Testing the Neoflightless Hypothesis: Propatagium Reveals Flying Ancestry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Flying Dromaeosaurs
A winged, but flightless, Deinonychus by Stephen A. Czerkas FLYING DROMAEOSAURS Stephen A. Czerkas, Dianshuang Zhang, Jinglu Li and Yinxian Li The Dinosaur Museum, 754 South 200 West, Blanding, Utah 84511, USA; Liaoning Provincial Bureau of Land Resources Management, Liaoning Fossil Administration Office, and Liaoning Museum of Paleontology, Left of Nanshan Park, Beipiao, Liaoning Province 122100, People’s Republic of China. The Dinosaur Museum © 2002 Abstract Dromaeosaurs have been regarded as theropod dinosaurs that were among the closest avian ancestors which were strictly terrestrial having not yet evolved the ability to fly. Consequently, phylogenetic analyses have resulted in the claims of birds having evolved from “the ground up” within a dinosaurian ancestry. Though widely accepted, the relationship between birds and dinosaurs has remained highly controversial and disputed by advocates of birds as having been derived from an arboreal, non-dinosaurian type of archosaur. The cladistical interpretation of the dinosaur/bird relationship hinges upon the presumption of the dromaeosaurs inability to fly. Recent discoveries of dromaeosaurs have revealed impressions of feathers and avian characters in the skeleton that nearly equal and even surpass that of Archaeopteryx. Yet despite this, the ability to fly has been discounted due to the shorter length of the forelimbs. Described below are two such dromaeosaurs, but preserved with impressions of primary flight feathers extending from the manus which demonstrate an undeniable correlation towards the ability to fly. This compelling evidence refutes the popular interpretation of birds evolving from dinosaurs by revealing that dromaeosaurs were already birds and not the non-avian theropod dinosaurs as previously believed. -
A Chinese Archaeopterygian, Protarchaeopteryx Gen. Nov
A Chinese archaeopterygian, Protarchaeopteryx gen. nov. by Qiang Ji and Shu’an Ji Geological Science and Technology (Di Zhi Ke Ji) Volume 238 1997 pp. 38-41 Translated By Will Downs Bilby Research Center Northern Arizona University January, 2001 Introduction* The discoveries of Confuciusornis (Hou and Zhou, 1995; Hou et al, 1995) and Sinornis (Ji and Ji, 1996) have profoundly stimulated ornithologists’ interest globally in the Beipiao region of western Liaoning Province. They have also regenerated optimism toward solving questions of avian origins. In December 1996, the Chinese Geological Museum collected a primitive bird specimen at Beipiao that is comparable to Archaeopteryx (Wellnhofer, 1992). The specimen was excavated from a marl 5.5 m above the sediments that produce Sinornithosaurus and 8-9 m below the sediments that produce Confuciusornis. This is the first documentation of an archaeopterygian outside Germany. As a result, this discovery not only establishes western Liaoning Province as a center of avian origins and evolution, it provides conclusive evidence for the theory that avian evolution occurred in four phases. Specimen description Class Aves Linnaeus, 1758 Subclass Sauriurae Haeckel, 1866 Order Archaeopterygiformes Furbringer, 1888 Family Archaeopterygidae Huxley, 1872 Genus Protarchaeopteryx gen. nov. Genus etymology: Acknowledges that the specimen possesses characters more primitive than those of Archaeopteryx. Diagnosis: A primitive archaeopterygian with claviform and unserrated dentition. Sternum is thin and flat, tail is long, and forelimb resembles Archaeopteryx in morphology with three talons, the second of which is enlarged. Ilium is large and elongated, pubes are robust and distally fused, hind limb is long and robust with digit I reduced and dorsally migrated to lie in opposition to digit III and forming a grasping apparatus. -
LETTER Doi:10.1038/Nature14423
