Research and Development of Microcontroller Experiment

Total Page:16

File Type:pdf, Size:1020Kb

Research and Development of Microcontroller Experiment Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1992 Research and development of microcontroller experiment instructional units and their effectiveness with industrial technology, electronic technology, and electrical engineering technology majors Steve Chih Hsiung Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Communication Technology and New Media Commons, Electrical and Computer Engineering Commons, Engineering Education Commons, Instructional Media Design Commons, and the Other Education Commons Recommended Citation Hsiung, Steve Chih, "Research and development of microcontroller experiment instructional units and their effectiveness with industrial technology, electronic technology, and electrical engineering technology majors " (1992). Retrospective Theses and Dissertations. 10003. https://lib.dr.iastate.edu/rtd/10003 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly fi"om the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be fi*om any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Company 300 Nortfi Zeeb Road. Ann Arbor, fvll 48106-1346 USA 313/761-4700 800/521-0600 Order Number 9234818 Research and development of microcontroller experiment instructional units and their effectiveness with industrial technology, electronic technology, and electrical engineering technology majors Hsiung, Steve Chih, Ph.D. Iowa State University, 1992 UMI 300 N. ZeebRd. Ann Arbor, MI 48106 Research and development of microcontroller experiment instructional units and their effectiveness with industrial technology, electronic technology, and electrical engineering technology majors by Steve Chih Hsiung A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Major: Industrial Education and Technology Approved: Signature was redacted for privacy. n/Charge of Major Wrk Signature was redacted for privacy. ¥ Signature was redacted for privacy. For the Graduate College Iowa State University Ames, Iowa 1992 ii TABLE OF CONTENTS PAGE CHAPTER I. INTRODUCTION 1 Background 1 Problem of the Study 5 Purpose of the Study 5 Objectives of the Study 6 Assumptions of the Study 7 Delimitations of the Study 7 Procedures of the Study 8 Definition of Terms 9 CHAPTER II. REVIEW OF LITERATURE 13 Microprocessor High Technology Impact 13 Historical Development of Microprocessors 16 The 8 Bit Microprocessor World 18 Intel 20 Motorola 22 Zilog 22 Commodore 22 National Semiconductor 23 Fairchild 23 Microprocessor Curriculum Efforts 23 Differences between Microprocessors and Microcontrollers 33 General Description of Microcontroller 68HC11 EVB and EVM 34 Summary of Literature Review 39 CHAPTER III. METHODOLOGY 42 Design and Development of the Seven Explanatory Laboratory Experiments 42 Hypotheses of the Study 43 Sampling Subjects 44 Research Design 45 Data Collection Instrument 47 Statistical Analysis of the Data 47 CHAPTER IV. RESULTS AND FINDINGS 4 9 Presentation of the Seven Explanatory Laboratory Experiments 4 9 Experiment 1 4 9 Experiment 2 54 Experiment 3 55 Experiment 4 60 Experiment 5 70 Experiment 6 71 iii Experiment 7 72 Statistical Evaluation of Students' Learning Achievements 93 Characteristics of the Sample 94 Analysis of Variance of Pretest and Posttest Scores 96 Analyses of Covariance of Posttest Scores 97 Analysis of Covariate with Pretest and Group Interaction 100 Analysis of Variance of Students' Learning Achievements 101 T-test of Students' Efficiency in Completing a Project 103 Findings 104 CHAPTER V. .SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 106 Summary of the Study 106 Background 106 Purpose 107 Research Design 107 Conclusions 109 Recommendations 111 BIBLOGRAPHY 113 ACKNOWLEDGMENTS 118 APPENDIX A. HUMAN SUBJECT REVIEW 119 APPENDIX B. WRITTEN STATEMENT AND TEST INSTRUMENTS 123 APPENDIX C. ASSEMBLER SOURCE CODES LIST FOR CONTROL PROGRAMS 131 iv LIST OF FIGURES PAGE Figure 1. Motorola microprocessor family evolution 21 Figure 2. Family tree of microprocessors and microcontrollers 37 Figure 3. The standard microprocessor 38 Figure 4. The 68HC11 microcontroller 38 Figure 5. Stepper motors control circuit 51 Figure 6. Flow chart of stepper motors control 52 Figure 7. Stop lights control circuit 56 Figure 8. Flow chart of street lights control 57 Figure 9. Software debouncing keypad encoding circuit 61 Figure 10. Hardware debouncing with 74C922 keypad encoding circuit 62 Figure 11. Flow chart of software debouncing control 63 Figure 12. Flow chart of hardware debouncing control 64 Figure 13. LCD module parallel control circuit 66 Figure 14. LCD module serial control circuit 67 Figure 15. Flow chart of LCD module parallel control 68 Figure 16. Flow chart of LCD module serial control 69 Figure 17. Keypad & LCD module with hardware debouncing control circuit 73 Figure 18. Keypad & LCD module with software debouncing control circuit 74 Figure 19. Flow chart of hardware debouncing in keypad & LCD module control 75 Figure 20. Flow chart of software debouncing in keypad & LCD module control 7 9 Figure 21. Electronic keys security system control circuit 84 Figure 22. Flow chart of electronic keys security system control 85 Figure 23. DC motor control circuit 90 Figure 24. Flow chart of DC motor control 91 Figure 25. The experimental and the control groups' pretest & posttest scores chart 95 vi LIST OF TABLES PAGE Table 1. Historical development of microprocessors 19 Table 2. Comparison among 8 bit microprocessors 24 Table 3. Historical development of microcontrollers 35 Table 4. The analysis of variance of pretest scores 96 Table 5. The analysis of variance of posttest scores 97 Table 6. Pearson correlation coefficient of the pretest and the posttest scores 98 Table 7. The analysis of covariance of posttest scores 98 Table 8. Pretest and posttest statistics 99 Table 9. The analysis of covariance with interaction 100 Table 10 . The analysis of variance of the scores differences 101 Table 11. The learning achievement of the statistics of the two groups 102 Table 12 . The average days needed for the experimental and control groups 103 Table 13 . The t-test of average days needed for completing a project 104 Table 14 . The preference of the 68HC11 EVB in the two groups 105 1 CHAPTER I. INTRODUCTION Motorola Inc., one of the largest semiconductor manufacturers in the world, has claimed that its achievement is "deep in the heart of the state of the art" of semiconductor developments. Its microcontroller section has developed several modules which are very convenient for industry's design applications. Educators teaching students about the high-tech world have an obligation to adopt new devices and up-dated lab experiments into technology programs as early as possible. In other words, it is the responsibility of educators to get students acquainted with what "state-of-the-art" technology really means. Thus, the design and development of the experimental projects on the Motorola MC68HC11 microcontroller EVB (Evaluation Board) and EVM (Evaluation Module) are urgently needed (Lipovski, 1988). Background When reviewing western history, it is clear that there were three drastic changes in tool implementation. According to Toffler's (1980) definition, the first change of human history was the agricultural revolution, the second change was the 2 industrial revolution, and the third change was the information revolution, computer revolution, or the so-called "Third Wave" (Toffler, 1980). The Third Wave has changed western society dramatically. The most important factor that makes the Third Wave so astonishing is the use of computers as tools for calculation, information storage and retrieval, process controlling, and industrial automation and robotics. Not only is the computer fast, but it is also accurate and can complete tedious jobs without becoming bored (Driscoll, 1987). The
Recommended publications
  • TRABAJO FIN DE GRADO Diseño E Implementación De Un Sistema De
    TRABAJO FIN DE GRADO Diseño e implementación de un sistema de monitorización de temperatura capaz de comunicar de manera inalámbrica con un dispositivo móvil Autor: Adrián Paredes Intriago Tutor: Jonathan Crespo Herrero Grado en Ingeniería Electrónica Industrial y Automática Madrid, Septiembre de 2014 II Agradecimientos A mis padres, Juan y Raquel. A mi hermana, Claudia. Por no rendirse jamás. III IV Resumen En este trabajo se desarrolla un sistema de monitorización de temperatura capaz de comunicar de manera inalámbrica con un dispositivo móvil. El sistema está compuesto por un microcontrolador, un sensor de temperatura y un módulo Bluetooth. Las comunicaciones entre los componentes del sistema son llevadas a cabo a través de los buses de comunicación en serie SPI e I²C, mientras que las comunicaciones entre el sistema y el dispositivo móvil se realizan a través del protocolo de comunicación inalámbrica Bluetooth de bajo consumo, también conocido como BLE. En cuanto al dispositivo móvil, todas las comunicaciones con el sistema son gestionadas mediante una aplicación Android. Esta aplicación muestra las mediciones del sistema en tiempo real permitiendo a su vez configurar varios tipos de notificaciones y alarmas. Palabras clave: Sistema de monitorización de temperatura, dispositivos móviles, Bluetooth de bajo consumo, Android. V VI Abstract This work develops a temperature monitoring system able to communicate in a wireless manner to a mobile device. The system consists of a microcontroller, a temperature sensor and a Bluetooth module. The communications between the components of the system are done through the serial buses SPI and I²C, whereas the communications between the system and mobile device are done through Bluetooth low energy, also known as BLE.
