Geokniga-Introduction-Mineral-Exploration.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Geokniga-Introduction-Mineral-Exploration.Pdf Introduction to Mineral Exploration Second Edition Edited by Charles J. Moon, Michael K.G. Whateley & Anthony M. Evans With contributions from William L. Barrett Timothy Bell Anthony M. Evans John Milsom Charles J. Moon Barry C. Scott Michael K.G. Whateley introduction to mineral exploration Introduction to Mineral Exploration Second Edition Edited by Charles J. Moon, Michael K.G. Whateley & Anthony M. Evans With contributions from William L. Barrett Timothy Bell Anthony M. Evans John Milsom Charles J. Moon Barry C. Scott Michael K.G. Whateley Copyright © 2006 by Charles J. Moon, Michael K.G. Whateley, and Anthony M. Evans BLACKWELL PUBLISHING 350 Main Street, Malden, MA 02148-5020, USA 9600 Garsington Road, Oxford OX4 2DQ, UK 550 Swanston Street, Carlton, Victoria 3053, Australia The rights of Charles J. Moon, Michael K.G. Whateley, and Anthony M. Evans to be identified as the Authors of this Work have been asserted in accordance with the UK Copyright, Designs, and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs, and Patents Act 1988, without the prior permission of the publisher. First edition published 1995 by Blackwell Publishing Ltd Second edition published 2006 1 2006 Library of Congress Cataloging-in-Publication Data Introduction to mineral exploration.–2nd ed. / edited by Charles J. Moon, Michael K.G. Whateley & Anthony M. Evans; with contributions from William L. Barrett . [et al.]. p. cm. Evans’s appears first on the previous ed. Includes bibliographical references and index. ISBN-13: 978-1-4051-1317-5 (pbk. : acid-free paper) ISBN-10: 1-4051-1317-0 (pbk. : acid-free paper) 1. Prospecting. 2. Mining geology. I. Moon, Charles J. II. Whateley, M.K.G. III. Evans, Anthony M. TN270.I66 2006 622′.1—dc22 2005014825 A catalogue record for this title is available from the British Library. Set in 9/11pt Trump Mediaeval by Graphicraft Limited, Hong Kong Printed and bound in India by Replika Press PVT Ltd The publisher’s policy is to use permanent paper from mills that operate a sustainable forestry policy, and which has been manufactured from pulp processed using acid-free and elementary chlorine-free practices. Furthermore, the publisher ensures that the text paper and cover board used have met acceptable environmental accreditation standards. For further information on Blackwell Publishing, visit our website: www.blackwellpublishing.com Contents Contributors ix Preface to the Second Edition xi Preface to the First Edition xii Units, Abbreviations, and Terminology xiii Part I – Principles 1 1 Ore, Mineral Economics, and Mineral Exploration 3 Charles J. Moon and Anthony M. Evans 1.1 Introduction 3 1.2 Mineral economics 3 1.3 Important factors in the economic recovery of minerals 11 1.4 Structure of the mining industry 12 1.5 Some factors governing the choice of exploration areas 13 1.6 Rationale of mineral exploration 14 1.7 Further reading 18 2 The Mineralogy of Economic Deposits 19 Anthony M. Evans 2.1 Introduction 19 2.2 Mineralogical investigations 25 2.3 Further reading 32 3 Mineral Deposit Geology and Models 33 Anthony M. Evans and Charles J. Moon 3.1 Nature and morphology of orebodies 33 3.2 Wall rock alteration 39 3.3 Geological models of mineral deposits 40 3.4 Further reading 45 3.5 Summary of Chapters 1, 2, and 3 46 3.6 Appendix: mineral deposit model classification of Cox and Singer (1986) 46 4 Reconnaissance Exploration 52 Charles J. Moon and Michael K.G. Whateley 4.1 Exploration planning 53 4.2 Desk studies and reconnaissance 57 vi CONTENTS 4.3 Sustainable development 67 4.4 Summary 69 4.5 Further reading 69 5 From Prospect to Prefeasibility 70 Charles J. Moon and Michael K.G. Whateley 5.1 Finding a drilling target 70 5.2 When to drill and when to stop 84 5.3 Recycling prospects 93 5.4 The Bre-X Minerals saga 100 5.5 Summary 102 5.6 Further