Anatomy of a Feather

Total Page:16

File Type:pdf, Size:1020Kb

Anatomy of a Feather eXtension Anatomy of a Feather articles.extension.org/pages/65367/anatomy-of-a-feather Written by: Dr. Jacquie Jacob, University of Kentucky Birds come in different shapes and sizes, but one thing they have in common is feathers. Feathers are unique to birds; that is, everything that has feathers is a bird. Figure 1 shows feathers of various sizes, shapes, colors, and purposes on an adult male rooster. Fig. 1. Parts of an adult male rooster. Source: John Anderson, The Ohio State University. Feathers play three main roles in birds' lives: Feathers provide insulation, allowing birds to maintain their body temperatures in a wide variety of environmental conditions. Certain feathers are instrumental in allowing birds to fly. Because they come in different shapes and colors, feathers provide individual plumage that can serve to camouflage a bird or attract a mate. Figures 2 and 3 illustrate features of flight feathers, and Figure 4 shows a feather whose purpose is ornamentation. Fig. 2. Parts of a feather. Source: Jesse Lyons, University of Missouri. Fig. 3. Electron microscope image of part of a pheasant secondary flight feather. Flight feathers must be tough to withstand the rigors of flight. The barbs on a flight feather are strong and are connected to adjoining barbs of the same vane by the hooks on the barbules. Source: John Anderson, The Ohio State University. Fig. 4. Electron microscope image of part of a peacock eye feather. This feather is ornamental and not meant to withstand the forces a flight feather must endure. Spacing exists between the barbs, and the hooks do not hold the barbs together. The ridges on the barbs are part of the complex color-producing system present on peafowl. Source: The Ohio State University. .
Recommended publications
  • Magnificent Magpie Colours by Feathers with Layers of Hollow Melanosomes Doekele G
    © 2018. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2018) 221, jeb174656. doi:10.1242/jeb.174656 RESEARCH ARTICLE Magnificent magpie colours by feathers with layers of hollow melanosomes Doekele G. Stavenga1,*, Hein L. Leertouwer1 and Bodo D. Wilts2 ABSTRACT absorption coefficient throughout the visible wavelength range, The blue secondary and purple-to-green tail feathers of magpies are resulting in a higher refractive index (RI) than that of the structurally coloured owing to stacks of hollow, air-containing surrounding keratin. By arranging melanosomes in the feather melanosomes embedded in the keratin matrix of the barbules. barbules in more or less regular patterns with nanosized dimensions, We investigated the spectral and spatial reflection characteristics of vivid iridescent colours are created due to constructive interference the feathers by applying (micro)spectrophotometry and imaging in a restricted wavelength range (Durrer, 1977; Prum, 2006). scatterometry. To interpret the spectral data, we performed optical The melanosomes come in many different shapes and forms, and modelling, applying the finite-difference time domain (FDTD) method their spatial arrangement is similarly diverse (Prum, 2006). This has as well as an effective media approach, treating the melanosome been shown in impressive detail by Durrer (1977), who performed stacks as multi-layers with effective refractive indices dependent on extensive transmission electron microscopy of the feather barbules the component media. The differently coloured magpie feathers are of numerous bird species. He interpreted the observed structural realised by adjusting the melanosome size, with the diameter of the colours to be created by regularly ordered melanosome stacks acting melanosomes as well as their hollowness being the most sensitive as optical multi-layers.
    [Show full text]
  • The Molecular Evolution of Feathers with Direct Evidence from Fossils
    The molecular evolution of feathers with direct evidence from fossils Yanhong Pana,1, Wenxia Zhengb, Roger H. Sawyerc, Michael W. Penningtond, Xiaoting Zhenge,f, Xiaoli Wange,f, Min Wangg,h, Liang Hua,i, Jingmai O’Connorg,h, Tao Zhaoa, Zhiheng Lig,h, Elena R. Schroeterb, Feixiang Wug,h, Xing Xug,h, Zhonghe Zhoug,h,i,1, and Mary H. Schweitzerb,j,1 aChinese Academy of Sciences Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China; bDepartment of Biological Sciences, North Carolina State University, Raleigh, NC 27695; cDepartment of Biological Sciences, University of South Carolina, Columbia, SC 29205; dAmbioPharm Incorporated, North Augusta, SC 29842; eInstitute of Geology and Paleontology, Lingyi University, Lingyi City, 27605 Shandong, China; fShandong Tianyu Museum of Nature, Pingyi, 273300 Shandong, China; gCAS Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 100044 Beijing, China; hCenter for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 100044 Beijing, China; iCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China; and jNorth Carolina Museum of Natural Sciences, Raleigh, NC 27601 Contributed by Zhonghe Zhou, December 15, 2018 (sent for review September 12, 2018; reviewed by Dominique G. Homberger and Chenxi Jia) Dinosaur fossils possessing integumentary appendages of various feathers in Anchiornis, barbules that interlock to form feather morphologies, interpreted as feathers, have greatly enhanced our vanes critical for flight have not been identified yet (12).