    [Show full text]
  • Technical Reference Manual 2.20.14
    Technical Reference Manual 2.20.14 September 18, 2020 Change Log This section lists recent changes to the document, with most recent entries first. Each item line should hyperlink to the relevant place in the document where the change has been made. Changes 2020.09.18 Corrected licensing to GPLv2. Wrote a new dasm.sty file to handle the formatting of the documentation. 2020.09.15 • Added DC.S endian-swapping magic directive 2020.09.13 • Added some structure (new chapters) to the document for inclusion of information about the "other" processors and machines. Started to separate the machine from the processor into separate sections. Should we do an all-in listing of opcodes for all processors, like for the 6502? • Removed malformed coments examples as they are no longer applicable • Added link to bugs/issue reporting 2020.09.09 • Correction to how the -m option actually works • Examples for good/bad comment formats added • Notes about SI unit usage • Added the -m (Maximum Output File Size) option • Added the -R (Remove Output File) option 2020.09.08 • Added a new Chapter - Source Code, and inside a description of the source code format, including line ending format,and the various commenting styles. • Clarified the difference in usage of brackets on F8/6502 • Fixed some errors in the Atari 2600 section. Switched to SI standard units for describing powers of 2 sizes. I suspect people may not like that! 2020.09.07 • Added the really unusal (and deprecated) definition for labels... "[ ]...^[ ]...label". This is a suppored/valid format, but it is likely to be removed.
    [Show full text]
  • Die Meilensteine Der Computer-, Elek
    Das Poster der digitalen Evolution – Die Meilensteine der Computer-, Elektronik- und Telekommunikations-Geschichte bis 1977 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 und ... Von den Anfängen bis zu den Geburtswehen des PCs PC-Geburt Evolution einer neuen Industrie Business-Start PC-Etablierungsphase Benutzerfreundlichkeit wird gross geschrieben Durchbruch in der Geschäftswelt Das Zeitalter der Fensterdarstellung Online-Zeitalter Internet-Hype Wireless-Zeitalter Web 2.0/Start Cloud Computing Start des Tablet-Zeitalters AI (CC, Deep- und Machine-Learning), Internet der Dinge (IoT) und Augmented Reality (AR) Zukunftsvisionen Phasen aber A. Bowyer Cloud Wichtig Zählhilfsmittel der Frühzeit Logarithmische Rechenhilfsmittel Einzelanfertigungen von Rechenmaschinen Start der EDV Die 2. Computergeneration setzte ab 1955 auf die revolutionäre Transistor-Technik Der PC kommt Jobs mel- All-in-One- NAS-Konzept OLPC-Projekt: Dass Computer und Bausteine immer kleiner, det sich Konzepte Start der entwickelt Computing für die AI- schneller, billiger und energieoptimierter werden, Hardware Hände und Finger sind die ersten Wichtige "PC-Vorläufer" finden wir mit dem werden Massenpro- den ersten Akzeptanz: ist bekannt. Bei diesen Visionen geht es um die Symbole für die Mengendarstel- schon sehr früh bei Lernsystemen. iMac und inter- duktion des Open Source Unterstüt- möglichen zukünftigen Anwendungen, die mit 3D-Drucker zung und lung. Ägyptische Illustration des Beispiele sind: Berkley Enterprice mit neuem essant: XO-1-Laptops: neuen Technologien und Konzepte ermöglicht Veriton RepRap nicht Ersatz werden.
