Extraction of Lithium with Functionalized Lithium Ion-Sieves
Total Page:16
File Type:pdf, Size:1020Kb
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/308339816 Extraction of lithium with functionalized lithium ion-sieves Article in Progress in Materials Science · September 2016 DOI: 10.1016/j.pmatsci.2016.09.004 CITATIONS READS 0 77 8 authors, including: Khaled Gasem Kaiying Wang University of Wyoming University of Wyoming 240 PUBLICATIONS 2,312 CITATIONS 1 PUBLICATION 0 CITATIONS SEE PROFILE SEE PROFILE Maohong Fan Univ. Wyoming and Georgia Tech 325 PUBLICATIONS 6,254 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Mercury Removal View project Chemical-Looping Based CH4 Reforming View project All content following this page was uploaded by Kaiying Wang on 24 October 2016. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. Progress in Materials Science 84 (2016) 276–313 Contents lists available at ScienceDirect Progress in Materials Science journal homepage: www.elsevier.com/locate/pmatsci Extraction of lithium with functionalized lithium ion-sieves Xin Xu a,b, Yongmei Chen a, Pingyu Wan a, Khaled Gasem b, Kaiying Wang a,b, Ting He c, ⇑ Hertanto Adidharma b, Maohong Fan b,d,e, a National Fundamental Research Laboratory of New Hazardous Chemicals, Beijing University of Chemical Technology, Beijing 100029, China b Department of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA c Idaho National Laboratory, Idaho Falls, ID 83415, USA d School of Energy Resources, University of Wyoming, Laramie, WY 82071, USA e School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta 30332, USA article info abstract Article history: Due to the technology advancement and the large-scale application of lithium-ion batteries Received 10 June 2016 in recent years, the market demand for lithium is growing rapidly and the availability of Received in revised form 30 August 2016 land lithium resources is decreasing significantly. As such, the focus of lithium extraction Accepted 18 September 2016 technologies has shifted to water lithium resources involving salt-lake brines and sea Available online 19 September 2016 water. Among various aqueous recovery technologies, the lithium ion-sieve (LIS) technol- ogy is considered the most promising one. This is because LISs are excellent adsorbents Keywords: with high lithium uptake capacity, superior lithium selectivity and good cycle perfor- Water lithium resources mance. These attributes have enabled LISs to separate lithium effectively from aqueous Lithium ion-sieve technology Lithium adsorbents solutions containing different ions. The present work reviews the latest development in Lithium adsorption/desorption mechanisms LIS technology, including the chemical structures of ion-sieves, the corresponding lithium LIS batteries adsorption/desorption mechanisms, the ion-sieves preparation methods, and the chal- LIS composite materials lenges associated with the lithium recovery from aqueous solutions by the LIS batteries. Besides, some common LIS composite materials forming technologies, including granula- tion, foaming, membrane and fiber formation, and magnetization, which are used to over- come the shortcomings in industrial column operations, are also explored. Ó 2016 Elsevier Ltd. All rights reserved. Contents 1. Introduction . ............................................................................... 277 2. LIS effect . ............................................................................... 278 3. LISs overview . ............................................................................... 279 3.1. LMO-type LISs ..................................................................................... 279 3.1.1. Li-Mn-O ternary phase diagram . ....................................................... 279 3.1.2. Spinel structures of LMO precursors . ....................................................... 280 3.1.3. Doping modifications . ....................................................... 282 3.2. LTO-type LISs. ..................................................................................... 283 3.2.1. Layered H2TiO3 ............................................................................. 283 3.2.2. Spinel titanium oxides . ....................................................... 284 ⇑ Corresponding author at: Department of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA. E-mail addresses: [email protected] (X. Xu), [email protected] (Y. Chen), [email protected] (P. Wan), [email protected] (K. Gasem), [email protected] (K. Wang), [email protected] (T. He), [email protected] (H. Adidharma), [email protected], [email protected] (M. Fan). http://dx.doi.org/10.1016/j.pmatsci.2016.09.004 0079-6425/Ó 2016 Elsevier Ltd. All rights reserved. X. Xu et al. / Progress in Materials Science 84 (2016) 276–313 277 4. Lithium intercalation/de-intercalation mechanisms . ................................................... 285 4.1. In spinel structures . ............................................................................ 285 4.1.1. Redox mechanism. ................................................................. 285 4.1.2. Ion exchange mechanism. ................................................................. 286 4.1.3. Composite mechanism . ................................................................. 286 4.2. In layered structures . ............................................................................ 286 5. Preparation methods of LIS precursors . ...................................................................... 287 5.1. Solid-phase synthesis methods . ............................................................ 287 5.1.1. Solid-phase combustion method . .............................................. 287 5.1.2. Microwave combustion method . .............................................. 288 5.2. Soft-chemical synthesis methods . ............................................................ 288 5.2.1. Sol-gel method . ................................................................. 288 5.2.2. Hydrothermal method . ................................................................. 290 5.2.3. Co-precipitation method . ................................................................. 291 5.2.4. Molten-salt synthesis method ................................................................. 292 5.2.5. Other methods . ................................................................. 292 6. Batteries for lithium recovery from aqueous solution . ................................................... 294 6.1. k-MnO2 – Pt battery . ............................................................................ 295 6.2. k-MnO2 – Ag battery . ............................................................................ 295 6.3. The electrostatic-assisted lithium desorption process . ......................................... 296 6.4. Outlook of the electrochemical method for recovering lithium . ......................................... 297 6.4.1. Porous LiMn2O4 electrode . ................................................................. 297 6.4.2. Cost-effective counter electrodes. .............................................. 298 6.4.3. Coating modifications. ................................................................. 298 6.4.4. The metal-doped LMO electrodes . .............................................. 299 7. Forming of LISs for industrial applications . ................................................... 299 7.1. Granulation . ............................................................................ 300 7.2. Foaming . ............................................................................ 302 7.3. Membrane formation . ............................................................................ 303 7.4. Fiber formation and magnetization . ............................................................ 304 7.4.1. Fiber formation . ................................................................. 304 7.4.2. Magnetization . ................................................................. 304 8. Concluding remarks . ...................................................................... 305 Acknowledgements . ...................................................................... 307 References . ......................................................................................... 307 1. Introduction Lithium is a critical energy material and a strategic resource for the 21th century. This lightest alkali metal plays a grow- ing role in numerous processes such as rechargeable batteries, thermonuclear fusion, medical drugs, lubricant greases, cera- mic glasses, air conditioning, dyes, cements, adhesives, and electrode welding [1–25]. Consequently, the market demands for lithium resources are increasing across the world [26–28]. Generally, lithium is obtained from two major resources: the lithium mineral ores including spodumene and petalite ores, and the lithium water resources including salt-lake brines and sea water [29–32]. Currently, the former is well exploited while the latter is being developed by industries with relatively low efficiency. Nonetheless, according to a reported research [29], more than 60% of the total lithium amount (about 26.9 Mt) exists in brines and sea water,