DÜNDEN BUGÜNE İNTEL İŞLEMCİLER Hazırlayan Miraç ATMİŞ

Total Page:16

File Type:pdf, Size:1020Kb

DÜNDEN BUGÜNE İNTEL İŞLEMCİLER Hazırlayan Miraç ATMİŞ DÜNDEN BUGÜNE İNTEL İŞLEMCİLER Hazırlayan Miraç ATMİŞ Intel 4004 microprocessor family(1971) Intel C4004 Intel D4004 Intel P4004 National Semiconductor 1NS4004D (INS4004D) National Semiconductor was the only second source company for the Intel 4004. The company announced second-sourcing of 4004 family at the beginning of 1975, started shipping samples in December 1974 - January 1975, and full production started in May - June 1975. National's version of MCS-4 family was called "Four-Bit Integrated Processor System" (FIPS), and included all chips from MCS-4 family - INS4001 ROM and I/O port, INS4002 RAM and I/O port, INS4003 serial shift register, INS4004 CPU, INS4008 address latch interface and INS4009 I/O tranfer port. National Semiconductor claimed that FIPS had 20% lower power consumption than MSC-4. National Semiconductor INS4004J Intel 4040 (i4040) microprocessor family(1972) Intel C4040 Intel D4040 Intel P4040 Intel 8008 (i8008) microprocessor family(1972) DDR U808D 18-pin DIP East German clone of Intel 8008 processor Intel C8008 (purple/gold/gold) Intel C8008 (no ground strap) Intel C8008-1 Intel D8008 Intel D8008-1 Microsystems International MF8008R Microsystems International MF8008-1R Siemens SAB8008-1C 0.8 MHz 18-pin ceramic DIP Purple ceramic/gold top/gold pins Intel 8080 family(1974) Intel 8080 Intel 8080A 2 MHz 40-pin ceramic DIP White ceramic/gold top/gold pins Customer sample No "C" prefix Intel 8085 Intel C8085 3 MHz 40-pin ceramic DIP Purple ceramic/black top/tin pins Intel 8086 Intel C8086 5 MHz 40-pin ceramic DIP Rare Intel C8086 processor in purple ceramic DIP package with side-brazed pins. 8086 processors in this package were produced for short period of time. This processor was manufactured in week 32 of 1978 - shortly after the 8086 family was introduced in June 1978. Intel 8088 Intel MD8088-2/B 8 MHz 40-pin ceramic DIP Intel 80186 Intel 80188 Intel 80286-4 Intel A80376 Intel 80386 Intel80486 Intel Pentium microprocessor family(1993) Desktop Pentium Desktop Pentium MMX Mobile Pentium Mobile Pentium MMX Intel Pentium II (Pentium 2) processor family(1997) Pentium Pro Desktop Pentium II Intel Celeron processor family(1998) Celeron (Covington) Celeron (Coppermine) Celeron (Tualatin) Celeron (Willamette) Celeron (Northwood) Mobile Celeron (Northwood) Intel Timna microprocessor family Intel Timna 600 MHz - RB80529RZ600128 Intel Pentium III processor family(1999) Pentium III (Katmai) Pentium III (Coppermine) Pentium III (Tualatin) Mobile Pentium III Intel Pentium 4 processor family (2000) Desktop Pentium 4 Willamette Desktop Pentium 4 Northwood Desktop Pentium 4 Prescott Mobile Pentium 4-M Mobile Pentium 4 Intel Pentium M microprocessor family(2003) Pentium M Banias Pentium M Dothan Intel Celeron D processor family(2004) Celeron D (Prescott) Celeron D (Cedar Mill) Intel Celeron M microprocessor family(2004) Celeron M Banias Celeron M Dothan Intel Pentium D microprocessor family(2005) Pentium D (Smithfield) Pentium D (Presler) Intel Xeon Xeon Foster Xeon Foster MP Xeon Prestonia Xeon MP Gallatin Xeon 7000 Xeon 3000 Itanium(2001) Intel Itanium 733 - 80541KZ7332M Intel Itanium 