Contributions of a Lunar Geoscience Observer (Lgo) Mission to Fundamental Questions in Lunar Science

Total Page:16

File Type:pdf, Size:1020Kb

Contributions of a Lunar Geoscience Observer (Lgo) Mission to Fundamental Questions in Lunar Science CONTRIBUTIONS OF A LUNAR GEOSCIENCE OBSERVER (LGO) MISSION TO FUNDAMENTAL QUESTIONS IN LUNAR SCIENCE by LGO SCIENCE WORKSHOP MEMBERS Contributions Lunar Geoscience Observer Mission Frontispiece: Earth-rise over the lunar highlands. Contributions of a Lunar Geoscience Observer Mission to Fundaments Questions in Lunar Science LGO Science Workshop Members March LGO Science Workshop Members Roger Phillips (Chair), Southern Methodist University Merton Davies, Rand Coworation Michael Drake, University of Arizona Michael Duke, Johnson Space Center Larry Haskin. Washington University James Head, Brown University Eon Mood, University of Arizona Robert Lin, University of California, Berkeley Duane Muhleman, California Institute of Technology Doug Nash (Study Scientist), Jet Propulsion Laboratory Carle Pieters, Brown University Bill Sjogren, Jet Propulsion Laboratory Paul Spudis, U .S. Geological Survey Jeff Taylor, University of New Mexico Jacob Trombka, Goddard Space Flight Center This report was compiled and prepared in the Department of Geological Sciences and the AnthroGraphics Laboratory of Southern Methodist University. Material in this document may be copied without restraint for library, abstract service, educational or personal research purposes. Republication of any portion should be accompanied by the appropriate acknowledgment of this document. For further information, contact: Dr. Roger Phillips Department of Geological Sciences Southern Methodist University Dallas, TX 75275 Executive Summary THE IMPORTANCE OF LUNAR SCIENCE STATUS OF LUNAR SCIENCE DATA AND THEORY The Moon is the keystone in the interlinked knowledge that forms the foundation of our understanding of the silicate Unlike other solar system bodies beyond Earth, the Moon bodies of the solar system. The Moon is remarkable in that it has been intensely studied by telescope, unmanned space- remains the only other planet for which we have samples of crafi and manned missions. Most of the lunar missions known spatial context. Basic considerations are: however were very early in the history of space science and Planetary Crusts: led to later technical advancements that have been used to explore other planets including the Earth. Both the data @ The concept of primary differentiation of planetary quality and coverage of the Moon from orbit, for example, are crusts was established by lunar studies, and this has be- inferior to those for Mars for some primary data sets, such as come the framework for studying the evolution of all imaging. Nevedheless, the availability of returned rock planetary crusts and establishes crustal recycling (as on samples for the Moon has dramatically sharpened scientific Earth) as an exceptional phenomenon. questions about the evolution of our nearest neighbor. The Planetacy Surface Ages and Bombardment Histories: returned lunar samples provide the essential geochemical and @ The Moon, because we have samples of its crust, serves petrological basis for extrapolation of remote sensing data for as the basis for age estimation by crater statistics of all the Moon as a planet. Because of the knowledge gained over other crustal surfaces in the solar system, save Earth. the last twenty years, we are able to pose a set of interrelated and sophisticated questions of planetary origin and evolution Record of Exogenic Processes: that are fundamental in nature and to which a global remote @ Because its igneous differentiation was relatively rapid, sensing survey of the Moon promises to contribute significant the Moon formed a solid crust that retains a record of answers. events that occurred early in solar system history. @ The Moon has recorded more than 4 billion years of exo- genic processes in the solar system. FUNDAMENTAL QUESTIONS IN Baseline Silicate Planet: LUNAR SCIENCE @ The Moon represents a relatively simple silicate system Understanding the Moon's structure, composition and in terms of differentiation, and thus serves as a baseline history will permit us to obtain a much better appreciation of to study more complex planetary processes. fundamental processes that operate on all planets. Some of Key to Early Earth