    [Show full text]
  • Microcomputer Digest V03n01
    HO PU-rEB DIGES-r Volume 3, Number 1 July, 1976 THE "SUPER 8080" MICROCOMPUTER MICRONOVA MICROCOMPUTER FAMILY Z-80, Zilog's first microcomputer, was As reported last month, Data General introduced at the California Computer Show Corp. has introduced a 16-bit microcomputer and includes all the logic circuits necessary family with the architecture, software and for building high performance microcomputer­ system performance of a NOVA minicomputer. based products with virtually no external The family ranges from chip sets to fully logic, and a minimum number of static or dy­ packaged computer systems. The microNOVA namic memories. family is based on a high-performance, Data Totally software compatible with Intel's General designed and manufactured 40-pin 8080A, the 40-pin N-channel, depletion mode, NMOS microprocessor. MOS microprocessor has a repertoire of 158 instructions and 17 internal registers inclu­ ding two real index registers. Additional features include built-in refresh for dynamic memory, 1.6 us machine cycle time, and a single 5V power supply and a single phase TTL clock. (cont'd on page 2) AMI 6800 PROTOTYPE CARD American Microsystems, Inc. has introduced a microprocessor prototyping board for hard­ ware and software evaluation of 6800-based microcomputer systems family in specific ap­ plications. The AMI 6800 Microprocessor Evaluation Board (EVK300) features a built-in programmer for the S6834 EPROM microcircuitry. This feature, not offered on competing prototyping systems, gives the AMI board greater capabil­ ity in developing prototype microcomputer This microprocessor features a 16-bit programs. (cont'd on page 2) word length, NOVA-compatible architecture, 32K main memory capacity and a sophisticated I/O enco.ding scheme capable of controlling NATIONAL STUNS INDUSTRY W/8080 multiple high-performance peripherals.
    [Show full text]
  • An Introduction to Microprocessor 8085
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/264005162 An Introduction to Microprocessor 8085 Book · January 2010 CITATION READS 1 263,461 1 author: D.K. Kaushik Shobhit University, Gangoh (Saharanpur) India 44 PUBLICATIONS 40 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Modeling View project All content following this page was uploaded by D.K. Kaushik on 25 August 2014. The user has requested enhancement of the downloaded file. AN INTRODUCTION TO MICROPROCESSOR 8085 By Dr. D. K. Kaushik Principal, Manohar Memorial (P.G.) College, Fatehabad (Haryana) India Dhanpat Rai Publishing co., New Delhi AN INTRODUCTION TO MICROPROCESSOR 8085 Chapter 1 Evolution and History of Microprocessors 1.1 Introduction 1.2 Evolution/History of Microprocessors 1.3 Basic Microprocessor System 1.3.1 Address Bus 1.3.2 Data Bus 1.3.3 Control Bus 1.4 Brief Description of 8-Bit Microprocessor 8080A 1.5 Computer Programming Languages 1.5.1 Low-Level Programming Language 1.5.2 High-Level Programming Language Chapter 2 SAP – I 2.1 Architecture of SAP – I 2.2 Instruction Set of SAP-I Computer 2.3 Programming of SAP-I Computer 2.4 Working of SAP-I Computer 2.4.1 Fetch Cycle 2.4.2 Execution Cycle 2.5 Hardware Design of SAP-I Computer 2.5.1 Design of Program Counter 2.5.2 Memory Unit 2.5.3 Instruction Register 2.5.4 Controller-Sequencer 2.5.5 Accumulator 2.5.6 Adder-Subtractor 2.5.7 B-Register 2.5.8 Output Register Chapter 3 SAP – II 3.1 Architecture
    [Show full text]
  • An Introduction to Microprocessors, Vol. 2
