . 6 ,485 , 557 B1 11/ 2002 Swiler (72 ) Inventors : Joseph E . Sarver, Washington , PA 6 , 503 , 310 B1 1 / 2003 Sullivan (US ) ; Stephen Rozwood , Castle 6 , 503 , 316 B1 1 / 2003 Sakoske et al. 6 , 541 , 112 B1 4 / 2003 Swiler et al. Sharon , PA (US ) ; George E . Sakoske , 6 , 582 , 814 B2 6 / 2003 Swiler et al. Independence, OH (US ) ; Terry J . 6 , 680 , 121 B2 1 / 2004 Sakoske et al. Detrie , Washington , PA (US ) 6 , 852 , 948 B1 2 / 2005 Harrison 6 , 855 , 910 B2 2 / 2005 Harrison ( 73 ) Assignee : Ferro Corporation , Mayfield Heights , 6 , 924 , 077 B2 8 / 2005 Delp et al . 7 , 485 , 403 B2 2 / 2009 Khan OH (US ) 8 , 278 , 243 B2 10 /2012 Khan et al . 8 , 642 , 504 B2 2 / 2014 Campbell et al. ( * ) Notice : Subject to any disclaimer , the term of this 8 , 765 , 855 B2 7 / 2014 Thaker patent is extended or adjusted under 35 9 , 034 , 089 B2 5 /2015 Jarvis et al. U . S . C . 154 (b ) by 0 days . 9 , 321 , 130 B2 4 / 2016 Sarver et al.
    [Show full text]
  • The Lithium Tungsten Bronzes
    Scholars' Mine Masters Theses Student Theses and Dissertations 1949 The lithium tungsten bronzes Shun Sheng Hsu Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Metallurgy Commons Department: Recommended Citation Hsu, Shun Sheng, "The lithium tungsten bronzes" (1949). Masters Theses. 4869. https://scholarsmine.mst.edu/masters_theses/4869 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. MSM HISTORICAL COLLECTJO/f THE LITHIUM TUNGSTEN BRONZES By SHUN SHENG HSU --------- A THESIS submitted to the faculty of the SCHOOL OF MINES AND l'J1ET.ALLURGY OF THE UNIVERSITY OF MISSOURI in partial fulfillment of the work required for the Degree of MASTER OF SCIENCE IN METALLURGICAL ENGINEERING Rolla, Missouri 1949 MSM HISTORICAl COLLECTION Approved by______ ~~~·--~ __. __ (31,__ ~---~-~-~-~_,_·~--------------- Rese ch professor of Metallurgy ACKI~OWLEDGEMENT The author wishes to express his sincere apprec- iation to Dr. M. E. Straumanis, Research professor of lv'Iets.llurgy, Missouri School of Mines and Metallurgy, Rolls., Missouri for his many valuable suggestions which were g·iven during the course of this investigation; to Dr. A. w. Scblechten, Chairman of the Department of Metallurgy, Missouri School of Mines and Metall~rgy for the correction o:f the manuscript; and to Dr • . D. s. Eppelshe·imer, professor o:f Metallurgical Engineering, Missouri School o:f Mines and Metallurgy for the permis­ sion to use his x-ray machine :for diffraction work.
    [Show full text]
  • HYSYS OLI Interface
    HYSYS® 2004.2 OLI Interface Reference Guide Copyright October 2005 Copyright © 1981-2005 by Aspen Technology, Inc. All rights reserved. Aspen Accounting.21™, Aspen ACM Model Export, Aspen ACOL™, Aspen ACX™ Upgrade to ACOL™, Aspen Adsim®, Aspen Advisor™, Aspen Aerotran®, Aspen Alarm & Event™, Aspen APLE™, Aspen Apollo™, Aspen AtOMS™, Aspen Batch and Event Extractor, Aspen Batch Plus®, Aspen Batch.21™, Aspen Batch.21™ CBT, Aspen BatchCAD™, Aspen BatchSep™, Aspen Blend Model Library™, Aspen Blend™, Aspen BP Crude Oil Database, Aspen Calc CBT, Aspen Calc™, Aspen Capable-to-Promise®, Aspen CatRef®, Aspen Chromatography®, Aspen Cim-IO Core™, Aspen Cim-IO™ for @AGlance, Aspen Cim-IO™ for ABB 1180/ 1190 via DIU, Aspen Cim-IO™ for Bailey SemAPI, Aspen Cim-IO™ for DDE, Aspen Cim-IO™ for Eurotherm Gauge via DCP, Aspen Cim-IO™ for Fisher-Rosemount Chip, Aspen Cim-IO™ for Fisher-Rosemount RNI, Aspen Cim-IO™ for Foxboro FOXAPI, Aspen Cim-IO™ for G2, Aspen Cim-IO™ for GE FANUC via HCT, Aspen Cim-IO™ for Hitachi Ex Series, Aspen Cim-IO™ for Honeywell TDC 3000 via HTL/access, Aspen Cim-IO™ for Intellution Fix, Aspen Cim-IO™ for Measurex MCN, Aspen Cim-IO™ for Measurex ODX, Aspen Cim-IO™ for Moore Apacs via Nim (RNI), Aspen Cim-IO™ for OPC, Aspen Cim-IO™ for PI, Aspen Cim- IO™ for RSLinx, Aspen Cim-IO™ for SetCim/InfoPlus-X/InfoPlus.21, Aspen Cim-IO™ for Toshiba Tosdic, Aspen Cim-IO™ for ULMA 3D, Aspen Cim-IO™ for Westinghouse, Aspen Cim-IO™ for WonderWare InTouch, Aspen Cim-IO™ for Yokogawa ACG10S, Aspen Cim-IO™ for Yokogawa EW3, Aspen Collaborative Forecasting™,
    [Show full text]
  • Database Full Listing