History: the major problems in lunar science are: @ The origin and early evolution of the Earth is inextri- Origin: cably tied to lunar genesis. @ What is the origin of the Moon and how does it relate to the origin and early evolution of the Earth? Utilization of Moon: @ An understanding of the structure and composition of Dgferentiation: the lunar crust is the basis for utilization of the Moon's @ Was there a global magma ocean or was the crust formed resources. by serial igneous intrusion? @ What was the volume fraction of primordial lunar preclude the possibility of a reasonably-sized imaging data melting? set, as well as a robust set of information from VIMS. @ What are the composition and structure of the mantle'! A Radar Altimeter (ALT) and a nearside Doppler- @ 'Is there an iron-rich lunar core? tracking gravity experiment are key geophysical instruments for extrapolating the surface geochemical results throughout Magma tic History: the whole crust. Equally important geophysically are the @ What were the nature and style of highland igneous Magnetometer and Electron Reflectometer (MAG/ER), activity and mare volcanism through time? which are needed to determine, either by direct detection or irhermal Histov: remanent field mapping, if the Moon possesses an iron-rich @ What have been the mechanisms of heat transfer in the core. The existence of a core directly bears on hypotheses of lunar interior over geological time? lunar origin. The geophysical capabilities could be extended @ What is the history of magma genesis in the mantle? by a Microwave Radiometer (MUD) experiment to map @ How did lithospheric thickness vary spatially and surface heat flow and determine the bulk uranium content, through time, and what were the accompanying tectonic and by a Satellite Gravity System (SGS) to measure the styles at the surface? farside gravity field. @ What are the present-day lunar temperature profile and surface heat flow? Impact Processes: @ What was the effect ofthe intense lunar bombardment in RIELATIONSHIP OF LGO TO obscuring primary compositional and lithological varia- FUNDAMENTAL LUNAR PROBLEMS tions in the crust? @ How much of the crustal column was exposed by giant Given the set of instruments described above, LGO can impacts and how were materials dispersed across the contribute to lunar science in at least the following ways: lunar surface? Lunar Origin: @ What are the mechanics of crater and basin formation @ Global compositional estimates principally from the and what is the makeup of ejecta in terms of the XGRS, and possibly from the MUD,should eliminate impacting body and the crustal target? some hypotheses while remaining permissive of others. Paleornagnet ism: @ The MAG and ER instmments should provide limits on @ What are the relative contributions of an internal the radius of a metallic lunar core which, ifdetected, may dynamo and impact processes to the origin of lunar be used in concert with depletions of siderophile ele- paleomagnetism? ments in the lunar mantle to constrain hypotheses of lunar origin. Regolith: @ How do lunar soils mature? Evolution ofthe Crust and IMantle: @ What is the relationship of regolith composition to that of @ Global geochemical and petrological maps from XGRS the underlying igneous crust? and VIMS, coupled with gravity data and topography from ALT should provide (I) evidence for the existence, extent, depth, and differentiation products of a global magnla ocean; and (2) estimates of crustal thickness and REQUIRED SCIENTIFIC CAPABILITIES density variations. OF A LUNAR GEOSCIENCE OBSERVER Magmatic History of the Moon: @ Global geochemical and petrological maps from XGRS The driving scientific basis of a Lunar Geoscience Ob- and VIMS shornld pemit identification of the regional server (LGO) mission centers on questions involving the extent of known and unhown rock types and provide origin of the Moon and the origin and evolution of the lunar insiglit into (I) the nature and duration of highland crust. At the heart of this quest is a capability to map globally igneous activity; and (2) the nature and extent of mare the distribution of minerals and elements on a scale of five volcanism. hundred meters to one hundred kilometers. Three instru- ments provide this capability: the X-Ray and Gamma-Ray Impact Processes: Spectrometers (XGRS) for elemental mapping and the @ Imaging, XGRS, VIMS, ALT and