800 - 80541KZ8002M Intel Core Solo microprocessors(2006) Intel Core Solo U1400 LE80538UE0092M Intel Core Solo T1200 LF80538GF0212M Intel Core Solo T1400 LF80538GF0342M (BX80538T1400) Intel Core Solo T1350 LF80538GE0362M (BX80538T1350) Intel Core Duo microprocessors(2006) Intel Core Duo U2500 LE80539UE0092M Intel Core Duo T2400 LF80539GF0342M (BX80539T2400) Intel Core 2 Duo / Quad / Extreme microprocessor families(2006) Core 2 Duo Core 2 Quad Core 2 Duo Mobile Intel Core 2 Extreme QX6700 HH80562PH0678M (BX80562QX6700) Intel Pentium Dual-Core microprocessor family(2007) Pentium Dual-Core Pentium Dual-Core Mobile Intel Celeron Dual-Core microprocessors(2008) Celeron Dual-Core Mobile Celeron Dual-Core Core i3 Core i5 Core i7 Intel® Atom™ Processor Family Desktop Intel® Celeron® Processor Desktop processors Intel® Pentium® Processor Desktop processors Intel® Core™ i3 Processor Desktop processors Intel® Core™ i5 Processor Desktop processors Intel® Core™ i7 Processor Desktop processors Intel® Core™ i7 Processor Extreme Edition Desktop processors Intel® Core™2 Duo işlemci Desktop processors Intel® Core™2 Quad İşlemciler Desktop processors Intel® Celeron® Processor Laptop processors Intel® Core™ i3 Mobile Processor Laptop processors Intel® Core™ i5 Mobile Processor Laptop processors Intel® Core™ i7 Mobile Processor Laptop processors Intel® Core™ i7 Mobile Processor Extreme Edition Laptop processors Intel® Core™2 Solo Mobile Processor Laptop processors Intel® Core™2 Duo Mobil İşlemci Laptop processors Intel® Core™2 Quad Mobil İşlemci Laptop processors Intel® Core™2 Extreme Mobil İşlemci Laptop processors .
Recommended publications
  • Floating-Point Package for Intel 8008 and 8080 Microprocessors
    UCRL-51940 FLOATING-POINT PACKAGE FOR INTEL 8008 AND 8080 MICROPROCESSORS Michael D. Maples October 24, 1975 Prepared for U.S. Energy Research& Development Administration under contract No. W-7405-Eng-48 I_AV~=IENCE I_IVEFIMORE I.ABOFIATOFIY University ol Calilomia ~ Livermore ~ NOTICE .sponsored by tht: United $~ates G~ven~menl.Neilhe~ the United States nor the United ~tates I’:n,~rgy of their employees,IIOr lilly of their eorltl’ilctclrs~ warranty~ express t~r implied, or asstltlleS ~t]y legld liability or responsihilit y fnr the accuracy, apparatus, product or ])rc)eess disclosed, represents that its rise would IIt~l illl’r liege privlttely-owned rights." Printed in the United States of America Avai.] able from National Technical. information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, Virginia 22151 Price: Printed Copy $ *; Microfiche $2.25 NTIS ""Pages _Sellin_.g Price 1-50 $4.00 51-150 $5.45 151-325 $7.60 326-500 $10.60 501.-1000 $13.60 DISCI.AlMBR This documeut was prepared as an account of work sponsored by an agency of the United States Gnvernment.Neither the United States Governmentnor the University of California nor any of their employees,makes any warranty, express or implied, or assumesany legal liability or responsibility for the accuracy, complete.aess, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use wouldnot infrioge privately ownedrights. Refarenceherein to any specific commercialproduct, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation,or favoring by the United States Govermnentor the University of California.