    ~ N.B. FAULTY BINDING CHAPTER 3 DUPLICATED, HALF CHAPTER 4 NOT PRINTED. 1%70 PRESTON POLYTECHNIC LIBRARY & LEARNING RESOURCES SERVICE This book must be returned on or before the date lest stamped isation by any he prim act: L. PI n lll II 31 0 07 AN INTRODUCTION TO MICROCOMPUTERS VOLUME II SOME REAL PRODUCTS •. ht a 1976, 1977 by Adam Osborne and Associates. Incorporated. :4 Congress Catalogue Card Number 76-374891 pants eserved. Printed in the United States of America. No part of this publication ninroduced. stored in a retrieval system. or transmitted in any form or by any e electronic, mechanical. photocopying. recording, or otherwise. without the prior *ter. pal mission of the publishers. Published by Adam Osbo and Associates. Incorporated P.O. Box 2036. Berkeley. California 94702 nation oa translations. pricing end ordering outsets the USA, please contact Osborne & Associates, Inc. P.O. Box 2036 Berkeley, California 94702 United States of America (415) 54&2805 Data Sheets in this book have been copied from vender literature. The manufacture are credited as follows'. CHAPTER 1 TEXAS INSTRUMENTS. INC. P.O. Box 1443 Houston. Texas 77001 2 FAIRCHILD SEMICONDUCTOR 464 Ellis Street Mountain View. CA 75006 3 NATIONAL SEMICONDUCTOR CORPORATION 2900 Semiconductor Drive Santa Clara. CA 95050 4 INTEL CORPORATION 3065 Bowers Avenue Santa Clara. CA 95051 NEC MICROCOMPUTERS. INC. 5 Militia Drive Lexington. MA 02173 5 INTEL CORPORATION 3065 Bowers Avenue Santa Clara. CA 95051 6 INTEL CORPORATION 3065 Bowers Avenue Santa Clara, CA 95051 J ZILOG. INC. 10460 Bubb Road Cupertino. CA 95014 8 MOTOROLA. INC. Semiconductor Products Division 3501 Ed Bluestein Boulevard Austin.
    [Show full text]
  • Microprocesadores Y
    Electrónica Digital III Introducción a los Microprocesadores Procesador IBM PowerXCell 8i @ 2008 Microprocesadores I Electrónica Digital III - 1 - Electrónica Digital III CONTENIDO Laboratorio de Electrónica Digital – Depto. Electrónica y Automática – FI- 1. Introducción 2. Circuitos Integrados 2.1. La Ley de Moore 2.2. Clasificación según la integración de circuitos integrados 2.3. Clasificación en cuanto a las funciones de un IC 3. Circuitos integrados digitales 3.1. Lógica Cableada 3.1.1. Compuertas Lógicas y circuitos integrados MSI 3.1.2. Circuito integrado de aplicación especifica ASIC 3.2. Lógica programada 3.2.1. Dispositivo lógico programable sencillo – SPLD 3.2.2. Dispositivo lógico programable complejo – CPLD 3.2.3. Arreglo de compuertas programables en campo – FPGA 3.3. Procesador Digital. 3.3.1. Microprocesador – uP 3.3.2. Microcontrolador – uC 3.3.3. Procesador Digital de Señales – DSP 3.3.4. Controlador Digital de Señales – DSC 3.4. Sistemas en Chip 4. Aplicaciones de un Microprocesador - 2 - Electrónica Digital III 1 – INTRODUCCIÓN El objetivo de la asignatura es el de estudiar una de las herramientas que nos provee la electrónica para la resolución de problemas mediante técnicas digitales. Dicha herramienta integrada es definida como MICROPROCESADOR. Se estudiaran los microprocesadores y su utilización en los microcomputadores desde el punto de vista de su aplicación en el control de procesos, en los sistemas de adquisición de datos, sistemas de procesamientos de señales, sistemas de comunicaciones y en general para el diseño de dispositivos digitales basados en un microprocesador que realiza una única función, a esto es lo que se le denomina comúnmente como un sistema de dedicado o embebido.