gravity data will Visible and Infrared Mapping Spectrometer (VIMS) for enable studies of crater and basin structure, morphology, mineralogical mapping. In addition, an imaging capability is and composition of deposits. Specifically, these data can required to place the geochemical data in a geological be used to reconstruct (1)pre-impact target composition context, particularly as regards the inte~retationof these and structure; (2) fornational conditions and dimen- results in the face of a crust heavily disturbed by impact sions of the excavation cavity; and (3)post-impact ejecta processes. The data rate of the LGO spacecraft should not deposition and modification. Thermal History: Earth. Continued study ofthe Moon at this time is compelling @ The MUDinstrument should provide estimates of the because we know the right questions to ask and LGO is present-day surface heat flow. High resolution imaging extremely well matched to providing some of the important of tectonic features associated with
Recommended publications
  • Ice& Stone 2020
    Ice & Stone 2020 WEEK 34: AUGUST 16-22 Presented by The Earthrise Institute # 34 Authored by Alan Hale This week in history AUGUST 16 17 18 19 20 21 22 AUGUST 16, 1898: DeLisle Stewart at Harvard College Observatory’s Boyden Station in Arequipa, Peru, takes photographs on which Saturn’s outer moon Phoebe is discovered, although the images of Phoebe were not noticed until the following March by William Pickering. Phoebe was the first planetary moon to be discovered via photography, and it and other small planetary moons are discussed in last week’s “Special Topics” presentation. AUGUST 16, 2009: A team of scientists led by Jamie Elsila of the Goddard Space Flight Center in Maryland announces that they have detected the presence of the amino acid glycine in coma samples of Comet 81P/ Wild 2 that were returned to Earth by the Stardust mission 3½ years earlier. Glycine is utilized by life here on Earth, and the presence of it and other organic substances in the solar system’s “small bodies” is discussed in this week’s “Special Topics” presentation. AUGUST 16 17 18 19 20 21 22 AUGUST 17, 1877: Asaph Hall at the U.S. Naval Observatory in Washington, D.C. discovers Mars’ larger, inner moon, Phobos. Mars’ two moons, and the various small moons of the outer planets, are the subject of last week’s “Special Topics” presentation. AUGUST 17, 1989: In its monthly batch of Minor Planet Circulars (MPCs), the IAU’s Minor Planet Center issues MPC 14938, which formally numbers asteroid (4151), later named “Alanhale.” I have used this asteroid as an illustrative example throughout “Ice and Stone 2020” “Special Topics” presentations.
    [Show full text]
  • China's Touch on the Moon
    commentary China’s touch on the Moon Long Xiao As well as being a milestone in technology, the Chang’e lunar exploration programme establishes China as a contributor to space science. With much still to learn about the Moon, fieldwork beyond Earth’s orbit must be an international effort. hen China’s Chang’e 3 spacecraft geological history of the landing site. touched down on the lunar High-resolution images have shown rocky Wsurface on 14 December 2013, terrain with outcrops of porphyritic basalt, it was the first soft landing on the Moon such as Loong Rock (Fig. 2). Analysis since the Soviet Union’s Luna 24 mission of data collected by the penetrating in 1976. Following on from the decades- Chang’e 3 radar should lead to identification of the old triumphs of the Luna missions and underlying layers of regolith, impact breccia NASA’s Apollo programme, the Chang’e and basalt. lunar exploration programme is leading the China’s robotic field geologist Yutu has charge of a new generation of exploration Basalt outcrop Yutu rover stalled in its traverse of the lunar surface, on the lunar surface. Much like the earlier but plans for the Chang’e 5 sample-return space programmes, the China National mission are moving forward. The primary Space Administration (CNSA) has been objective of the mission will be to return developing its capabilities and technologies 100 m 2 kg of samples from the surface and depths step by step in a series of Chang’e missions UNIVERSITY STATE © NASA/GSFC/ARIZONA of up to 2 m, probably also in the relatively of increasing ambition: orbiting and Figure 1 | The Chinese Chang’e 3 spacecraft and smooth northern Mare Imbrium.