reading 102 6 Remote Sensing 104 Michael K.G. Whateley 6.1 Introduction 104 6.2 The Landsat System 105 6.3 Other imaging systems 116 6.4 Photogeology 117 6.5 Summary 125 6.6 Further reading 126 7 Geophysical Methods 127 John Milsom 7.1 Introduction 127 7.2 Airborne surveys 127 7.3 Magnetic surveys 130 7.4 Gravity method 133 7.5 Radiometrics 135 7.6 Resistivity 136 7.7 Spontaneous polarization (SP) 138 7.8 Induced polarization (IP) 138 7.9 Continuous-wave electromagnetics 142 7.10 Transient electromagnetics (TEM) 144 7.11 Remote source methods (VLF and magnetotellurics) 145 7.12 Seismic methods 147 7.13 Ground radar 148 7.14 Borehole geophysics 149 7.15 Geophysics in exploration programs 150 7.16 Integration of geological and geophysical data 150 7.17 The role of the geologist in geophysical exploration 151 7.18 Dealing with contractors 152 7.19 Further reading 153 8 Exploration Geochemistry 155 Charles J. Moon 8.1 Planning 155 8.2 Analysis 159 8.3 Interpretation 162 8.4 Reconnaissance techniques 164 8.5 Follow-up sampling 177 CONTENTS vii 8.6 Summary 178 8.7 Further reading 178 9 Mineral Exploration Data 179 Charles J. Moon and Michael K.G. Whateley 9.1 Data capture and storage 179 9.2 Data integration and geographical information systems 186 9.3 Integration with resource calculation and mine planning software 197 9.4 Further reading 198 10 Evaluation Techniques 199 Michael K.G. Whateley and Barry C.Scott 10.1 Sampling 199 10.2 Pitting and trenching 218 10.3 Drilling 218 10.4 Mineral resource and ore reserve estimation, grade calculations 230 10.5 Geotechnical data 243 10.6 Summary 249 10.7 Further reading 250 10.8 Appendix: use of Gy’s sampling formula 250 11 Project Evaluation 253 Barry C.Scott and Michael K.G. Whateley 11.1 Introduction 253 11.2 Value of mineralisation 253 11.3 Cash flow 260 11.4 Study definitions 262 11.5 Mineral project valuation and selection criteria 265 11.6 Risk 270 11.7 Inflation 271 11.8 Mineral project finance 272 11.9 Summary 276 11.10 Further reading 276 Part II – Case Studies 279 12 Cliffe Hill Quarry, Leicestershire – Development of Aggregate Reserves 281 Michael K.G. Whateley and William L. Barrett 12.1 Introduction 281 12.2 Phase 1 – order-of-magnitude study 282 12.3 Phase 2 – pre-feasibility study 283 12.4 Phase 3 – feasibility study 284 12.5 Phase 4 – detailed engineering 291 12.6 Quarrying and environmental impact 292 12.7 Summary 293 13 Soma Lignite Basin, Turkey 294 Michael K.G. Whateley 13.1 Introduction 294 13.2 Exploration programs 295 viii CONTENTS 13.3 Geology 298 13.4 Data assessment 303 13.5 Geotechnical investigation 307 13.6 Lignite quality 309 13.7 Lignite reserve estimates 314 13.8 Surface mine evaluation 315 13.9 Summary 319 13.10 Further reading 319 14 Witwatersrand Conglomerate Gold – West Rand 320 Charles J. Moon and Michael K.G. Whateley 14.1 Introduction 320 14.2 Geology 320 14.3 Economic background 330 14.4 Exploration models 333 14.5 Exploration methods 334 14.6 Reserve estimation 344 14.7 Exploration and development of the southern part of the West Rand Goldfield 345 14.8 Conclusions 357 15 A Volcanic-associated Massive Sulfide Deposit – Kidd Creek, Ontario 358 Anthony M. Evans and Charles J. Moon 15.1 Introduction 358 15.2 Volcanic-associated massive sulfide deposits 358 15.3 The Kidd Creek Mine 370 15.4 Conclusions 381 16 Disseminated Precious Metals – Trinity Mine, Nevada 382 Michael K.G. Whateley, Timothy Bell and Charles J. Moon 16.1 Background 382 16.2 Trinity Mine, Nevada 386 16.3 Exploration 387 16.4 The geology of Pershing County and the Trinity District 391 16.5 Development and mining 395 16.6 Mineral processing 397 16.7 Environmental considerations 397 16.8 Grade estimation 399 16.9 Ore reserve estimation 409 16.10 Summary and conclusions 412 17 Diamond Exploration – Ekati and Diavik Mines, Canada 413 Charles J. Moon 17.1 World diamond deposits and exploration 413 17.2 Canadian discoveries: Ekati and Diavik 431 17.3 Summary 443 Internet