    [Show full text]
  • External Examination of Seabirds: Plumage & Morphometrics
    External Examination of Seabirds: Plumage & Morphometrics Quantitative analysis of form, encompasses size and shape Seabird Topography ➢ Naming Conventions: • Parts of the body • Types of feathers (Harrison 1983) Types of Feathers Coverts: Rows bordering and overlaying the edges of the tail and wings on both the lower and upper sides of the body. Help streamline shape of the wings and tail and provide the bird with insulation. Feather Tracks ➢ Feathers are not attached randomly. • They occur in linear tracts called pterylae. • Spaces on bird's body without feather tracts are called apteria. • Densest area for feather tracks is head and neck. • Feathers arranged in distinct layers: contour feathers overlay down. Generic Pterylae Types of Feathers Contour feathers: outermost feathers. Define the color and shape of the bird. Contour feathers lie on top of each other, like shingles on a roof. Shed water, keeping body dry and insulated. Each contour feather controlled by specialized muscles which control their position, allowing the bird to keep the feathers in clean and neat condition. Specialized contour feathers used for flight: delineate outline of wings and tail. Types of Feathers Flight feathers – special contour feathers Define outline of wings and tail Long and stiff Asymmetrical those on wings are called remiges (singular remex) those on tail are called retrices (singular retrix) Types of Flight Feathers Remiges: Largest contour feathers (primaries / secondaries) Responsible for supporting bird during flight. Attached by ligaments or directly to the wing bone. Types of Flight Feathers Flight feathers – special contour feathers Rectrices: tail feathers provide flight stability and control. Connected to each other by ligaments, with only the inner- most feathers attached to bone.
    [Show full text]
  • Colour De Verre Molds: Feather
    REUSABLE MOLDS FOR GLASS CASTING With either product, clean the See our website’s Learn section for mold with a stiff nylon brush and/ more instructions about priming or toothbrush to remove any old Colour de Verre molds with ZYP. kiln wash or boron nitride. (This step can be skipped if the mold is Filling the Feather brand new.) The suggested fill weight for the Feather is 330 to 340 grams. The If you are using Hotline Primo most simple way to fill the Feather Primer, mix the product according mold is to weigh out 330 of fine to directions. Apply the Primo frit and to evenly distribute the frit Primer™ with a soft artist’s brush in the mold. Fire the mold and frit (not a hake brush) and use a hair according the Casting Schedule Feather dryer to completely dry the coat. below. This design is also a perfect Create feathers that are as fanci- Give the mold four to five thin, candidate for our Wafer-Thin ful or realistic as you like with even coats drying each coat with a technique. One can read more Colour de Verre’s Feather de- hair dryer before applying the about this at www.colourdeverre.- sign. Once feathers are cast, next. Make sure to keep the Primo they can be slumped into amaz- com/go/wafer. ing decorative or functional well stirred as it settles quickly. pieces. The mold should be totally dry before filling. There is no reason to nnn pre-fire the mold. To use ZYP, hold the can 10 to 12 Feathers are a design element that inches from the mold.
    [Show full text]
  • Feathered Dinosaurs and the Origin of Flight
    Feathered Dinosaurs and the Origin of Flight Exhibition Organized and Circulated by: The Dinosaur Museum, Utah The Fossil Administration Office, Liaoning, China Beipiao City Paleontological Research Center, Liaoning, China THE PREHISTORIC WORLD OF LIAONING The fossils of Liaoning represent a complex ecosystem creating a more complete picture of this particular age of dinosaurs than ever before. Life of the Early Cretaceous, 120 million years ago, was far more than a world of dinosaurs. The fossils include a remarkable variety of plants, crustaceans, insects, fish, amphibians, lizards, crocodiles, aquatic reptiles, flying reptiles, as well as birds that could fly and others which were flightless. FEATHERS BEFORE BIRDS Included are graphics and photos which show developmental stages of feathers. The fossil of the flying reptile, Pterorhynchus is preserved with details of what pterosaurs looked like which have never been seen before. The body is covered with down-like feathers which resemble those also found on the dinosaur, Sinosauropteryx. Because feathers are now known to exist on animals other than birds, this discovery changes the definition of what a bird is. Pterorhynchus Sinosauropteryx FLYING DROMAEOSAURS AND THE MISTAKEN IDENTITY Dromaeosaurs have been thought to be ground-dwelling dinosaurs that represented ancestral stages of how birds evolved. Fossils in this exhibit show that they have been misinterpreted as dinosaurs when they are actually birds. Feather impressions reveal that they had flight feathers on the wings and a second set on the hind legs. Even without the feathers preserved, the avian characteristics of the skeleton demonstrate that these dromaeosaurs are birds. This discovery means that the larger dromaeosaurs, like Deinonychus and Velociraptor of “Jurassic Park” fame, were really feathered and are secondarily flightless birds.