    [Show full text]
  • Exploration of the Moon
    Exploration of the Moon The physical exploration of the Moon began when Luna 2, a space probe launched by the Soviet Union, made an impact on the surface of the Moon on September 14, 1959. Prior to that the only available means of exploration had been observation from Earth. The invention of the optical telescope brought about the first leap in the quality of lunar observations. Galileo Galilei is generally credited as the first person to use a telescope for astronomical purposes; having made his own telescope in 1609, the mountains and craters on the lunar surface were among his first observations using it. NASA's Apollo program was the first, and to date only, mission to successfully land humans on the Moon, which it did six times. The first landing took place in 1969, when astronauts placed scientific instruments and returnedlunar samples to Earth. Apollo 12 Lunar Module Intrepid prepares to descend towards the surface of the Moon. NASA photo. Contents Early history Space race Recent exploration Plans Past and future lunar missions See also References External links Early history The ancient Greek philosopher Anaxagoras (d. 428 BC) reasoned that the Sun and Moon were both giant spherical rocks, and that the latter reflected the light of the former. His non-religious view of the heavens was one cause for his imprisonment and eventual exile.[1] In his little book On the Face in the Moon's Orb, Plutarch suggested that the Moon had deep recesses in which the light of the Sun did not reach and that the spots are nothing but the shadows of rivers or deep chasms.
    [Show full text]
  • Moon Minerals a Visual Guide
    Moon Minerals a visual guide A.G. Tindle and M. Anand Preliminaries Section 1 Preface Virtual microscope work at the Open University began in 1993 meteorites, Martian meteorites and most recently over 500 virtual and has culminated in the on-line collection of over 1000 microscopes of Apollo samples. samples available via the virtual microscope website (here). Early days were spent using LEGO robots to automate a rotating microscope stage thanks to the efforts of our colleague Peter Whalley (now deceased). This automation speeded up image capture and allowed us to take the thousands of photographs needed to make sizeable (Earth-based) virtual microscope collections. Virtual microscope methods are ideal for bringing rare and often unique samples to a wide audience so we were not surprised when 10 years ago we were approached by the UK Science and Technology Facilities Council who asked us to prepare a virtual collection of the 12 Moon rocks they loaned out to schools and universities. This would turn out to be one of many collections built using extra-terrestrial material. The major part of our extra-terrestrial work is web-based and we The authors - Mahesh Anand (left) and Andy Tindle (middle) with colleague have build collections of Europlanet meteorites, UK and Irish Peter Whalley (right). Thank you Peter for your pioneering contribution to the Virtual Microscope project. We could not have produced this book without your earlier efforts. 2 Moon Minerals is our latest output. We see it as a companion volume to Moon Rocks. Members of staff
    [Show full text]
  • Geokniga-Introduction-Mineral-Exploration.Pdf
    Introduction to Mineral Exploration Second Edition Edited by Charles J. Moon, Michael K.G. Whateley & Anthony M. Evans With contributions from William L. Barrett Timothy Bell Anthony M. Evans John Milsom Charles J. Moon Barry C. Scott Michael K.G. Whateley introduction to mineral exploration Introduction to Mineral Exploration Second Edition Edited by Charles J. Moon, Michael K.G. Whateley & Anthony M. Evans With contributions from William L. Barrett Timothy Bell Anthony M. Evans John Milsom Charles J. Moon Barry C. Scott Michael K.G. Whateley Copyright © 2006 by Charles J. Moon, Michael K.G. Whateley, and Anthony M. Evans BLACKWELL PUBLISHING 350 Main Street, Malden, MA 02148-5020, USA 9600 Garsington Road, Oxford OX4 2DQ, UK 550 Swanston Street, Carlton, Victoria 3053, Australia The rights of Charles J. Moon, Michael K.G. Whateley, and Anthony M. Evans to be identified as the Authors of this Work have been asserted in accordance with the UK Copyright, Designs, and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs, and Patents Act 1988, without the prior permission of the publisher. First edition published 1995 by Blackwell Publishing Ltd Second edition published 2006 1 2006 Library of Congress Cataloging-in-Publication Data Introduction to mineral exploration.–2nd ed. / edited by Charles J. Moon, Michael K.G. Whateley & Anthony M. Evans; with contributions from William L. Barrett . [et al.]. p. cm.