Links 444 References 447 Index 469 Contributors WILLIAM L. BARRETT Tarmac Quarry Products Ltd, Millfields Road, Ettingshall, Wolverhamp- ton WV4 6JP. Previously Geological Manager, Estates and Environment Department of Tarmac (now Consultant) but he has enjoyed a varied career in applied geology. His first degree was taken at the University of Wales and he obtained his doctorate from Leeds University. Much of his early career was spent in base metal exploration and underground mining in East Africa and this cul- minated with a spell as Chief Geologist at Kilembe Mines. Latterly he has been concerned with all aspects of Tarmac’s work in the field of industrial minerals. TIMOTHY BELL Bell Hanson, Foss Road, Bingham NG11 7EP. Graduated from West London Col- lege with a first class degree (cum laude) in Geology and Geography before obtaining an MSc degree with distinction in Mineral Exploration and Mining Geology at Leicester University in 1989. He joined CP Holdings (opencast coal contractors) as geologist in charge of computer applications in the mining division before moving to SURPAC Software International where he was Technical Manager in their Nottingham office and is now running his own business. ANTHONY M. EVANS 19 Hall Drive, Burton on the Wolds, Loughborough LE12 5AD.
Recommended publications
  • Standard X-Ray Diffraction Powder Patterns
    NBS MONOGRAPH 25 — SECTION 1 Standard X-ray Diffraction U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS Functions and Activities The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scien- tific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover. Publications The results of the Bureau's research are published either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions provides data for determining the best frequencies to use for radio communications throughout the world.
    [Show full text]
  • Contributions of a Lunar Geoscience Observer (Lgo) Mission to Fundamental Questions in Lunar Science
    CONTRIBUTIONS OF A LUNAR GEOSCIENCE OBSERVER (LGO) MISSION TO FUNDAMENTAL QUESTIONS IN LUNAR SCIENCE by LGO SCIENCE WORKSHOP MEMBERS Contributions Lunar Geoscience Observer Mission Frontispiece: Earth-rise over the lunar highlands. Contributions of a Lunar Geoscience Observer Mission to Fundaments Questions in Lunar Science LGO Science Workshop Members March LGO Science Workshop Members Roger Phillips (Chair), Southern Methodist University Merton Davies, Rand Coworation Michael Drake, University of Arizona Michael Duke, Johnson Space Center Larry Haskin. Washington University James Head, Brown University Eon Mood, University of Arizona Robert Lin, University of California, Berkeley Duane Muhleman, California Institute of Technology Doug Nash (Study Scientist), Jet Propulsion Laboratory Carle Pieters, Brown University Bill Sjogren, Jet Propulsion Laboratory Paul Spudis, U .S. Geological Survey Jeff Taylor, University of New Mexico Jacob Trombka, Goddard Space Flight Center This report was compiled and prepared in the Department of Geological Sciences and the AnthroGraphics Laboratory of Southern Methodist University. Material in this document may be copied without restraint for library, abstract service, educational or personal research purposes. Republication of any portion should be accompanied by the appropriate acknowledgment of this document. For further information, contact: Dr. Roger Phillips Department of Geological Sciences Southern Methodist University Dallas, TX 75275 Executive Summary THE IMPORTANCE OF LUNAR SCIENCE STATUS OF LUNAR SCIENCE DATA AND THEORY The Moon is the keystone in the interlinked knowledge that forms the foundation of our understanding of the silicate Unlike other solar system bodies beyond Earth, the Moon bodies of the solar system. The Moon is remarkable in that it has been intensely studied by telescope, unmanned space- remains the only other planet for which we have samples of crafi and manned missions.