LETTER doi:10.1038/nature14423 A bizarre Jurassic maniraptoran theropod with preserved evidence of membranous wings Xing Xu1,2*, Xiaoting Zheng1,3*, Corwin Sullivan2, Xiaoli Wang1, Lida Xing4, Yan Wang1, Xiaomei Zhang3, Jingmai K. O’Connor2, Fucheng Zhang2 & Yanhong Pan5 The wings of birds and their closest theropod relatives share a ratios are 1.16 and 1.08, respectively, compared to 0.96 and 0.78 in uniform fundamental architecture, with pinnate flight feathers Epidendrosaurus and 0.79 and 0.66 in Epidexipteryx), an extremely as the key component1–3. Here we report a new scansoriopterygid short humeral deltopectoral crest, and a long rod-like bone articu- theropod, Yi qi gen. et sp. nov., based on a new specimen from the lating with the wrist. Middle–Upper Jurassic period Tiaojishan Formation of Hebei Key osteological features are as follows. STM 31-2 (Fig. 1) is inferred Province, China4. Yi is nested phylogenetically among winged ther- to be an adult on the basis of the closed neurocentral sutures of the opods but has large stiff filamentous feathers of an unusual type on visible vertebrae, although this is not a universal criterion for maturity both the forelimb and hindlimb. However, the filamentous feath- across archosaurian taxa12. Its body mass is estimated to be approxi- ers of Yi resemble pinnate feathers in bearing morphologically mately 380 g, using an empirical equation13. diverse melanosomes5. Most surprisingly, Yi has a long rod-like The skull and mandible are similar to those of other scansoriopter- bone extending from each wrist, and patches of membranous tissue ygids, and to a lesser degree to those of oviraptorosaurs and some basal preserved between the rod-like bones and the manual digits. -
Tiny Fossil Sheds Light on Miniaturization of Birds
Retraction Tiny fossil sheds light on miniaturization of birds Roger B. J. Benson Nature 579, 199–200 (2020) In view of the fact that the authors of ‘Hummingbird-sized dinosaur from the Cretaceous period of Myanmar‘ (L. Xing et al. Nature 579, 245–249; 2020) are retracting their report, I wish to retract this News & Views article, which dealt with this study and was based on the accuracy and reproducibility of their data. Nature | 22 July 2020 ©2020 Spri nger Nature Li mited. All rights reserved. drives the assembly of DNA-PK and stimulates regulation of protein synthesis. And, although 3. Dragon, F. et al. Nature 417, 967–970 (2002). its catalytic activity in vitro, although does so further studies are required, we might have 4. Adelmant, G. et al. Mol. Cell. Proteom. 11, 411–421 (2012). much less efficiently than can DNA. taken a step closer to deciphering the 5. Britton, S., Coates, J. & Jackson, S. P. J. Cell Biol. 202, Taken together, these observations suggest mysterious ribosomopathies. 579–595 (2013). a model in which KU recruits DNA-PKcs to the 6. Barandun, J. et al. Nature Struct. Mol. Biol. 24, 944–953 (2017). small-subunit processome. In the case of Alan J. Warren is at the Cambridge Institute 7. Ma, Y. et al. Cell 108, 781–794 (2002). kinase-defective DNA-PK, the mutant enzyme’s for Medical Research, Hills Road, Cambridge 8. Yin, X. et al. Cell Res. 27, 1341–1350 (2017). inability to regulate its own activity gives the CB2 OXY, UK. 9. Sharif, H. et al. -
A New Raptorial Dinosaur with Exceptionally Long Feathering Provides Insights Into Dromaeosaurid flight Performance
ARTICLE Received 11 Apr 2014 | Accepted 11 Jun 2014 | Published 15 Jul 2014 DOI: 10.1038/ncomms5382 A new raptorial dinosaur with exceptionally long feathering provides insights into dromaeosaurid flight performance Gang Han1, Luis M. Chiappe2, Shu-An Ji1,3, Michael Habib4, Alan H. Turner5, Anusuya Chinsamy6, Xueling Liu1 & Lizhuo Han1 Microraptorines are a group of predatory dromaeosaurid theropod dinosaurs with aero- dynamic capacity. These close relatives of birds are essential for testing hypotheses explaining the origin and early evolution of avian flight. Here we describe a new ‘four-winged’ microraptorine, Changyuraptor yangi, from the Early Cretaceous Jehol Biota of China. With tail feathers that are nearly 30 cm long, roughly 30% the length of the skeleton, the new fossil possesses the longest known feathers for any non-avian dinosaur. Furthermore, it is the largest theropod with long, pennaceous feathers attached to the lower hind limbs (that is, ‘hindwings’). The lengthy feathered tail of the new fossil provides insight into the flight performance of microraptorines and how they may have maintained aerial competency at larger body sizes. We demonstrate how the low-aspect-ratio tail of the new fossil would have acted as a pitch control structure reducing descent speed and thus playing a key role in landing. 1 Paleontological Center, Bohai University, 19 Keji Road, New Shongshan District, Jinzhou, Liaoning Province 121013, China. 2 Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA. 3 Institute of Geology, Chinese Academy of Geological Sciences, 26 Baiwanzhuang Road, Beijing 100037, China. 4 University of Southern California, Health Sciences Campus, BMT 403, Mail Code 9112, Los Angeles, California 90089, USA. -