    [Show full text]
  • Feather Loss and Feather Destructive Behavior in Pet Birds
    REVIEW FEATHER LOSS AND FEATHER DESTRUCTIVE BEHAVIOR IN PET BIRDS Jonathan Rubinstein, DVM, Dip. ABVP (Avian), and Teresa Lightfoot, DVM, Dip. ABVP (Avian) Abstract Feather loss in psittacine birds is an extremely common and extremely frustrating clinical presentation. Causes include medical and non-medical causes of feather loss both with and without overt feather destructive behavior. Underlying causes are myriad and include inappropriate husbandry and housing; parasitic, viral and bacterial infections; metabolic and allergic diseases; and behavioral disorders. Prior to a diagnosis of a behavioral disorder, medical causes of feather loss must be excluded through a complete medical work-up including a comprehensive history, physical exam, and diagnostic testing as indicated by the history, signalment and clinical signs. This article focuses on some of the more common medical and non-medical causes of feather loss and feather destructive behavior as well as approaches to diagnosis and treatment. Copyright 2012 Published by Elsevier Inc. Key words: feather destructive behavior; psittacine; behavioral disorder; feather-picking; avian behavior eather loss is one of the more common and frustrating reasons that avian patients are presented to veterinary hospitals. Several factors make the treatment of feather loss difficult. The initial problem lies in the relative scarcity of controlled studies related to the underlying causes of feather loss in companion avian species and the paucity of current veterinary medical knowledge regarding feather loss and feather destructive behavior (FDB). Although many medical and environmental conditions Fhave been associated with FDB, few have been proven to be causal. Wherever possible, this article references applicable controlled studies, although they are few.
    [Show full text]
  • Avian Feathers Function, Structure & Coloration
    A Feather from the Whippoorwill (Emily Dickinson, 1955) A feather from the Whippoorwill That everlasting -- sings! Whose galleries -- are Sunrise – Whose Opera -- the Springs – Whose Emerald Nest the Ages spin Of mellow -- murmuring thread – Whose Beryl Egg, what Schoolboys hunt In "Recess" -- Overhead! Photograph by Robert Clark—Audubon Magazine 2012 Avian Feathers Function, Structure & Coloration • Tremendous Investment – 25,000 on Tundra Swan – 2-4,000 on songbirds – 970 on hummingbird • Feather Mass=2-3X Skeletal Mass • 91% Protein (keratin) 1% Fat, 8% water • Waxy secretions and fatty acids from uropygial gland protect feathers Feather Outline • Functions in addition • Coloration to flight – Pigments – Structural Colors • Structure & Variation • Origin of feather color and recent fossil discoveries Do feathers have a function or are they just an expensive costume? • Insulation • Sound production • Sound capture • Camouflage • Aerodynamics • Sexual selection • Protection • Nesting, diet, other Diverse Functions • Crypticity – Disruptive color patterns in Killdeer and meadowlarks – Mimicry in bitterns, snipe, and woodcock Diverse Functions • Sound production for attraction – Booming of Ruffed Grouse wings – Primary flight feathers of American Woodcock – Hummingbirds • You Tube Hummingbird Music – Manakins • Manakin Wing Sound Diverse Functions • Sound gathering properties of owls and some hawks – Eastern Screech Owl – Northern Harrier (hawk) http://www.wisenaturephotos.com/NEW!!!%202-10-06.htm Diverse Functions • Support – Tail rectrices
    [Show full text]
  • Pattern and Chronology of Prebasic Molt for the Wood Thrush and Its Relation to Reproduction and Migration Departure
    Wilson Bull., 110(3), 1998, pp. 384-392 PATTERN AND CHRONOLOGY OF PREBASIC MOLT FOR THE WOOD THRUSH AND ITS RELATION TO REPRODUCTION AND MIGRATION DEPARTURE J. H. VEGA RIVERA,1,3 W. J. MCSHEA,* J. H. RAPPOLE, AND C. A. HAAS ’ ABSTRACT-Documentation of the schedule and pattern of molt and their relation to reproduction and migration departure are important, but often neglected, areas of knowledge. We radio-tagged Wood Thrushes (Hylocichlu mustelina), and monitored their movements and behavior on the U.S. Marine Corps Base, Quantico, Virginia (38” 40 ’ N, 77” 30 ’ W) from May-Oct. of 1993-1995. The molt period in adults extended from late July to early October. Molt of flight feathers lasted an average of 38 days (n = 17 birds) and there was no significant difference in duration between sexes. In 21 observed and captured individuals, all the rectrices were lost simultaneously or nearly so, and some individuals dropped several primaries over a few days. Extensive molt in Wood Thrushes apparently