    [Show full text]
  • Moon Minerals a Visual Guide
    Moon Minerals a visual guide A.G. Tindle and M. Anand Preliminaries Section 1 Preface Virtual microscope work at the Open University began in 1993 meteorites, Martian meteorites and most recently over 500 virtual and has culminated in the on-line collection of over 1000 microscopes of Apollo samples. samples available via the virtual microscope website (here). Early days were spent using LEGO robots to automate a rotating microscope stage thanks to the efforts of our colleague Peter Whalley (now deceased). This automation speeded up image capture and allowed us to take the thousands of photographs needed to make sizeable (Earth-based) virtual microscope collections. Virtual microscope methods are ideal for bringing rare and often unique samples to a wide audience so we were not surprised when 10 years ago we were approached by the UK Science and Technology Facilities Council who asked us to prepare a virtual collection of the 12 Moon rocks they loaned out to schools and universities. This would turn out to be one of many collections built using extra-terrestrial material. The major part of our extra-terrestrial work is web-based and we The authors - Mahesh Anand (left) and Andy Tindle (middle) with colleague have build collections of Europlanet meteorites, UK and Irish Peter Whalley (right). Thank you Peter for your pioneering contribution to the Virtual Microscope project. We could not have produced this book without your earlier efforts. 2 Moon Minerals is our latest output. We see it as a companion volume to Moon Rocks. Members of staff
    [Show full text]
  • Inorganic Syntheses
    INORGANIC SYNTHESES Volume 27 .................... ................ Board of Directors JOHN P. FACKLER, JR. Texas A&M University BODlE E. DOUGLAS University of Pittsburgh SMITH L. HOLT, JR. Oklahoma State Uniuersity JAY H. WORRELL University of South Florida RUSSELL N. GRIMES University of Virginia ROBERT J. ANGELIC1 Iowa State University Future Volumes 28 ROBERT J. ANGELIC1 Iowa State University 29 RUSSELL N. GRIMES University of Virginia 30 LEONARD V. INTERRANTE Rensselaer Polytechnic Institute 31 ALLEN H. COWLEY University of Texas, Austin 32 MARCETTA Y. DARENSBOURG Texas A&M University International Associates MARTIN A. BENNETT Australian National University, Canberra FAUSTO CALDERAZZO University of Pisa E. 0. FISCHER Technical University. Munich JACK LEWIS Cambridge University LAMBERTO MALATESTA University of Milan RENE POILBLANC University of Toulouse HERBERT W. ROESKY University of Gottingen F. G. A. STONE University of Bristol GEOFFREY WILKINSON Imperial College of Science and Technology. London AKlO YAMAMOTO Tokyo Institute 01 Technology. Yokohama Editor-in-Chief ALVIN P. GINSBERG INORGANIC SYNTHESES Volume 27 A Wiley-Interscience Publication JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore A NOTE TO THE READER This book has been electronically reproduced from digital idormation stored at John Wiley h Sons, Inc. We are phased that the use of this new technology will enable us to keep works of enduring scholarly value in print as long as there is a reasonable demand for them. The content of this book is identical to previous printings. Published by John Wiley & Sons, Inc. Copyright $? 1990 Inorganic Syntheses, Inc. All rights reserved. Published simultaneously in Canada. Reproduction or translation of any part of this work beyond that permitted by Section 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.
    [Show full text]
  • Amélioration De La Maîtrise Des Ressources Françaises En Tungstène Improvement in Control of French Tungsten Resources BRGM
    ^ **' Amélioration de la maîtrise des ressources françaises en tungstène Improvement in control of french tungsten resources BRGM Rapport final M. SAVE M. PASTOR R 30346 Diffusion : MIN DAM 90 DG 1 ex page de garde, résumé, table mat., conclusions January 1990 LOG/D 1 ex non relié SGN/DIG 2 ex DS (M. Sustrac) 1 ex DAM/0P4 (M. Dumas) 1 ex DAM/MP (M. Snoep) 1 ex DAM/MIN : MM. Save 1 ex Morizot 1 ex Hau/Ollivier 1 ex chrono A.F.M.E. (M. Marcé) 6 ex CERMeP (M. Pastor) 1 ex IRCHA (Mme Presvot) 1 ex BUREAU DE RECHERCHES GÉOLOGIQUES ET MINIÈRES DIRECTION DES Activités minières Département Minéralurgie B.P. 6009 - 45060 ORLÉANS CEDEX 2 - France -Tél. : (33) 38.64.34.34 AMELIORATION DE LA MAITRISE DES RESSOURCES FRANÇAISES EN TUNGSTENE Responsable Scientifique : G. MORIZOT N* de contrat A.F.M.E. : 7.02.0035 Objet : Amélioration de la maîtrise de ressources françaises en tungstène Date de notification : 30/12/1987 Durée du contrat : 32 mois Montant du contrat : 1 600 000 F.F. H.T. Responsable A.F.M.E. : M. BEUTIN Service Industrie - Matières Premières RAPPORT CONFIDENTIEL BUREAU DE RECHERCHES GÉOLOGIQUES ET MINIÈRES DIRECTION DES ACTIVITÉS MINIERES Département Minêmlurqie B.P. G003 • 4E0H0 OKLEANS ŒDEX 2 - n.inc.* - îi'l.: (13) 23 ru IMJ.I R E S U M E Un programme général visant à améliorer la maîtrise des ressources françaises en tungstène a été entrepris par le B.R.G.M. et la Société EUROTUNGSTENE POUDRES (E.T.P.). Les études ont débuté le 1er octobre 1985 dans le cadre d'une première convention A.F.M.E.