    [Show full text]
  • Microprocessori
    Microprocessori R.k.e. edizioni Antonio Pucci Microprocessori R.k.e. edizioni Indice Introduzione Cpu o microprocessore pagina 7 Il primo processore pagina 8 Elenco dei processori per anno pagina 11 Elenco dei processori per codice pagina 27 Net-o-grafia pagina 61 5 Introduzione CPU o microprocessore Un microprocessore spesso abbreviato con µP è esempio di microprocessore un componente elettronico digitale formato da permise di ridurre transistor racchiuso in uno significativamente i costi dei o più circuiti integrati. calcolatori. Uno o più processori sono Dagli anni 80 in poi i utilizzati come Cpu da un microprocessori sono sistema di elaborazione praticamente l’unica digitale come può essere un implementazione di Cpu. personal computer, un palmare, un telefono cellulare o un altro dispositivo digitale. La costruzione dei microprocessori fu resa possibile dall’avvento della tecnologia Lsi: integrando una Cpu completa in un solo chip 7 Il primo processore L’ obbiettivo del progetto era pre-programmate. Comunque sia nel 1971 equipaggiare il nuovo F-14 Il 17 settembre 1971 che nel 1976 Intel e Ti Tomcat che allora era in annunciò il modello Tms stipularono un accordo sviluppo. 1802 Nc, programmabile, in cui Intel pagava a Ti Il progetto venne che poteva essere i diritti per l’utilizzo del completato nel 1970 e utilizzato per implementare suo brevetto. Un riassunto utilizzava integrati mos per un calcolatore. della storia e contenuto nella il core della Cpu. L’ Intel 4004, processore a documentazione che Intel Il microprocessore Il proggetto era semplice e 4 Bit, venne presentato il 15 presentò in tribunale quando apparve appena la tecnologia innovativo e novembre 1971 e fu fu chiamata in giudizio da lo consentì dato che l’idea vinse sui competitori sviluppato da Federico Cyrix per violazione dei di integrare i componenti elettromeccanici Faggin.
    [Show full text]
  • 8088 8-Bit Hmos Microprocessor 8088 8088-2
    8088 8-BIT HMOS MICROPROCESSOR 8088/8088-2 Y 8-Bit Data Bus Interface Y Byte, Word, and Block Operations Y 16-Bit Internal Architecture Y 8-Bit and 16-Bit Signed and Unsigned Arithmetic in Binary or Decimal, Y Direct Addressing Capability to 1 Mbyte of Memory Including Multiply and Divide Y Two Clock Rates: Y Direct Software Compatibility with 8086 CPU Ð 5 MHz for 8088 Ð 8 MHz for 8088-2 Y 14-Word by 16-Bit Register Set with Symmetrical Operations Y Available in EXPRESS Ð Standard Temperature Range Y 24 Operand Addressing Modes Ð Extended Temperature Range The Intel 8088 is a high performance microprocessor implemented in N-channel, depletion load, silicon gate technology (HMOS-II), and packaged in a 40-pin CERDIP package. The processor has attributes of both 8- and 16-bit microprocessors. It is directly compatible with 8086 software and 8080/8085 hardware and periph- erals. 231456±2 Figure 2. 8088 Pin Configuration 231456±1 Figure 1. 8088 CPU Functional Block Diagram August 1990 Order Number: 231456-006 8088 Table 1. Pin Description The following pin function descriptions are for 8088 systems in either minimum or maximum mode. The ``local bus'' in these descriptions is the direct multiplexed bus interface connection to the 8088 (without regard to additional bus buffers). Symbol Pin No. Type Name and Function AD7±AD0 9±16 I/O ADDRESS DATA BUS: These lines constitute the time multiplexed memory/IO address (T1) and data (T2, T3, Tw, T4) bus. These lines are active HIGH and float to 3-state OFF during interrupt acknowledge and local bus ``hold acknowledge''.
    [Show full text]
  • Computer Organization and Architecture Designing for Performance Ninth Edition
    COMPUTER ORGANIZATION AND ARCHITECTURE DESIGNING FOR PERFORMANCE NINTH EDITION William Stallings Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo Editorial Director: Marcia Horton Designer: Bruce Kenselaar Executive Editor: Tracy Dunkelberger Manager, Visual Research: Karen Sanatar Associate Editor: Carole Snyder Manager, Rights and Permissions: Mike Joyce Director of Marketing: Patrice Jones Text Permission Coordinator: Jen Roach Marketing Manager: Yez Alayan Cover Art: Charles Bowman/Robert Harding Marketing Coordinator: Kathryn Ferranti Lead Media Project Manager: Daniel Sandin Marketing Assistant: Emma Snider Full-Service Project Management: Shiny Rajesh/ Director of Production: Vince O’Brien Integra Software Services Pvt. Ltd. Managing Editor: Jeff Holcomb Composition: Integra Software Services Pvt. Ltd. Production Project Manager: Kayla Smith-Tarbox Printer/Binder: Edward Brothers Production Editor: Pat Brown Cover Printer: Lehigh-Phoenix Color/Hagerstown Manufacturing Buyer: Pat Brown Text Font: Times Ten-Roman Creative Director: Jayne Conte Credits: Figure 2.14: reprinted with permission from The Computer Language Company, Inc. Figure 17.10: Buyya, Rajkumar, High-Performance Cluster Computing: Architectures and Systems, Vol I, 1st edition, ©1999. Reprinted and Electronically reproduced by permission of Pearson Education, Inc. Upper Saddle River, New Jersey, Figure 17.11: Reprinted with permission from Ethernet Alliance. Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on the appropriate page within text. Copyright © 2013, 2010, 2006 by Pearson Education, Inc., publishing as Prentice Hall. All rights reserved. Manufactured in the United States of America.
