Apparatus Named After Our Academic Ancestors, III

Total Page:16

File Type:pdf, Size:1020Kb

Apparatus Named After Our Academic Ancestors, III Digital Kenyon: Research, Scholarship, and Creative Exchange Faculty Publications Physics 2014 Apparatus Named After Our Academic Ancestors, III Tom Greenslade Kenyon College, [email protected] Follow this and additional works at: https://digital.kenyon.edu/physics_publications Part of the Physics Commons Recommended Citation “Apparatus Named After Our Academic Ancestors III”, The Physics Teacher, 52, 360-363 (2014) This Article is brought to you for free and open access by the Physics at Digital Kenyon: Research, Scholarship, and Creative Exchange. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Digital Kenyon: Research, Scholarship, and Creative Exchange. For more information, please contact [email protected]. Apparatus Named After Our Academic Ancestors, III Thomas B. Greenslade Jr. Citation: The Physics Teacher 52, 360 (2014); doi: 10.1119/1.4893092 View online: http://dx.doi.org/10.1119/1.4893092 View Table of Contents: http://scitation.aip.org/content/aapt/journal/tpt/52/6?ver=pdfcov Published by the American Association of Physics Teachers Articles you may be interested in Crystal (Xal) radios for learning physics Phys. Teach. 53, 317 (2015); 10.1119/1.4917450 Apparatus Named After Our Academic Ancestors — II Phys. Teach. 49, 28 (2011); 10.1119/1.3527751 Apparatus Named After Our Academic Ancestors — I Phys. Teach. 48, 604 (2010); 10.1119/1.3517028 Physics Northwest: An Academic Alliance Phys. Teach. 45, 421 (2007); 10.1119/1.2783150 From Our Files Phys. Teach. 41, 123 (2003); 10.1119/1.1542054 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 138.28.20.224 On: Mon, 12 Oct 2015 19:09:30 Apparatus Named After Our Academic Ancestors, III Thomas B. Greenslade Jr., Kenyon College, Gambier, OH y academic ancestors in physics have called on ure 1 shows an early 20th-century example of Arago’s disk. me once more to tell you about the apparatus that We can explain this Arago rotation by noting that the moving they devised, and that many of you have used in copper disk has eddy currents induced in it by the magnetic Myour demonstrations and labs. This article is about apparatus dipole, and the magnetic field resulting from these currents named after François Arago, Heinrich Helmholtz, Leon Fou- interacts with the compass needle. The instrument in Fig. 1 is cault, and James Watt. listed in the 1911 catalogue of W. G. Pye & Co. of Cambridge as “Arago’s Rotating Copper Disk” at £1.12.6, or about $8. I 1. Arago’s Disk. François Arago (1786-1853) belongs recently gave it a new belt and it works very well. to a group of post-revolutionary French scientists who did extensive work in optics, particularly in the wave theory of 2. Helmholtz’s Resonator and Coils. A polymath light and the study of polarized light. He started his scientific works, by definition, in many fields, and Herman Helmholtz career in 1805 with a continuation of the survey of the prime (1821-1894) is an operational definition of the term. He did meridian that ran through Paris, used to fix the length of the research and published in the physiology of human hearing meter. Earlier it had been laid out from Dunkirk to Barce- and vision, theoretical mechanics, electricity and magne- lona, and Arago, assisted by Biot, repeated some of the later tism, meteorology, chemistry, and mathematics. His original work and continued across the Mediterranean to Majorca. In training was in medicine, but after a short career as a mili- conjunction with Fresnel he showed that two beams of light tary physician in Potsdam, his work on the conservation of polarized at 90° to each other do not interfere, thus supplying energy, based on physiological, physical, and philosophical important evidence for the transverse wave theory of light. arguments, gave him an appointment to the chair of physiol- He became the director of the Paris Observatory, and in ogy at Königsberg. Later he was a professor at Heidelberg and 1838 suggested an experiment to compare the speed of light Berlin. in glass or water with that in air. If the latter were larger, this During his work on human vision in 1851, he invented the would provide the final key to the wave theory. Unfortunately, ophthalmoscope,3 which allows the interior of the eye to be he had poor vision and the experiments were carried out in studied; today this can be found in almost every physician’s the 1850s by Foucault and Fizeau.1 office. Much of the information in introductory textbooks Arago was a