    [Show full text]
  • Broward County Hands-On Science Teacher Guide
    170370 Q2c_ACT_19&20 5/8/07 6:16 PM Page 165 ivit act ies 19&20 TheThe PhasesPhases ofof thethe MoonMoon (Sessions(Sessions II andand II)II) BROWARD COUNTY ELEMENTARY SCIENCE BENCHMARK PLAN Grade 2—Quarter 2 Activities 19 & 20 SC.E.1.1.1 The student knows that the light reflected by the Moon looks a little different every day but looks the same again about every 28 days. SC.H.1.1.1 The student knows that in order to learn, it is important to observe the same things often and compare them. SC.H.1.1.3 The student knows that in doing science, it is often helpful to work with a team and to share findings with others. SC.H.1.1.4 The student knows that people use scientific processes including hypotheses, making inferences, and recording and communicating data when exploring the natural world. SC.H.2.1.1 The student knows that most natural events occur in patterns. ACTIVITY ASSESSMENT OPPORTUNITIES The following suggestions are intended to help identify major concepts covered in the activity that may need extra reinforcement. The goal is to provide opportunities to assess student progress without creating the need for a separate, formal assessment session (or activity) for each of the 40 hands-on activities at this grade level. 1. Session I—Activity 19: Challenge students to explain how the phases of the Moon form a FORcycle. (The MoonPERSONAL starts out as a new Moon, slowly gets bigger until it is a USEfull Moon, then slowly gets smaller until it is a new Moon again.
    [Show full text]
  • Is It Lunar Or Lunacy?
    Is It Lunar or Lunacy? Summary Learn all about the moon, its phases and even how to make a model. Materials One 4" foam ball to represent Earth One foam ball to represent moon (1/4 size of the Earth) Twelve wooden Skewers pointed on each end Black paint Red paint or red permanent marker Heavy foam board measuring 26" X 26" between 3/4" to an inch" in thickness Hula hoop Protractor Straw String Two small washers - Galileo - Moon Phase Chart - The Rising and Setting of the Sun Table - The Rising and Setting of the Moon Table - Instructions for Making Moon Model Additional Resources Books - Earth, Moon, and Sun--Earth Science Delta Science Module , Teacher's Guide. ISBN# 0-87504-166-3 - Earth, Moon, and Stars -- LHS GEMS, Teacher's Guide ISBN# 0-912511-18-4 - The Moon Book , by Gail Gibbons - Galileo , by Leonard Everett Fisher ISBN# 0-02-735235-8 - The Universe at Your Fingertips--An Astronomy Activity and Resource Notebook Project ASTRO Astronomical Society of the Pacific (415) 337 - 1100 ISBN# 1-886733-00-7 Videos - How and Why--The Moon and the Universe , Volume 4. 1-888-661d-8104 www.mediakids.com Background for Teachers When Buzz Aldrin first stepped on the lunar surface and looked around at the alien landscape, he exclaimed: "Magnificent desolation!" It was a perfect description of the stark, inhospitable lunar surface which has no atmosphere or water. Standing on the Moon's surface, the astronauts saw a barren vista of rocks, boulders and fine dust. In the distance, rounded hills and mountains reaching toward an utterly black sky, whether it was day or night.