    [Show full text]
  • The Unofficial History of 8051. by Jan Waclawek (Wek at Efton.Sk)
    The unofficial history of 8051. by Jan Waclawek (wek at efton.sk) Preface In 2005, the 8051 microcontroller celebrated it's 25th anniversary. I thought Intel will grab on the opportunity and perhaps add an item to their "museum" site, or remember in other way - but they did not. When I asked for some historical recollections on those days, I received a copy of a 8051 datasheet, dated 1980 and marked "preliminary". Well, I expected something else - but thanks for that, too. But, also in 2005, Intel notified they discontinue all automotive versions of their microcontrollers, including 8051. Car engine control units were once perhaps the most prominent application for 8051s. This means only one thing, Intel gives up the microcontrollers for good. This is confirmed by product change notification published in early 2006, announcing that Intel drops its whole microcontroller business. So, it is not too likely Intel will ever write up the history of 8051. It seems it is up to the volunteers, then. I came to 8051's quite late, so I can't remember most of its history. I just collected a couple of facts I found interesting, fascinating. My thanks go to the 8052.com1 discussion forum, where the idea of this document came from, and the forum users, contributing and correcting many of the details. I invite any correction, being it spelling, wording or factual; and of course additions and ideas to this document. Chapter -1 8048: Prehistory. In fact, it should have started with chapter -2, the invention of microprocessor. Intel introduced a single-chip processor, the 4004, in 1971.
    [Show full text]
  • Download The
    Visit : https://hemanthrajhemu.github.io Join Telegram to get Instant Updates: https://bit.ly/VTU_TELEGRAM Contact: MAIL: [email protected] INSTAGRAM: www.instagram.com/hemanthraj_hemu/ INSTAGRAM: www.instagram.com/futurevisionbie/ WHATSAPP SHARE: https://bit.ly/FVBIESHARE Introduction to Embedded Systems Shibu KV Technical Architect Mobility & Embedded Systems Practice Infosys Technologies Ltd., Trivandrum Unit, Kerala Me Graw Hill Education McGraw Hill Education (India) Private Limited NEW DELHI McGraw Hill Education Offices New Delhi New York St Louis San Francisco Auckland Bogota Caracas Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal San Juan Santiago Singapore Sydney Tokyo Toronto https://hemanthrajhemu.github.io Preface Acknowledgements Part 1 Embedded System: Understanding the Basic Concepts 1. Introduction to Embedded Systems 1.1 What is an Embedded System? 4 1.2 Embedded Systems vs. General Computing Systems 4 1.3 Ehstory of Embedded Systems 5 1.4 Classification of Embedded Systems 6 1.5 Major Application Areas of Embedded Systems 7 1.6 Purpose of Embedded Systems 8 1.7 ‘ Smart’ Running Shoes from Adidas—The Innovative Bonding of Lifestyle with Embedded Technology 11 Summary 13 Keywords 13 Objective Questions 14 Review Questions 14 2. The Typical Embedded System 2.1 Core of the Embedded System 17 2.2 Memory 28 2.3 Sensors and Actuators 35 2.4 Communication Interface 45 2.5 Embedded Firmware 59 2.6 Other System Components 60 2.7 PCB and Passive Components 64 Summary 64 Keywords 65 https://hemanthrajhemu.github.io Contents Objective Questions 67 Review Questions 69 Lab Assignments 71 Characteristics and Quality Attributes of Embedded Systems 3.1 Characteristics of an Embedded System 72 3.2 Quality Attributes of Embedded Systems 74 Summary 79 Keywords 79 Objective Questionsi 80 Review Questions 81 .