    [Show full text]
  • MODELING and SIMULATION of the CHANDRAYAAN-I HYSI DATA for MINERAL MIXING ANALYSIS. S.B. Sayyad and Mohammed Zeeshan R, (Departm
    4th Planetary Data Workshop 2019 (LPI Contrib. No. 2151) 7074.pdf MODELING AND SIMULATION OF THE CHANDRAYAAN-I HYSI DATA FOR MINERAL MIXING ANALYSIS. S.B. Sayyad and Mohammed Zeeshan R, (Department of Physics, Milliya College Arts Science and Management Science College Beed Maharashtra India. [email protected], [email protected] ) Introduction: The space weathering is the primary process involved on the lunar surface which has the strong influence on the reflectance properties because of the accumulation of small submicroscopic iron [1- 2]. Long time exposure to the environment complicates the understanding of the surface composition [3-6] Theoretical model can be employed to understand the effect of space weathering and to study the composition of the lunar regolith. From the studies done on the lu- nar samples from the Apollo mission it was clear that there are the significant differences between the optical properties of spectra pulverized in the laboratory and spectra obtained from the lunar soil [7-9]. The lunar Fig. 1. Site Location of Mare Crisium and data subset of soil spectra shows systematic influence of space weath- Mare Crisium. ering which is reduction in overall reflectance red- dened -slope continuum and attenuated absorption bands. To model the measured reflectance spectra of Chandrayaan-1 hyperspectral Imager (HySI) we have obtained an artificial reflectance spectrum using Bi- directional reflectance function (BRDF) based on the equation of radiative transfer proposed by Bruce Hap- ke and published in the series of papers [10-14]. The effect of space weathering, particle size, single particle phase function, porosity can be easily accommodated and it is con- sidered to be most efficient for modeling asteroids and plane- tary surfaces Modeling the Chandrayaan-1 HySI dataset: The Band to band registered level-4 HySI image was Fig.2.
    [Show full text]
  • Broward County Hands-On Science Teacher Guide
    170370 Q2c_ACT_19&20 5/8/07 6:16 PM Page 165 ivit act ies 19&20 TheThe PhasesPhases ofof thethe MoonMoon (Sessions(Sessions II andand II)II) BROWARD COUNTY ELEMENTARY SCIENCE BENCHMARK PLAN Grade 2—Quarter 2 Activities 19 & 20 SC.E.1.1.1 The student knows that the light reflected by the Moon looks a little different every day but looks the same again about every 28 days. SC.H.1.1.1 The student knows that in order to learn, it is important to observe the same things often and compare them. SC.H.1.1.3 The student knows that in doing science, it is often helpful to work with a team and to share findings with others. SC.H.1.1.4 The student knows that people use scientific processes including hypotheses, making inferences, and recording and communicating data when exploring the natural world. SC.H.2.1.1 The student knows that most natural events occur in patterns. ACTIVITY ASSESSMENT OPPORTUNITIES The following suggestions are intended to help identify major concepts covered in the activity that may need extra reinforcement. The goal is to provide opportunities to assess student progress without creating the need for a separate, formal assessment session (or activity) for each of the 40 hands-on activities at this grade level. 1. Session I—Activity 19: Challenge students to explain how the phases of the Moon form a FORcycle. (The MoonPERSONAL starts out as a new Moon, slowly gets bigger until it is a USEfull Moon, then slowly gets smaller until it is a new Moon again.