well-known politician, having been elected to about the structure and optical constants of the eye, the cur- the Chamber of Deputies in 1830. Later, as a cabinet minister, vature of the surface of the retina, and the ability of the eye he was behind the abolition of slavery in France and its ter- lens to vary its focal length (accommodation) comes from his ritories. In 1833 he made it possible for Louis J. M. Daguerre work. His book Physiological Optics, from the 1860s, can still to petition the French government for support for his work on be read with profit. photography (the daguerreotype). The equivalent book for acoustics, Sensations of Tone, In 1824 he discovered that the frequency of vibration of which Helmholtz published in 1862, establishes the fact that a compass needle increased as it was brought close to the the quality of a musical tone depends on the harmonic over- surface of a horizontal sheet of metal. The next year he found tones that are present and their relative intensities. In this that a rotating copper disk would cause a compass needle, work, he used sharply tuned resonators, of the form shown in originally at rest, to start rotating in the same direction.2 Fig- Fig. 2, to detect what frequencies were present in a complex Fig. 1. Arago’s disk from the Greenslade Collection. Fig. 2. A set of spherical Helmholtz resonators by Rudolph Koenig at the University of Toronto. 360 THE PHYSICS TEACHER ◆ Vol. 52, SEPTEMBER 2014 DOI: 10.1119/1.4893092 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 138.28.20.224 On: Mon, 12 Oct 2015 19:09:30 sound; these are now known as “Helmholtz resonators.”4 In the form of the device shown in the figure, these consist of a spherical shell containing a volume of air, a hole or neck in which a slug of air can vibrate back and forth, and a slender nipple that can be held in the ear canal (or, today, connected to a sound level meter). The enclosed volume of air acts as a spring connected to the mass of the slug of air, and vibrates in an adiabatic fashion at a frequency dependent on the density and volume of the air, its molecular composition, and the mass of the slug of air in the neck. Originally Helmholtz used wine and other bottles, but soon after 1860 he asked Rudolph Koenig of Paris, the famous maker of acoustical apparatus, to make metal resonators with specific dimensions. The tangent gal- vanometer in Fig.3 shows the use of “Helmholtz coils.” In this instrument, the current to be measured passes Fig. 4. Foucault’s disk in the National Museum of through the coils, American History at the Smithsonian Institution. which are oriented with their planes in the magnetic north- south direction. The compass nee- dle in the middle Fig. 3. Tangent galvanometer with of the instrument Helmholtz coils, made by Elliott Brothers responds to the vec- of London and in the University of tor sum of the hori- Mississippi Collection. zontal component of Earth’s magnetic Fig. 5. Watt’s external condenser from the Greenslade Collection. field and the B field due to the current; the current is propor- tional to the tangent of the angle through which it turns.5 The original design, from 1837, had a single coil, but the use of his devising to provide enough illumination to make pictures two parallel coils was first suggested by Helmholtz in 1853. through the microscope. Later he made the first (daguerreo- When they are separated by a distance equal to the radius type) photographs of the Sun, which clearly showed sunspots. of the coils, there is a surprisingly large region in which the His co-workers in this research were Fizeau and Arago. His magnetic field is reasonably uniform. 1850 measurements of the speed of light in air and water We don’t use tangent galvanometers anymore, but we do showed that the former was the larger. As we have seen, Ara- use Helmholtz coils whenever a large region of uniform mag- go had wanted to perform this experiment, but his eyesight netic field is required. For example, apparatus to measure the had become faulty and it was done independently by Foucault charge to mass ratio of the electron is always put inside a pair and Fizeau (1849). His development of what we now call the of Helmholtz coils. In experiments in which the magnetic Foucault pendulum started with the devising of a support for field of Earth must be eliminated, pairs of coils tilted at the lo- the wire that gave no preferred direction to it; this was first cal dip angle are used. tried out in his cellar and in February 1851 was demonstrated at the Paris Observatory. While he did not invent the gyro- 3.