impaired flight efficiency, and birds at this stage were remarkably cautious and difficult to capture and observe. All breeding individuals were observed molting l-4 days after fledgling independence or last-clutch predation, except for one pair that began molt while still caring for fledglings. Our data indicate that energetics or flight efficiency constraints may dictate a separation of molt and migration. We did not observe Wood Thrushes leaving the Marine Base before completion of flight-feather molt. Departure of individuals with molt in body and head, however, was common. We caution against interpreting the lack of observations or captures of molting individuals on breeding sites as evidence that birds actually have left the area.
    [Show full text]
  • The Physical Structure, Optical Mechanics and Aesthetics of the Peacock Tail Feathers
    © 2002 WIT Press, Ashurst Lodge, Southampton, SO40 7AA, UK. All rights reserved. Web: www.witpress.com Email [email protected] Paper from: Design and Nature, CA Brebbia, L Sucharov & P Pascola (Editors). ISBN 1-85312-901-1 The physical structure, optical mechanics and aesthetics of the peacock tail feathers S.C. Burgess Department of Mechanical Engineering, University of Bristol, University Walk, Bristol, BS8 I TR, UK Abstract The peacock tail feathers have no flight or thermal function but have the sole purpose of providing an attractive display. The peacock tail produces colours by thin-film interference. There is a very high level of optimum design in the peacock feathers including optimum layer thickness, multi layers, precision co- ordination and dark background colour, This paper analyses the structure and beauty of the peacock tail. 1 Introduction Aesthetic beauty in appearance is produced by attributes such as patterns, brightness, variety, curves, blending or any combination of such attributes. Beauty is so important in engineering design that there is a whole subject called aesthetics which defines how beauty can be added to man-made products’, An object can have two types of beauty: inherent beauty and added beauty, Inherent beauty is a beauty that exists as a hi-product of mechanical design, In contrast, added beauty is a type of beauty which has the sole purpose of providing a beautiful display. These two types of beauty can be seen in man-made products like buildings and bridges. An example of inherent beauty is found in the shape of a suspension bridge, A suspension bridge has a curved cable structure because this is an efficient way of supporting a roadway.
    [Show full text]
  • Testing the Neoflightless Hypothesis: Propatagium Reveals Flying Ancestry
    J Ornithol DOI 10.1007/s10336-015-1190-9 ORIGINAL ARTICLE Testing the neoflightless hypothesis: propatagium reveals flying ancestry of oviraptorosaurs 1 2 Alan Feduccia • Stephen A. Czerkas Received: 4 September 2014 / Revised: 31 December 2014 / Accepted: 23 February 2015 Ó Dt. Ornithologen-Gesellschaft e.V. 2015 Abstract Considerable debate surrounds the numerous Zusammenfassung avian-like traits in core maniraptorans (ovirap- torosaurs, troodontids, and dromaeosaurs), especially in the Die ,,Neoflightless‘‘-Hypothese im Test: Halsflughaut Chinese Early Cretaceous oviraptorosaur Caudipteryx, (Propatagium) offenbart flugfa¨hige Vorfahren der which preserves modern avian pennaceous primary remi- Oviraptorosauria ges attached to the manus, as is the case in modern birds. Was Caudipteryx derived from earth-bound theropod di- Es gibt eine ausgiebige Debatte u¨ber die zahlreichen vo- nosaurs, which is the predominant view among palaeon- gela¨hnlichen Eigenheiten der Maniraptora (Oviraptosaurus, tologists, or was it secondarily flightless, with volant avians Troodontidae, Dromaeosaurus), vor allem des (gefiederten) or theropods as ancestors (the neoflightless hypothesis), Oviraptorosauria Caudipteryx aus der fru¨hen chinesischen which is another popular, but minority view. The discovery Kreidezeit, der genau wie rezente Vo¨gel Handschwingen here of an aerodynamic propatagium in several specimens hatte, die an den Handknochen ansetzen. Stammt Cau- provides new evidence that Caudipteryx (and hence ovi- dipteryx von den nur am Erdboden lebenden Theropoda ab - raptorosaurs) represent secondarily derived flightless die unter den Pala¨ontologen vorherrschende Meinung -, oder ground dwellers, whether of theropod or avian affinity, and war er sekunda¨r flugunfa¨hig und stammte von flugfa¨higen that their presence and radiation during the Cretaceous may Theropoden ab - die ,,Neoflightless‘‘-Hypothese, eine alter- have been a factor in the apparent scarcity of many other native, wenn auch nur von Wenigen unterstu¨tzte These.