Winter Bird Feeding
BirdNotes 1 Winter Bird Feeding birds at feeders in winter If you feed birds, you’re in good company. Birding is one of North America’s favorite pastimes. A 2006 report from the U.S. Fish and Wildlife Service estimates that about 55.5 mil- lion Americans provide food for wild birds. Chickadees Titmice Cardinals Sparrows Wood- Orioles Pigeons Nuthatches Finches Grosbeaks Blackbirds Jays peckers Tanagers Doves Sunflower ◆ ◆ ◆ ◆ ◆ ◆ ◆ Safflower ◆ ◆ ◆ Corn ◆ ◆ ◆ Millet ◆ ◆ ◆ Milo ◆ ◆ Nyjer ◆ Suet ◆ ◆ ◆ ◆ ◆ Preferred ◆ Readily Eaten Wintertime—and the Living’s counting birds at their feeders during selecting the best foods daunting. To Not Easy this winterlong survey. Great Back- attract a diversity of birds, provide a yard Bird Count participants provide variety of food types. But that doesn’t n much of North America, winter valuable data with a much shorter mean you need to purchase one of ev- Iis a difficult time for birds. Days time commitment—as little as fifteen erything on the shelf. are often windy and cold; nights are minutes in mid-February! long and even colder. Lush vegeta- Which Seed Types tion has withered or been consumed, Types of Bird Food Should I Provide? and most insects have died or become uring spring and summer, most dormant. Finding food can be espe- lack-oil sunflower seeds attract songbirds eat insects and spi- cially challenging for birds after a D Bthe greatest number of species. ders, which are highly nutritious, heavy snowfall. These seeds have a high meat-to- abundant, and for the most part, eas- shell ratio, they are nutritious and Setting up a backyard feeder makes ily captured. -
A Classification of the Rallidae
A CLASSIFICATION OF THE RALLIDAE STARRY L. OLSON HE family Rallidae, containing over 150 living or recently extinct species T and having one of the widest distributions of any family of terrestrial vertebrates, has, in proportion to its size and interest, received less study than perhaps any other major group of birds. The only two attempts at a classifi- cation of all of the recent rallid genera are those of Sharpe (1894) and Peters (1934). Although each of these lists has some merit, neither is satisfactory in reflecting relationships between the genera and both often separate closely related groups. In the past, no attempt has been made to identify the more primitive members of the Rallidae or to illuminate evolutionary trends in the family. Lists almost invariably begin with the genus Rdus which is actually one of the most specialized genera of the family and does not represent an ancestral or primitive stock. One of the difficulties of rallid taxonomy arises from the relative homo- geneity of the family, rails for the most part being rather generalized birds with few groups having morphological modifications that clearly define them. As a consequence, particularly well-marked genera have been elevated to subfamily rank on the basis of characters that in more diverse families would not be considered as significant. Another weakness of former classifications of the family arose from what Mayr (194933) referred to as the “instability of the morphology of rails.” This “instability of morphology,” while seeming to belie what I have just said about homogeneity, refers only to the characteristics associated with flightlessness-a condition that appears with great regularity in island rails and which has evolved many times. -
A New Caenagnathid Dinosaur from the Upper Cretaceous Wangshi