Recommended publications
  • Implementation of the Fizeau Aether Drag Experiment for An
    Implementation of the Fizeau Aether Drag Experiment for an Undergraduate Physics Laboratory by Bahrudin Trbalic Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Bachelor of Science in Physics at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 2020 c Massachusetts Institute of Technology 2020. All rights reserved. ○ Author................................................................ Department of Physics May 8, 2020 Certified by. Sean P. Robinson Lecturer of Physics Thesis Supervisor Certified by. Joseph A. Formaggio Professor of Physics Thesis Supervisor Accepted by . Nergis Mavalvala Associate Department Head, Department of Physics 2 Implementation of the Fizeau Aether Drag Experiment for an Undergraduate Physics Laboratory by Bahrudin Trbalic Submitted to the Department of Physics on May 8, 2020, in partial fulfillment of the requirements for the degree of Bachelor of Science in Physics Abstract This work presents the description and implementation of the historically significant Fizeau aether drag experiment in an undergraduate physics laboratory setting. The implementation is optimized to be inexpensive and reproducible in laboratories that aim to educate students in experimental physics. A detailed list of materials, experi- mental setup, and procedures is given. Additionally, a laboratory manual, preparatory materials, and solutions are included. Thesis Supervisor: Sean P. Robinson Title: Lecturer of Physics Thesis Supervisor: Joseph A. Formaggio Title: Professor of Physics 3 4 Acknowledgments I gratefully acknowledge the instrumental help of Prof. Joseph Formaggio and Dr. Sean P. Robinson for the guidance in this thesis work and in my academic life. The Experimental Physics Lab (J-Lab) has been the pinnacle of my MIT experience and I’m thankful for the time spent there.
    [Show full text]
  • The Concept of Field in the History of Electromagnetism
    The concept of field in the history of electromagnetism Giovanni Miano Department of Electrical Engineering University of Naples Federico II ET2011-XXVII Riunione Annuale dei Ricercatori di Elettrotecnica Bologna 16-17 giugno 2011 Celebration of the 150th Birthday of Maxwell’s Equations 150 years ago (on March 1861) a young Maxwell (30 years old) published the first part of the paper On physical lines of force in which he wrote down the equations that, by bringing together the physics of electricity and magnetism, laid the foundations for electromagnetism and modern physics. Statue of Maxwell with its dog Toby. Plaque on E-side of the statue. Edinburgh, George Street. Talk Outline ! A brief survey of the birth of the electromagnetism: a long and intriguing story ! A rapid comparison of Weber’s electrodynamics and Maxwell’s theory: “direct action at distance” and “field theory” General References E. T. Wittaker, Theories of Aether and Electricity, Longam, Green and Co., London, 1910. O. Darrigol, Electrodynamics from Ampère to Einste in, Oxford University Press, 2000. O. M. Bucci, The Genesis of Maxwell’s Equations, in “History of Wireless”, T. K. Sarkar et al. Eds., Wiley-Interscience, 2006. Magnetism and Electricity In 1600 Gilbert published the “De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure” (On the Magnet and Magnetic Bodies, and on That Great Magnet the Earth). ! The Earth is magnetic ()*+(,-.*, Magnesia ad Sipylum) and this is why a compass points north. ! In a quite large class of bodies (glass, sulphur, …) the friction induces the same effect observed in the amber (!"#$%&'(, Elektron). Gilbert gave to it the name “electricus”.
