Revealing Electronic Signature of Lattice Oxygen Redox in Lithium Ruthenates and Implications for High-Energy Li-ion Battery Material Designs Yang Yua,*, Pinar Karayaylalib, Stanisław H. Nowakc, Livia Giordanob,d, Magali Gauthierd, †, Wesley Honga, Ronghui Koue, Qinghao LiF, John Vinsong, Thomas Krollc, Dimosthenis Sokarasc, *, Cheng-Jun Sune, Nenian Charlesd, Filippo Magliah, Roland Jungh, Yang Shao- Horna,b,d,* a Department of Materials Science and Engineering, MIT, Cambridge, MA 02139, USA b Department of Mechanical Engineering, MIT, Cambridge, MA 02139, USA c SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA d Research Laboratory of Electronics, MIT, Cambridge, MA 02139, USA e Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA f Advanced Light Source, Lawrence Berkeley National Laboratory, CA 94720, USA gNational Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA h BMW Group, Petuelring 130, 80788 Munich, Germany †Current address: M.G.: LEEL, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette, France. Corresponding Authors * Yang Yu (
[email protected]) * Dimosthenis Sokaras (
[email protected]) * Yang Shao-Horn (
[email protected]) 1 ABstract Anion redox in lithium transition metal oxides such as Li2RuO3 and Li2MnO3, has catalyzed intensive research efforts to find transition metal oxides with anion redox that may boost the energy density of lithium-ion batteries. The physical origin of observed anion redox remains debated, and more direct experimental evidence is needed. In this work, we have shown electronic signatures 2- n- of oxygen-oxygen coupling, direct evidence central to lattice oxygen redox (O /(O2) ), in charged 4+ 5+ Li2-xRuO3 after Ru oxidation (Ru /Ru ) upon first-electron removal with lithium de-intercalation.