www.nature.com/scientificreports OPEN A new caenagnathid dinosaur from the Upper Cretaceous Wangshi Group of Shandong, China, with Received: 12 October 2017 Accepted: 7 March 2018 comments on size variation among Published: xx xx xxxx oviraptorosaurs Yilun Yu1, Kebai Wang2, Shuqing Chen2, Corwin Sullivan3,4, Shuo Wang 5,6, Peiye Wang2 & Xing Xu7 The bone-beds of the Upper Cretaceous Wangshi Group in Zhucheng, Shandong, China are rich in fossil remains of the gigantic hadrosaurid Shantungosaurus. Here we report a new oviraptorosaur, Anomalipes zhaoi gen. et sp. nov., based on a recently collected specimen comprising a partial left hindlimb from the Kugou Locality in Zhucheng. This specimen’s systematic position was assessed by three numerical cladistic analyses based on recently published theropod phylogenetic datasets, with the inclusion of several new characters. Anomalipes zhaoi difers from other known caenagnathids in having a unique combination of features: femoral head anteroposteriorly narrow and with signifcant posterior orientation; accessory trochanter low and confuent with lesser trochanter; lateral ridge present on femoral lateral surface; weak fourth trochanter present; metatarsal III with triangular proximal articular surface, prominent anterior fange near proximal end, highly asymmetrical hemicondyles, and longitudinal groove on distal articular surface; and ungual of pedal digit II with lateral collateral groove deeper and more dorsally located than medial groove. The holotype of Anomalipes zhaoi is smaller than is typical for Caenagnathidae but larger than is typical for the other major oviraptorosaurian subclade, Oviraptoridae. Size comparisons among oviraptorisaurians show that the Caenagnathidae vary much more widely in size than the Oviraptoridae. Oviraptorosauria is a clade of maniraptoran theropod dinosaurs characterized by a short, high skull, long neck and short tail. -
New Oviraptorid Dinosaur (Dinosauria: Oviraptorosauria) from the Nemegt Formation of Southwestern Mongolia
Bull. Natn. Sci. Mus., Tokyo, Ser. C, 30, pp. 95–130, December 22, 2004 New Oviraptorid Dinosaur (Dinosauria: Oviraptorosauria) from the Nemegt Formation of Southwestern Mongolia Junchang Lü1, Yukimitsu Tomida2, Yoichi Azuma3, Zhiming Dong4 and Yuong-Nam Lee5 1 Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China 2 National Science Museum, 3–23–1 Hyakunincho, Shinjukuku, Tokyo 169–0073, Japan 3 Fukui Prefectural Dinosaur Museum, 51–11 Terao, Muroko, Katsuyama 911–8601, Japan 4 Institute of Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China 5 Korea Institute of Geoscience and Mineral Resources, Geology & Geoinformation Division, 30 Gajeong-dong, Yuseong-gu, Daejeon 305–350, South Korea Abstract Nemegtia barsboldi gen. et sp. nov. here described is a new oviraptorid dinosaur from the Late Cretaceous (mid-Maastrichtian) Nemegt Formation of southwestern Mongolia. It differs from other oviraptorids in the skull having a well-developed crest, the anterior margin of which is nearly vertical, and the dorsal margin of the skull and the anterior margin of the crest form nearly 90°; the nasal process of the premaxilla being less exposed on the dorsal surface of the skull than those in other known oviraptorids; the length of the frontal being approximately one fourth that of the parietal along the midline of the skull. Phylogenetic analysis shows that Nemegtia barsboldi is more closely related to Citipati osmolskae than to any other oviraptorosaurs. Key words : Nemegt Basin, Mongolia, Nemegt Formation, Late Cretaceous, Oviraptorosauria, Nemegtia. dae, and Caudipterygidae (Barsbold, 1976; Stern- Introduction berg, 1940; Currie, 2000; Clark et al., 2001; Ji et Oviraptorosaurs are generally regarded as non- al., 1998; Zhou and Wang, 2000; Zhou et al., avian theropod dinosaurs (Osborn, 1924; Bars- 2000). -
The Molecular Evolution of Feathers with Direct Evidence from Fossils
The molecular evolution of feathers with direct evidence from fossils Yanhong Pana,1, Wenxia Zhengb, Roger H. Sawyerc, Michael W. Penningtond, Xiaoting Zhenge,f, Xiaoli Wange,f, Min Wangg,h, Liang Hua,i, Jingmai O’Connorg,h, Tao Zhaoa, Zhiheng Lig,h, Elena R. Schroeterb, Feixiang Wug,h, Xing Xug,h, Zhonghe Zhoug,h,i,1, and Mary H. Schweitzerb,j,1 aChinese Academy of Sciences Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China; bDepartment of Biological Sciences, North Carolina State University, Raleigh, NC 27695; cDepartment of Biological Sciences, University of South Carolina, Columbia, SC 29205; dAmbioPharm Incorporated, North Augusta, SC 29842; eInstitute of Geology and Paleontology, Lingyi University, Lingyi City, 27605 Shandong, China; fShandong Tianyu Museum of Nature, Pingyi, 273300 Shandong, China; gCAS Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 