    [Show full text]
  • Lecture Notes in Assembly Language
    Lecture Notes in Assembly Language Short introduction to low-level programming Piotr Fulmański Łódź, 12 czerwca 2015 Spis treści Spis treści iii 1 Before we begin1 1.1 Simple assembler.................................... 1 1.1.1 Excercise 1 ................................... 2 1.1.2 Excercise 2 ................................... 3 1.1.3 Excercise 3 ................................... 3 1.1.4 Excercise 4 ................................... 5 1.1.5 Excercise 5 ................................... 6 1.2 Improvements, part I: addressing........................... 8 1.2.1 Excercise 6 ................................... 11 1.3 Improvements, part II: indirect addressing...................... 11 1.4 Improvements, part III: labels............................. 18 1.4.1 Excercise 7: find substring in a string .................... 19 1.4.2 Excercise 8: improved polynomial....................... 21 1.5 Improvements, part IV: flag register ......................... 23 1.6 Improvements, part V: the stack ........................... 24 1.6.1 Excercise 12................................... 26 1.7 Improvements, part VI – function stack frame.................... 29 1.8 Finall excercises..................................... 34 1.8.1 Excercise 13................................... 34 1.8.2 Excercise 14................................... 34 1.8.3 Excercise 15................................... 34 1.8.4 Excercise 16................................... 34 iii iv SPIS TREŚCI 1.8.5 Excercise 17................................... 34 2 First program 37 2.1 Compiling,
    [Show full text]
  • Lecture 1: Course Introduction G Course Organization G Historical Overview G Computer Organization G Why the MC68000? G Why Assembly Language?
    Lecture 1: Course introduction g Course organization g Historical overview g Computer organization g Why the MC68000? g Why assembly language? Microprocessor-based System Design 1 Ricardo Gutierrez-Osuna Wright State University Course organization g Grading Instructor n Exams Ricardo Gutierrez-Osuna g 1 midterm and 1 final Office: 401 Russ n Homework Tel:775-5120 g 4 problem sets (not graded) [email protected] n Quizzes http://www.cs.wright.edu/~rgutier g Biweekly Office hours: TBA n Laboratories g 5 Labs Teaching Assistant g Grading scheme Mohammed Tabrez Office: 339 Russ [email protected] Weight (%) Office hours: TBA Quizes 20 Laboratory 40 Midterm 20 Final Exam 20 Microprocessor-based System Design 2 Ricardo Gutierrez-Osuna Wright State University Course outline g Module I: Programming (8 lectures) g MC68000 architecture (2) g Assembly language (5) n Instruction and addressing modes (2) n Program control (1) n Subroutines (2) g C language (1) g Module II: Peripherals (9) g Exception processing (1) g Devices (6) n PI/T timer (2) n PI/T parallel port (2) n DUART serial port (1) g Memory and I/O interface (1) g Address decoding (2) Microprocessor-based System Design 3 Ricardo Gutierrez-Osuna Wright State University Brief history of computers GENERATION FEATURES MILESTONES YEAR NOTES Asia Minor, Abacus 3000BC Only replaced by paper and pencil Mech., Blaise Pascal, Pascaline 1642 Decimal addition (8 decimal figs) Early machines Electro- Charles Babbage Differential Engine 1823 Steam powered (3000BC-1945) mech. Herman Hollerith,
    [Show full text]
  • The Birth, Evolution and Future of Microprocessor
    The Birth, Evolution and Future of Microprocessor Swetha Kogatam Computer Science Department San Jose State University San Jose, CA 95192 408-924-1000 [email protected] ABSTRACT timed sequence through the bus system to output devices such as The world's first microprocessor, the 4004, was co-developed by CRT Screens, networks, or printers. In some cases, the terms Busicom, a Japanese manufacturer of calculators, and Intel, a U.S. 'CPU' and 'microprocessor' are used interchangeably to denote the manufacturer of semiconductors. The basic architecture of 4004 same device. was developed in August 1969; a concrete plan for the 4004 The different ways in which microprocessors are categorized are: system was finalized in December 1969; and the first microprocessor was successfully developed in March 1971. a) CISC (Complex Instruction Set Computers) Microprocessors, which became the "technology to open up a new b) RISC (Reduced Instruction Set Computers) era," brought two outstanding impacts, "power of intelligence" and "power of computing". First, microprocessors opened up a new a) VLIW(Very Long Instruction Word Computers) "era of programming" through replacing with software, the b) Super scalar processors hardwired logic based on IC's of the former "era of logic". At the same time, microprocessors allowed young engineers access to "power of computing" for the creative development of personal 2. BIRTH OF THE MICROPROCESSOR computers and computer games, which in turn led to growth in the In 1970, Intel introduced the first dynamic RAM, which increased software industry, and paved the way to the development of high- IC memory by a factor of four.