    [Show full text]
  • Speed Limit: How the Search for an Absolute Frame of Reference in the Universe Led to Einstein’S Equation E =Mc2 — a History of Measurements of the Speed of Light
    Journal & Proceedings of the Royal Society of New South Wales, vol. 152, part 2, 2019, pp. 216–241. ISSN 0035-9173/19/020216-26 Speed limit: how the search for an absolute frame of reference in the Universe led to Einstein’s equation 2 E =mc — a history of measurements of the speed of light John C. H. Spence ForMemRS Department of Physics, Arizona State University, Tempe AZ, USA E-mail: [email protected] Abstract This article describes one of the greatest intellectual adventures in the history of mankind — the history of measurements of the speed of light and their interpretation (Spence 2019). This led to Einstein’s theory of relativity in 1905 and its most important consequence, the idea that matter is a form of energy. His equation E=mc2 describes the energy release in the nuclear reactions which power our sun, the stars, nuclear weapons and nuclear power stations. The article is about the extraordinarily improbable connection between the search for an absolute frame of reference in the Universe (the Aether, against which to measure the speed of light), and Einstein’s most famous equation. Introduction fixed speed with respect to the Aether frame n 1900, the field of physics was in turmoil. of reference. If we consider waves running IDespite the triumphs of Newton’s laws of along a river in which there is a current, it mechanics, despite Maxwell’s great equations was understood that the waves “pick up” the leading to the discovery of radio and Boltz- speed of the current. But Michelson in 1887 mann’s work on the foundations of statistical could find no effect of the passing Aether mechanics, Lord Kelvin’s talk1 at the Royal wind on his very accurate measurements Institution in London on Friday, April 27th of the speed of light, no matter in which 1900, was titled “Nineteenth-century clouds direction he measured it, with headwind or over the dynamical theory of heat and light.” tailwind.
    [Show full text]
  • The Tuning Fork: an Amazing Acoustics Apparatus
    FEATURED ARTICLE The Tuning Fork: An Amazing Acoustics Apparatus Daniel A. Russell It seems like such a simple device: a U-shaped piece of metal and Helmholtz resonators were two of the most impor- with a stem to hold it; a simple mechanical object that, when tant items of equipment in an acoustics laboratory. In 1834, struck lightly, produces a single-frequency pure tone. And Johann Scheibler, a silk manufacturer without a scientific yet, this simple appearance is deceptive because a tuning background, created a tonometer, a set of precisely tuned fork exhibits several complicated vibroacoustic phenomena. resonators (in this case tuning forks, although others used A tuning fork vibrates with several symmetrical and asym- Helmholtz resonators) used to determine the frequency of metrical flexural bending modes; it exhibits the nonlinear another sound, essentially a mechanical frequency ana- phenomenon of integer harmonics for large-amplitude lyzer. Scheibler’s tonometer consisted of 56 tuning forks, displacements; and the stem oscillates at the octave of the spanning the octave from A3 220 Hz to A4 440 Hz in steps fundamental frequency of the tines even though the tines of 4 Hz (Helmholtz, 1885, p. 441); he achieved this accu- have no octave component. A tuning fork radiates sound as racy by modifying each fork until it produced exactly 4 a linear quadrupole source, with a distinct transition from beats per second with the preceding fork in the set. At the a complicated near-field to a simpler far-field radiation pat- 1876 Philadelphia Centennial Exposition, Rudolph Koenig, tern. This transition from near field to far field can be seen the premier manufacturer of acoustics apparatus during in the directivity patterns, time-averaged vector intensity, the second half of the nineteenth century, displayed his and the phase relationship between pressure and particle Grand Tonometer with 692 precision tuning forks ranging velocity.