    [Show full text]
  • A New Feather Type in a Nonavian Theropod and the Early Evolution of Feathers
    A new feather type in a nonavian theropod and the early evolution of feathers Xing Xua,1, Xiaoting Zhengb, and Hailu Youc aLaboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xiwai Street, Beijing 100044, China; bShandong Tianyu Museum of Nature, Pingyi, Shandong 273300, China; and cInstitute of Geology, Chinese Academy of Geological Sciences, 26 Baiwanzhuang Road, Beijing 100037, China Edited by David B. Wake, University of California, Berkeley, CA, and approved December 8, 2008 (received for review October 7, 2008) All described feathers in nonavian theropods are composite struc- tures formed by multiple filaments. They closely resemble rela- tively advanced stages predicted by developmental models of the origin of feathers, but not the earliest stage. Here, we report a feather type in two specimens of the basal therizinosaur Beipiao- saurus, in which each individual feather is represented by a single broad filament. This morphotype is congruent with the stage I morphology predicted by developmental models, and all major predicted morphotypes have now been documented in the fossil record. This congruence between the full range of paleontological and developmental data strongly supports the hypothesis that feathers evolved and initially diversified in nonavian theropods before the origin of birds and the evolution of flight. Early Cretaceous ͉ filament ͉ display eathers have been documented in most nonavian coeluro- Fsaurian theropod groups, based mainly on recent discoveries of exceptionally well-preserved specimens from the Early Cre- taceous Jehol Group of western Liaoning, China (1–4). The feathers present in these specimens can be categorized into several morphotypes, but all of them are composite structures formed by multiple slender filaments (5–7).
    [Show full text]
  • Birds of a Feather — Coping With
    THE SEA GRANT and GOMRI BIRDS OF A FEATHER — COPING WITH OIL PARTNERSHIP Emily Maung-Douglass, Larissa Graham, Christine Hale, Stephen Sempier, The mission of Sea Grant is Tara Skelton, LaDon Swann, and Monica Wilson to enhance the practical use and conservation of coastal, marine, and Great Lakes resources in order to create Although birds can travel great distances, they cannot necessarily a sustainable economy and escape oil exposure from natural oil seeps or oil spills caused by humans. environment. There are 33 Scientists and natural resource managers are still trying to understand university–based Sea Grant programs throughout the the many ways oil exposure can affect birds. coastal U.S. These programs are primarily supported by the National Oceanic and Atmospheric Administration and the states in which the programs are located. In the immediate aftermath of the Deepwater Horizon spill, BP committed $500 million over a 10–year period to create the Gulf of Mexico Research Initiative, or GoMRI. It is an independent research program that studies the effect of hydrocarbon releases on the environment and public health, as well as develops improved spill mitigation, oil detection, characterization, and remediation technologies. GoMRI is led by an independent and academic 20–member research board. The Sea Grant oil spill science outreach team identifies the best available science from Though an entirely land-based species of bird, seaside sparrows showed signs of oil in their projects funded by GoMRI and others, and only shares peer- diet after Deepwater Horizon oil spill. (Andrea Bonisoli Alquati) reviewed research results. Oil can have a variety of short- and long- individual birds to die, but it can also term effects on birds, including damage lower overall population numbers by to plumage, poor health, delayed reducing breeding, hatching, nesting 1 Texas • Louisiana • Florida migration, and death.
    [Show full text]