    [Show full text]
  • Class-Action Lawsuit
    Case 3:20-cv-00863-SI Document 1 Filed 05/29/20 Page 1 of 279 Steve D. Larson, OSB No. 863540 Email: [email protected] Jennifer S. Wagner, OSB No. 024470 Email: [email protected] STOLL STOLL BERNE LOKTING & SHLACHTER P.C. 209 SW Oak Street, Suite 500 Portland, Oregon 97204 Telephone: (503) 227-1600 Attorneys for Plaintiffs [Additional Counsel Listed on Signature Page.] UNITED STATES DISTRICT COURT DISTRICT OF OREGON PORTLAND DIVISION BLUE PEAK HOSTING, LLC, PAMELA Case No. GREEN, TITI RICAFORT, MARGARITE SIMPSON, and MICHAEL NELSON, on behalf of CLASS ACTION ALLEGATION themselves and all others similarly situated, COMPLAINT Plaintiffs, DEMAND FOR JURY TRIAL v. INTEL CORPORATION, a Delaware corporation, Defendant. CLASS ACTION ALLEGATION COMPLAINT Case 3:20-cv-00863-SI Document 1 Filed 05/29/20 Page 2 of 279 Plaintiffs Blue Peak Hosting, LLC, Pamela Green, Titi Ricafort, Margarite Sampson, and Michael Nelson, individually and on behalf of the members of the Class defined below, allege the following against Defendant Intel Corporation (“Intel” or “the Company”), based upon personal knowledge with respect to themselves and on information and belief derived from, among other things, the investigation of counsel and review of public documents as to all other matters. INTRODUCTION 1. Despite Intel’s intentional concealment of specific design choices that it long knew rendered its central processing units (“CPUs” or “processors”) unsecure, it was only in January 2018 that it was first revealed to the public that Intel’s CPUs have significant security vulnerabilities that gave unauthorized program instructions access to protected data. 2. A CPU is the “brain” in every computer and mobile device and processes all of the essential applications, including the handling of confidential information such as passwords and encryption keys.
    [Show full text]
  • Professor Won Woo Ro, School of Electrical and Electronic Engineering Yonsei University the Intel® 4004 Microprocessor, Introdu
    Professor Won Woo Ro, School of Electrical and Electronic Engineering Yonsei University The 1st Microprocessor The Intel® 4004 microprocessor, introduced in November 1971 An electronics revolution that changed our world. There were no customer‐ programmable microprocessors on the market before the 4004. It propelled software into the limelight as a key player in the world of digital electronics design. 4004 Microprocessor Display at New Intel Museum A Japanese calculator maker (Busicom) asked to design: A set of 12 custom logic chips for a line of programmable calculators. Marcian E. "Ted" Hoff Recognized the integrated circuit technology (of the day) had advanced enough to build a single chip, general purpose computer. Federico Faggin to turn Hoff's vision into a silicon reality. (In less than one year, Faggin and his team delivered the 4004, which was introduced in November, 1971.) The world's first microprocessor application was this Busicom calculator. (sold about 100,000 calculators.) Measuring 1/8 inch wide by 1/6 inch long, consisting of 2,300 transistors, Intel’s 4004 microprocessor had as much computing power as the first electronic computer, ENIAC. 2 inch 4004 and 12 inch Core™2 Duo wafer ENIAC, built in 1946, filled 3000‐cubic‐ feet of space and contained 18,000 vacuum tubes. The 4004 microprocessor could execute 60,000 operations per second Running frequency: 108 KHz Founders wanted to name their new company Moore Noyce. However the name sounds very much similar to “more noise”. "Only the paranoid survive". Moore received a B.S. degree in Chemistry from the University of California, Berkeley in 1950 and a Ph.D.