    [Show full text]
  • High Purity Inorganics
    High Purity Inorganics www.alfa.com INCLUDING: • Puratronic® High Purity Inorganics • Ultra Dry Anhydrous Materials • REacton® Rare Earth Products www.alfa.com Where Science Meets Service High Purity Inorganics from Alfa Aesar Known worldwide as a leading manufacturer of high purity inorganic compounds, Alfa Aesar produces thousands of distinct materials to exacting standards for research, development and production applications. Custom production and packaging services are part of our regular offering. Our brands are recognized for purity and quality and are backed up by technical and sales teams dedicated to providing the best service. This catalog contains only a selection of our wide range of high purity inorganic materials. Many more products from our full range of over 46,000 items are available in our main catalog or online at www.alfa.com. APPLICATION FOR INORGANICS High Purity Products for Crystal Growth Typically, materials are manufactured to 99.995+% purity levels (metals basis). All materials are manufactured to have suitably low chloride, nitrate, sulfate and water content. Products include: • Lutetium(III) oxide • Niobium(V) oxide • Potassium carbonate • Sodium fluoride • Thulium(III) oxide • Tungsten(VI) oxide About Us GLOBAL INVENTORY The majority of our high purity inorganic compounds and related products are available in research and development quantities from stock. We also supply most products from stock in semi-bulk or bulk quantities. Many are in regular production and are available in bulk for next day shipment. Our experience in manufacturing, sourcing and handling a wide range of products enables us to respond quickly and efficiently to your needs. CUSTOM SYNTHESIS We offer flexible custom manufacturing services with the assurance of quality and confidentiality.
    [Show full text]
  • From the Editor Chair's Report by Bernie Venasse Volume 24
    Volume 24, Number 6 April 2017 From The Chair’s Report by Bernie Venasse Editor Hamilton Amateur Astronomers General Meeting for April 7th 2017. With the arrival of Note that this occurs on the FIRST Friday of the month…… April, winter skies and Our scheduled speaker this month is Dr. Pauline Barmby, visiting us from weather give way to Western University in London, Ontario. Her presentation will focus on the past, the Spring constel- present, and future of big data in astronomy. lations and Spring “Big data” is the hot new thing in finance, health care, advertising and weather …and more. But as one of the first observational sciences, astronomy has been dealing hopefully clearer with big data for thousands of years. New and imminent facilities for capturing skies! and storing astronomical observations will lead to what some call the “tsunami of data” in astronomy. Techniques like machine learning and citizen science Happy Reading! are needed to get the most science out of these enormous datasets. You will learn how big our big data in astronomy really is, and about some of the Bob Christmas, Editor discoveries that it has enabled. Pauline Barmby is an associate professor in Western’s Department of editor ‘AT’ Physics & Astronomy and associate dean (graduate and postdoctoral studies) amateurastronomy.org in Western’s Faculty of Science. She received her BSc in Physics and Astronomy (Continued on page 2) IN THIS ISSUE: § NASA’s Space Place § Snippets from April Fools’ Day § § Cartoon Corner March 2017 General Meeting Summary § § The Sky This Month 2017 Calendar of Events § § Upcoming McCallion Planetarium Shows Treasurer’s Report § § Easter and Astronomy Upcoming Events Contact Information Hamilton Amateur Astronomers Event Horizon April 2017 Page 1 Chair’s Report (continued) H.A.A.’s Loaner Scope Program from UBC (1995) and her PhD in Astronomy We at the HAA are proud of our from Harvard University (2001).
    [Show full text]
  • Eclipse Observations Enabled by NASA's Lunar Reconnaissance
    National Aeronautics and Space Administration Eclipse Observations enabled by NASA’s Lunar Reconnaissance Orbiter Eclipse Observations enabled by NASA’s Lunar Reconnaissance Orbiter Data from NASA’s Lunar Reconnaissance Orbiter (LRO) is revolutionizing our understanding of the Moon. With LRO, we have found evidence of recent lunar volcanism. Some lava may have erupted onto the Moon’s surface only tens to hundreds of millions of years ago, instead of billions of years ago, as previously thought. We have found faults that indicate the entire Moon is shrinking! (Just a little bit, within the past few million years.) LRO has also witnessed changes on the Moon’s surface (including lots of new impact craters) since the mission began in 2009. Every day, this spacecraft is helping us better understand our nearest celestial neighbor, and processes that are occurring throughout the Solar System. You can learn more about these discoveries on LRO’s website, www.nasa.gov/lro. A B Thanks to LRO’s onboard laser altimeter and high-resolution cameras we know the shape of the Moon better than any other object in the Solar System – including Earth (since the majority of the Earth’s solid surface is under water). The top left image (A), shows the topography of the Moon, where cool colors represent low elevations and warm colors show areas with higher elevation. The blue line surrounding the Moon in the top right image (B) shows the outline of the Moon’s topographic profile, exaggerated 20 times. The bottom image shows an oblique view of the Orientale basin: an example of the rough topography found on the Moon.