    [Show full text]
  • Surveyor 1 Space- Craft on June 2, 1966 As Seen by the Narrow Angle Camera of the Lunar Re- Connaissance Orbiter Taken on July 17, 2009 (Also See Fig
    i “Project Surveyor, in particular, removed any doubt that it was possible for Americans to land on the Moon and explore its surface.” — Harrison H. Schmitt, Apollo 17 Scientist-Astronaut ii Frontispiece: Landing site of the Surveyor 1 space- craft on June 2, 1966 as seen by the narrow angle camera of the Lunar Re- connaissance Orbiter taken on July 17, 2009 (also see Fig. 13). The white square in the upper photo outlines the area of the enlarged view below. The spacecraft is ca. 3.3 m tall and is casting a 15 m shadow to the East. (NASA/LROC/ ASU/GSFC photos) iii iv Surveyor I: America’s First Moon Landing by William F. Mellberg v © 2014, 2015 William F. Mellberg vi About the author: William Mellberg was a marketing and public relations representative with Fokker Aircraft. He is also an aerospace historian, having published many articles on both the development of airplanes and space vehicles in various magazines. He is the author of Famous Airliners and Moon Missions. He also serves as co-Editor of Harrison H. Schmitt’s website: http://americasuncommonsense.com Acknowledgments: The support and recollections of Frank Mellberg, Harrison Schmitt, Justin Rennilson, Alexander Gurshstein, Paul Spudis, Ronald Wells, Colin Mackellar and Dwight Steven- Boniecki is gratefully acknowledged. vii Surveyor I: America’s First Moon Landing by William F. Mellberg A Journey of 250,000 Miles . December 14, 2013. China’s Chang’e 3 spacecraft successfully touched down on the Moon at 1311 GMT (2111 Beijing Time). The landing site was in Mare Imbrium, the Sea of Rains, about 25 miles (40 km) south of the small crater, Laplace F, and roughly 100 miles (160 km) east of its original target in Sinus Iridum, the Bay of Rainbows.
    [Show full text]
  • Deep Space Chronicle Deep Space Chronicle: a Chronology of Deep Space and Planetary Probes, 1958–2000 | Asifa
    dsc_cover (Converted)-1 8/6/02 10:33 AM Page 1 Deep Space Chronicle Deep Space Chronicle: A Chronology ofDeep Space and Planetary Probes, 1958–2000 |Asif A.Siddiqi National Aeronautics and Space Administration NASA SP-2002-4524 A Chronology of Deep Space and Planetary Probes 1958–2000 Asif A. Siddiqi NASA SP-2002-4524 Monographs in Aerospace History Number 24 dsc_cover (Converted)-1 8/6/02 10:33 AM Page 2 Cover photo: A montage of planetary images taken by Mariner 10, the Mars Global Surveyor Orbiter, Voyager 1, and Voyager 2, all managed by the Jet Propulsion Laboratory in Pasadena, California. Included (from top to bottom) are images of Mercury, Venus, Earth (and Moon), Mars, Jupiter, Saturn, Uranus, and Neptune. The inner planets (Mercury, Venus, Earth and its Moon, and Mars) and the outer planets (Jupiter, Saturn, Uranus, and Neptune) are roughly to scale to each other. NASA SP-2002-4524 Deep Space Chronicle A Chronology of Deep Space and Planetary Probes 1958–2000 ASIF A. SIDDIQI Monographs in Aerospace History Number 24 June 2002 National Aeronautics and Space Administration Office of External Relations NASA History Office Washington, DC 20546-0001 Library of Congress Cataloging-in-Publication Data Siddiqi, Asif A., 1966­ Deep space chronicle: a chronology of deep space and planetary probes, 1958-2000 / by Asif A. Siddiqi. p.cm. – (Monographs in aerospace history; no. 24) (NASA SP; 2002-4524) Includes bibliographical references and index. 1. Space flight—History—20th century. I. Title. II. Series. III. NASA SP; 4524 TL 790.S53 2002 629.4’1’0904—dc21 2001044012 Table of Contents Foreword by Roger D.
    [Show full text]
  • Is It Lunar Or Lunacy?
    Is It Lunar or Lunacy? Summary Learn all about the moon, its phases and even how to make a model. Materials One 4" foam ball to represent Earth One foam ball to represent moon (1/4 size of the Earth) Twelve wooden Skewers pointed on each end Black paint Red paint or red permanent marker Heavy foam board measuring 26" X 26" between 3/4" to an inch" in thickness Hula hoop Protractor Straw String Two small washers - Galileo - Moon Phase Chart - The Rising and Setting of the Sun Table - The Rising and Setting of the Moon Table - Instructions for Making Moon Model Additional Resources Books - Earth, Moon, and Sun--Earth Science Delta Science Module , Teacher's Guide. ISBN# 0-87504-166-3 - Earth, Moon, and Stars -- LHS GEMS, Teacher's Guide ISBN# 0-912511-18-4 - The Moon Book , by Gail Gibbons - Galileo , by Leonard Everett Fisher ISBN# 0-02-735235-8 - The Universe at Your Fingertips--An Astronomy Activity and Resource Notebook Project ASTRO Astronomical Society of the Pacific (415) 337 - 1100 ISBN# 1-886733-00-7 Videos - How and Why--The Moon and the Universe , Volume 4. 1-888-661d-8104 www.mediakids.com Background for Teachers When Buzz Aldrin first stepped on the lunar surface and looked around at the alien landscape, he exclaimed: "Magnificent desolation!" It was a perfect description of the stark, inhospitable lunar surface which has no atmosphere or water. Standing on the Moon's surface, the astronauts saw a barren vista of rocks, boulders and fine dust. In the distance, rounded hills and mountains reaching toward an utterly black sky, whether it was day or night.