    [Show full text]
  • CISC Processor - Intel X86
    Architecture of Computers and Parallel Systems Part 4: Intel x86 History Ing. Petr Olivka [email protected] Department of Computer Science FEI VSB-TUO Architecture of Computers and Parallel Systems Part 4: Intel x86 History Ing. Petr Olivka [email protected] Department of Computer Science FEI VSB-TUO Architecture of Computers and Parallel Systems Part 4: Intel x86 History Ing. Petr Olivka [email protected] Department of Computer Science FEI VSB-TUO CISC Processor - Intel x86 This chapter will introduce the CISC processors evolution. We will try to illustrate the history on one typical processor, because the comparison of multiple processors simultaneously would not be clear for readers. But the selection of one typical processor is complicated due to a variety of products and manufactures in the past 30 years. We have decided to describe in this presentation one of the best- known and longest mass-produced processors in existence. We definitely do not want to say that it is the best technology or that these are processors with the highest performance! The Intel x86 processors are the selected product line. Intel 8080 (Year-Technology-Transistors-Frequency-Data bus-Address Bus) Y: 1974 T: NMOS 6μm Tr: 6000 F: 2MHz D: 8b A: 16b This 8 bit processor is not directly the first member of x86 series, but it can not be skipped. It is one of the first commercially successful microprocessors. This microprocessor became the basis for a number of the first single-board computers and its instruction set inspired other manufacturers to develop 8-bit processors.
    [Show full text]
  • Iapx 286 PROGRAMMER's REFERENCE MANUAL
    iAPX 286 PROGRAMMER'S REFERENCE MANUAL 1983 -. Additional copies of this manual or other Intel literature may be obtained from: Literature Department Intel Corporation 3065 Bowers Avenue Santa Clara, CA 95051 The information in this document is subject to change without notice. Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no commitment to update nor to keep current the information contained in this document. Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent licenses are implied. Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, dupli­ cation or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR 7-104.9(a)(9). No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Intel Corporation. The following are trademarks of Intel Corporation and its affiliates and may be used to identify Intel products: AEDIT iDiS Intellink MICROMAINFRAME BITBUS iLBX iOSP MULTIBUS BXP im iPDS MULTICHANNEL COMMputer iMMX iRMX MULTIMODULE CREDIT Insite iSBC Plug-A-Bubble i intel iSBX PROMPT 12ICE intelBOS iSDM Ripplemode iATC Intelevision iSXM RMX/80 ICE inteligent Identifier Library Manager RUPI iCS inteligent Programming MCS System 2000 iDBP Intellec Megachassis UPI Table of Contents CHAPTER 1 Page INTRODUCTION TO iAPX 286 General Attributes .........
    [Show full text]
  • How Microprocessors Work E 1 of 64 ZM
    How Microprocessors Work e 1 of 64 ZM How Microprocessors Work ZAHIDMEHBOOB +923215020706 [email protected] 2003 BS(IT) PRESTION UNIVERSITY How Microprocessors Work The computer you are using to read this page uses a microprocessor to do its work. The microprocessor is the heart of any normal computer, whether it is a desktop machine, a server or a laptop. The microprocessor you are using might be a Pentium, a K6, a PowerPC, a Sparc or any of the many other brands and types of microprocessors, but they all do approximately the same thing in approximately the same way. If you have ever wondered what the microprocessor in your computer is doing, or if you have ever wondered about the differences between types of microprocessors, then read on. Microprocessor History A microprocessor -- also known as a CPU or central processing unit -- is a complete computation engine that is fabricated on a single chip. The first microprocessor was the Intel [email protected] +923215020706 (2003) How Microprocessors Work e 2 of 64 ZM 4004, introduced in 1971. The 4004 was not very powerful -- all it could do was add and subtract, and it could only do that 4 bits at a time. But it was amazing that everything was on one chip. Prior to the 4004, engineers built computers either from collections of chips or from discrete components (transistors wired one at a time). The 4004 powered one of the first portable electronic calculators. The first microprocessor to make it into a home computer was the Intel 8080, a complete 8- bit computer on one chip, introduced in 1974.
    [Show full text]