    [Show full text]
  • A NASA STEM Facilitation
    NASA STEM A Facilitation Kit Sun-Earth-Moon Connections NASA@ My Library is based upon work funded by NASA under cooperative agreement No. NNX16AE30A. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the NASA@ My Library initiative and do not necessarily reflect the views of the National Aeronautics and Space Administration. Table of Contents Getting Started Section 1: - Welcome Letter - How to Use This Resource - Inventory Checklist Activity Guides Section 2: - UV Kid - Taking Earth’s Temperature - Sorting Games: How Big? How Far? How Hot? - Jump to Jupiter - Shadow Play - Modeling Meaningful Eclipses (Yardstick Eclipse) - Wind Streamer - Moon Skits: How’s the Weather? - Moon Skits: Space Adventure Travel Corporation Commercials - Tour the Moon and Mars Using Google Earth - Whip Up a Moon-Like Crater Quick Facilitation Guides Section 3: - Tablet Contents: Sun-Earth-Moon Connection Apps - Sunoculars for Solar Viewing - Using an Infrared Thermometer to Meaure Temperatures from Afar Science Books Section 4: - List of Suggested Books and Tips for Use Table of Contents Kit A Section 1: Getting Started Thank you for taking the time to utilize Kit A: Sun-Earth-Moon Connections. This kit was developed to support the 2017 Total Solar Eclipse, but continues to be extremely engaging and relevant today! With this kit your patrons will explore how eclipses happen, be able to safely observe the sun, and participate in fun hands-on activities around solar concepts. Please visit www.starnetlibraries.org to learn more about the STAR Library Education Network (STAR Net), a hands-on learning network for libraries and their communities across the country.
    [Show full text]
  • Physical Science Can I Believe My Eyes?
    Student Edition I WST Physical Science Can I Believe My Eyes? Second Edition CAN I BELIEVE MY EYES? Light Waves, Their Role in Sight, and Interaction with Matter IQWST LEADERSHIP AND DEVELOPMENT TEAM Joseph S. Krajcik, Ph.D., Michigan State University Brian J. Reiser, Ph.D., Northwestern University LeeAnn M. Sutherland, Ph.D., University of Michigan David Fortus, Ph.D., Weizmann Institute of Science Unit Leaders Strand Leader: David Fortus, Ph.D., Weizmann Institute of Science David Grueber, Ph.D., Wayne State University Jeffrey Nordine, Ph.D., Trinity University Jeffrey Rozelle, Ph.D., Syracuse University Christina V. Schwarz, Ph.D., Michigan State University Dana Vedder Weiss, Weizmann Institute of Science Ayelet Weizman, Ph.D., Weizmann Institute of Science Unit Contributor LeeAnn M. Sutherland, Ph.D., University of Michigan Unit Pilot Teachers Dan Keith, Williamston, MI Kalonda Colson McDonald, Bates Academy, Detroit Public Schools, MI Christy Wonderly, Martin Middle School, MI Unit Reviewers Vincent Lunetta, Ph.D., Penn State University Sofia Kesidou, Ph.D., Project 2061, American Association for the Advancement of Science Investigating and Questioning Our World through Science and Technology (IQWST) CAN I BELIEVE MY EYES? Light Waves, Their Role in Sight, and Interaction with Matter Student Edition Physical Science 1 (PS1) PS1 Eyes SE 2.0.3 ISBN-13: 978- 1- 937846- 47 - 3 Physical Science 1 (PS1) Can I Believe My Eyes? Light Waves, Their Role in Sight, and Interaction with Matter ISBN- 13: 978- 1- 937846- 47- 3 Copyright © 2013 by SASC LLC. All rights reserved. No part of this book may be reproduced, by any means, without permission from the publisher.
    [Show full text]