100044 Beijing, China; hCenter for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, 100044 Beijing, China; iCollege of Earth and Planetary Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China; and jNorth Carolina Museum of Natural Sciences, Raleigh, NC 27601 Contributed by Zhonghe Zhou, December 15, 2018 (sent for review September 12, 2018; reviewed by Dominique G. Homberger and Chenxi Jia) Dinosaur fossils possessing integumentary appendages of various feathers in Anchiornis, barbules that interlock to form feather morphologies, interpreted as feathers, have greatly enhanced our vanes critical for flight have not been identified yet (12). -
A Comparison of Flight Potential Among Small-Bodied Paravians
Chapter 11 High Flyer or High Fashion? A Comparison of Flight Potential among Small-Bodied Paravians T. ALEXANDER DECECCHI,1 HANS C.E. LARSSON,2 MICHAEL PITTMAN,3 AND MICHAEL B. HABIB4 ABSTRACT The origin of flight in birds and its relationship to bird origins itself has achieved something of a renaissance in recent years, driven by the discovery of a suite of small-bodied taxa with large pen- naceous feathers. As some of these specimens date back to the Middle Jurassic and predate the earli- est known birds, understanding how these potential aerofoil surfaces were used is of great importance to answering the question: which came first, the bird or the wing? Here we seek to address this question by directly comparing key members of three of the major clades of paravians: anchiorni- thines, Microraptor and Archaeopteryx across their known size classes to see how they differ in terms of major flight-related parameters (wing loading; disc loading; specific lift; glide speed; takeoff poten- tial). Using specimens with snout to vent length (SVL) ranging from around 150 mm to 400 mm and mass ranging from approximately 130 g to 2 kg, we investigated patterns of inter- and intraspe- cific changes in flight potential. We find that anchiornithines show much higher wing- and disc- loading values and correspondingly high required minimum glide and takeoff speeds, along with lower specific lift and flapping running outputs suggesting little to no flight capability in this clade. In contrast, we see good support for flight potential, either gliding or powered flight, for all size classes of both Microraptor and Archaeopteryx, though there are differing patterns of how this shifts ontogenetically. -
American Paleontologist Pages 1 and 4
FinalV OLUMEIssue 19, NUMBER 4 AMERICAN WINTER 2012 PALEONTOLOGIST A MAGAZINE OF EARTH SCIENCE PUBLISHED BY THE PALEONTOLOGICAL RESEARCH INSTITUTION AND ITS MUSEUM OF THE EARTH The Last Good Buy Birds in the New Age of Extinction Also in this issue... An Inordinate Fondness for Vertebrae page 20 Goodbye American Paleontologist pages 1 and 4 ...plus much more! US $5.00 FEATURE ARTICLE Th e Last Good Buy: Birds in the New Age of Extinction By Constance M. Soja Th e oldest fossils belonging to the undisputed bird survivors of the end-Mesozoic biodiversity crisis experienced Archaeopteryx date back 140-150 million years to the extraordinary evolutionary radiations. Co-adapting to the Mesozoic. During that geologic era, dinosaurs dominated brave new world, they fi lled vacated ecologic niches and terrestrial ecosystems around the globe. Pterosaurs – evolved into the iconic species that defi ne the Cenozoic – dinosaurs' evolutionary cousins, the fl ying reptiles – soared our modern world and Earth's current great geologic era. overhead, and an astounding variety of diminutive to gigantic With most animal and plant groups of the Mesozoic laid to aquatic reptiles – ichthyosaurs, plesiosaurs, pliosaurs, and rest, new species rose to dominance, and new competitive mosasaurs – cruised the world's oceans. Consuming squid- relationships were established. Oversized, fl ightless "terror like belemnoid and ammonoid prey, those top predators birds" – T. rex ultimate but down-sized body doubles – were also swam in the shallow seaways that fl ooded the interior pitted against fox- and pony-sized mammals, which in the of North America and other continents. Within 80 million previous 150 million years had been small, nocturnal, rat- years, the Cretaceous-Tertiary mass extinction that brought like animals eeking out a subsidiary existence.