    16-Nov-06 OLI Data Base Listings for ESP version 7.0.46, Analyzers 2.0.46 and all current alliance products Data Base OLI Tag (ESP) Name IUPAC Name Formula CAS Registry Number Molecular Weight ALLOY AL2U 2-Aluminum uranium Al2U 291.98999 ALLOY AL3TH 3-Aluminum thorium Al3Th 312.982727 ALLOY AL3TI 3-Aluminum titanium Al3Ti 128.824615 ALLOY AL3U 3-Aluminum uranium Al3U 318.971527 ALLOY AL4U 4-Aluminum uranium Al4U 345.953064 ALLOY ALSB Aluminum antimony AlSb 148.731537 ALLOY ALTI Aluminum titanium AlTi 74.861542 ALLOY ALTI3 Aluminum 3-titanium AlTi3 170.621536 ALLOY AUCD Gold cadmium AuCd 309.376495 ALLOY AUCU Gold copper AuCu 260.512512 ALLOY AUCU3 Gold 3-copper AuCu3 387.604492 ALLOY AUSN Gold tin AuSn 315.676514 ALLOY AUSN2 Gold 2-tin AuSn2 434.386505 ALLOY AUSN4 Gold 4-tin AuSn4 671.806519 ALLOY BA2SN 2-Barium tin Ba2Sn 393.369995 ALLOY BI2U 2-Bismuth uranium Bi2U 655.987671 ALLOY BI4U3 4-Bismuth 3-uranium Bi4U3 1550.002319 ALLOY BIU Bismuth uranium BiU 447.007294 ALLOY CA2PB 2-Calcium lead Ca2Pb 287.355988 ALLOY CA2SI 2-Calcium silicon Ca2Si 108.241501 ALLOY CA2SN 2-Calcium tin Ca2Sn 198.865997 ALLOY CA3SB2 3-Calcium 2-antimony Ca3Sb2 363.734009 ALLOY CAMG2 Calcium 2-magnesium CaMg2 88.688004 ALLOY CAPB Calcium lead CaPb 247.278 ALLOY CASI Calcium silicon CaSi 68.163498 ALLOY CASI2 Calcium 2-silicon CaSi2 96.249001 ALLOY CASN Calcium tin CaSn 158.787994 ALLOY CAZN Calcium zinc CaZn 105.468002 ALLOY CAZN2 Calcium 2-zinc CaZn2 170.858002 ALLOY CD11U 11-Cadmium uranium Cd11U 1474.536865 ALLOY CD3AS2 3-Cadmium 2-arsenic As2Cd3 487.073212
    [Show full text]
  • Standard X-Ray Diffraction Powder Patterns
    E^l Admin. NBS MONOGRAPH 25—SECTION 5 Refecii^M not to be ^ferlrom the library. Standard X-ray Diffraction Powder Patterns ^\ / U.S. DEPARTMENT OF COMMERCE S NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS The National Bureau of Standards^ provides measurement and technical information services essential to the efficiency and effectiveness of the work of the Nation's scientists and engineers. The Bureau serves also as a focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To accomplish this mission, the Bureau is organized into three institutes covering broad program areas of research and services: THE INSTITUTE FOR BASIC STANDARDS . provides the central basis within the United States for a complete and consistent system of physical measurements, coordinates that system with the measurement systems of other nations, and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. This Institute comprises a series of divisions, each serving a classical subject matter area: —Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic Physics—Physical Chemistry—Radiation Physics— -Laboratory Astrophysics^—Radio Standards Laboratory,^ which includes Radio Standards Physics and Radio Standards Engineering—Office of Standard Refer- ence Data. THE INSTITUTE FOR MATERIALS RESEARCH . conducts materials research and provides associated materials services including mainly reference materials and data on the properties of ma- terials. Beyond its direct interest to the Nation's scientists and engineers, this Institute yields services which are essential to the advancement of technology in industry and commerce.
    [Show full text]
  • Standard X-Ray Diffraction Powder Patterns
    NBS MONOGRAPH 25 — SECTION 1 Standard X-ray Diffraction U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS Functions and Activities The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scien- tific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover. Publications The results of the Bureau's research are published either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions provides data for determining the best frequencies to use for radio communications throughout the world.
    [Show full text]
  • Chemical Analysis of Alkali Metal Tungsten Bronzes Bruce Alan Raby Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1963 Chemical analysis of alkali metal tungsten bronzes Bruce Alan Raby Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Analytical Chemistry Commons Recommended Citation Raby, Bruce Alan, "Chemical analysis of alkali metal tungsten bronzes " (1963). Retrospective Theses and Dissertations. 2552. https://lib.dr.iastate.edu/rtd/2552 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been 64—3888 microfilmed exactly as received RABY, Bruce Alan, 1930- CHEMICAL ANALYSIS OF ALKALI METAL TUNGSTEN BRONZES. Iowa State University of Science and Technology Ph.D., 1963 Chemistry, analytical University Microfilms, Inc., Ann Arbor, Michigan CHEMICAL ANALYSIS OF ALKALI METAL TUNGSTEN BRONZES by Bruce Alan Raby A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Analytical Chemistry Approved : Signature was redacted for privacy. Signature was redacted for privacy. Signature was redacted for privacy. Iowa State University Of Science and Technology Ames, Iowa 1963 ii TABLE OF CONTENTS Page DEDICATION v I. THE ALKALI METAL TUNGSTEN BRONZES 1 A, Introduction to the Tungsten Bronzes 1 B. Prior Analytical Chemistry of the Alkali Metal Tungsten Bronzes 3 1. Decomposition and dissolution methods 3 2.
    [Show full text]