    [Show full text]
  • From the Editor Chair's Report by Bernie Venasse Volume 24
    Volume 24, Number 6 April 2017 From The Chair’s Report by Bernie Venasse Editor Hamilton Amateur Astronomers General Meeting for April 7th 2017. With the arrival of Note that this occurs on the FIRST Friday of the month…… April, winter skies and Our scheduled speaker this month is Dr. Pauline Barmby, visiting us from weather give way to Western University in London, Ontario. Her presentation will focus on the past, the Spring constel- present, and future of big data in astronomy. lations and Spring “Big data” is the hot new thing in finance, health care, advertising and weather …and more. But as one of the first observational sciences, astronomy has been dealing hopefully clearer with big data for thousands of years. New and imminent facilities for capturing skies! and storing astronomical observations will lead to what some call the “tsunami of data” in astronomy. Techniques like machine learning and citizen science Happy Reading! are needed to get the most science out of these enormous datasets. You will learn how big our big data in astronomy really is, and about some of the Bob Christmas, Editor discoveries that it has enabled. Pauline Barmby is an associate professor in Western’s Department of editor ‘AT’ Physics & Astronomy and associate dean (graduate and postdoctoral studies) amateurastronomy.org in Western’s Faculty of Science. She received her BSc in Physics and Astronomy (Continued on page 2) IN THIS ISSUE: § NASA’s Space Place § Snippets from April Fools’ Day § § Cartoon Corner March 2017 General Meeting Summary § § The Sky This Month 2017 Calendar of Events § § Upcoming McCallion Planetarium Shows Treasurer’s Report § § Easter and Astronomy Upcoming Events Contact Information Hamilton Amateur Astronomers Event Horizon April 2017 Page 1 Chair’s Report (continued) H.A.A.’s Loaner Scope Program from UBC (1995) and her PhD in Astronomy We at the HAA are proud of our from Harvard University (2001).
    [Show full text]
  • Eclipse Observations Enabled by NASA's Lunar Reconnaissance
    National Aeronautics and Space Administration Eclipse Observations enabled by NASA’s Lunar Reconnaissance Orbiter Eclipse Observations enabled by NASA’s Lunar Reconnaissance Orbiter Data from NASA’s Lunar Reconnaissance Orbiter (LRO) is revolutionizing our understanding of the Moon. With LRO, we have found evidence of recent lunar volcanism. Some lava may have erupted onto the Moon’s surface only tens to hundreds of millions of years ago, instead of billions of years ago, as previously thought. We have found faults that indicate the entire Moon is shrinking! (Just a little bit, within the past few million years.) LRO has also witnessed changes on the Moon’s surface (including lots of new impact craters) since the mission began in 2009. Every day, this spacecraft is helping us better understand our nearest celestial neighbor, and processes that are occurring throughout the Solar System. You can learn more about these discoveries on LRO’s website, www.nasa.gov/lro. A B Thanks to LRO’s onboard laser altimeter and high-resolution cameras we know the shape of the Moon better than any other object in the Solar System – including Earth (since the majority of the Earth’s solid surface is under water). The top left image (A), shows the topography of the Moon, where cool colors represent low elevations and warm colors show areas with higher elevation. The blue line surrounding the Moon in the top right image (B) shows the outline of the Moon’s topographic profile, exaggerated 20 times. The bottom image shows an oblique view of the Orientale basin: an example of the rough topography found on the Moon.
    [Show full text]