    [Show full text]
  • 8-Bit Bipolar Microprocessor Mostek Offering Z-80 Family
    Volume 3, Number 5 November, 1976 8-BIT BIPOLAR MICROPROCESSOR MOSTEK OFFERING Z-80 FAMILY A high-speed 8-bit bipolar Schottky mono­ lithic microprocessor, 8x30, with a fixed instruction set and optimized for control operations, is now available from Signetics. The 8x30 Architecture contains an ALU, eight 8-bit working registers, instruction address register, program counter, instruction data register, on chip oscillator, TTL­ compatible input and output, a three-state I/O data bus, and control and decode logic. Cycle time is 250 ns. MOSTEK is now offering the Z80 Microcom­ puter family and the Z-80 development system. The Z80 component family includes: Z80 CPU with 158 insrructions--includes all 78 of the 8080A instructions with total soft­ ware compatibility. New instructions include 4-, 8-, and l6-bit operations; Z80 PIa Con­ These features, combined with partitionin'g troller with two independent 8-bit ports with of the address/data bus into right and left handshake and four modes of operation under banks, make it possible for 8-bit parallel program control; Cont I d on Page 2 data to be rotated or masked, to undergo arithmetic or logical operations, and thento FAIRCHILD/MOTOROLA 6800 PACT be shifted and merged into any set of one to 8 contiguous bits at the destination--all in Fairchild Camera and Instrument Corp. has one 250 nanosecond cycle. announced it will manufacture and market the Peripheral circuits available include the Motorola 6800 microprocessor family under an 8T32/8T33 Synchronous I/O ports, 8T25/8T36 arrangement between Fairchild and Motorola, Inc. Asynchronous I/O parts and the 8T39 bus ex­ Fairchild President W.
    [Show full text]
  • Mirage (Appendix B)
    M I R A G E : A M O D E L F O R L A T E N C Y IN C O M M U N I C A T I O N Joseph Dean Touch A DISSERTATION IN COMPUTER AND INFORMATION SCIENCE Presented to the Faculties of the University of Pennsylvania in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy. 1992 David J. Farber Supervisor of Dissertation Mitchell P. Marcus Graduate Group Chair COPYRIGHT Joseph Dean Touch 1992 DEDICATION iii D E D I C A T I O N To my parents, Ralph B. and Filomena Touch, for whom education is always first. ACKNOWLEDGEMENTS iv A C K N O W L E D G M E N T S This work is supported by the Information Science and Technology Office of the Defense Advanced Research Projects Agency, under contract NAG-2-639, and by an AT&T Graduate Research Fellowship, grant #111349. There are also many people who contributed to the development of this dissertation, and without whose help it would not have been possible. My classmates at the University of Pennsylvania Department of Computer and Information Science provided active debates encouraged these ideas. Members of the Distributed Systems Lab, including John Shaffer, Anand Iyengar, Ming-Chit (Ivan) Tam, Brendan Traw, Jonathan Smith, and Amarnath Mukherjee discussed and debated these ideas. Daniel Kulp (Univ. Penn. Materials Science) provided fertile discussions on the physics analogs which provided the basis of Mirage (Appendix B). Other sections were directly helped by Jon Freeman (Appendix C), Christine Nakatani (Appendix G), Amarnath Mukherjee (branching-stream model equations, Chapter 2), Richard Gerber (communicability and Smyth’s PowerDomains, Chapter 3), Phil Christie (Univ.
    [Show full text]
  • Overview of Microprocessors
    C HAPTER – 1 OVERVIEW OF MICROPROCESSORS 1.1 GENERAL A microprocessor is one of the most exciting technological innovations in electronics since the appearance of the transistor in 1948. This wonder device has not only set in the process of revolutionizing the field of digital electronics, but it is also getting entry into almost every sphere of human life. Applications of microprocessors range from the very sophisticated process controllers and supervisory control equipment to simple game machines and even toys. It is, therefore, imperative for every engineer, specially electronics engineer, to know about microprocessors. Every designer of electronic products needs to learn how to use microprocessors. Even if he has no immediate plans to use a microprocessor, he should have knowledge of the subject so that he can intelligently plan his future projects and can make sound engineering judgements when the time comes. The subject of microprocessors is overviewed here with the objective that a beginner gets to know what a microprocessor is, what it can do, how it fits in a system and gets an overall idea of the various components of such a system. Once he has understood signam of each component and its place in the system, he can go deeper into the working details and design of individual components without difficulty. 1.2 WHAT IS A MICROCOMPUTER? To an engineer who is familiar with mainframe and mini computers, a microcomputer is simply a less powerful mini computer. Microcomputers have smaller instruction sets and are slower than mini computers, but then they are far less expensive and smaller too.
    [Show full text]