    [Show full text]
  • Project Physics Reader 4, Light and Electromagnetism
    DOM/KEITRESUME ED 071 897 SE 015 534 TITLE Project Physics Reader 4,Light and Electromagnetism. INSTITUTION Harvard 'Jail's, Cambridge,Mass. Harvard Project Physics. SPONS AGENCY Office of Education (DREW), Washington, D.C. Bureau of Research. BUREAU NO BR-5-1038 PUB DATE 67 CONTRACT 0M-5-107058 NOTE . 254p.; preliminary Version EDRS PRICE MF-$0.65 HC-49.87 DESCRIPTORS Electricity; *Instructional Materials; Li ,t; Magnets;, *Physics; Radiation; *Science Materials; Secondary Grades; *Secondary School Science; *Supplementary Reading Materials IDENTIFIERS Harvard Project Physics ABSTRACT . As a supplement to Project Physics Unit 4, a collection. of articles is presented.. in this reader.for student browsing. The 21 articles are. included under the ,following headings: _Letter from Thomas Jefferson; On the Method of Theoretical Physics; Systems, Feedback, Cybernetics; Velocity of Light; Popular Applications of.Polarized Light; Eye and Camera; The laser--What it is and Doe0; A .Simple Electric Circuit: Ohmss Law; The. Electronic . Revolution; The Invention of the Electric. Light; High Fidelity; The . Future of Current Power Transmission; James Clerk Maxwell, ., Part II; On Ole Induction of Electric Currents; The Relationship of . Electricity and Magnetism; The Electromagnetic Field; Radiation Belts . .Around the Earth; A .Mirror for the Brain; Scientific Imagination; Lenses and Optical Instruments; and "Baffled!." Illustrations for explanation use. are included. The work of Harvard. roject Physics haS ...been financially supported by: the Carnegie Corporation ofNew York, the_ Ford Foundations, the National Science Foundation.the_Alfred P. Sloan Foundation, the. United States Office of Education, and Harvard .University..(CC) Project Physics Reader An Introduction to Physics Light and Electromagnetism U S DEPARTMENT OF HEALTH.
    [Show full text]
  • Early Use of the Scott-Koenig Phonautograph for Documenting Performance G
    Acoustics 08 Paris Early use of the Scott-Koenig phonautograph for documenting performance G. Brock-Nannestada and J.-M. Fontaineb aPatent Tactics, Resedavej 40, DK-2820 Gentofte, Denmark bUniversit´eUPMC - Minist`erede la Culture - CNRS - IJRA - LAM, 11, rue de Lourmel, F-75015 Paris, France [email protected] 6239 Acoustics 08 Paris Acoustics of phenomena in the air in the 1850s combined listening, observation and tabulation. This was "real-time", catching any phenomenon as it appeared. If it was repeatable, one could be prepared. Continuous, rather than tabular data enabled a very different analysis from observation plus notebooks. Édouard-Léon Scott's invention of the phonautograph enabled this. A surface moved below a stylus vibrated by sound in air. Originally the surface was a blackened glass plate, and it became a sheet of blackened paper. The scientific instrument maker Rudolph Koenig contributed his craftsmanship by building a very professional apparatus. A two-dimensional representation of the individual vibrations was obtained. Scott deposited a sealed letter with the Paris Academy of Sciences in January, 1857 and filed a patent application in April, 1857. Later he deposited a further sealed letter and in 1859 he filed an application for patent of addition. Analyzing the thoughts expressed and documented in his manuscripts and by Koenig's licensed production it is feasible to see how they were dependent on each other, although they had different purposes in mind. The paper concentrates on Scott's interests in performance vs. Koenig's in partials, and the structure of original tracings are discussed. the air". Phillips [7] provides a very lucid explanation for these observations.
    [Show full text]
  • Reading Materials on EM Waves and Polarized Light
    22-1 Maxwell’s Equations In the 19th century, many scientists were making important contributions to our understanding of electricity, magnetism, and optics. For instance, the Danish scientist Hans Christian Ørsted and the French physicist André-Marie Ampère demonstrated that electricity and magnetism were related and could be considered part of one field, electromagnetism. A number of other physicists, including England’s Thomas Young and France’s Augustin-Jean Fresnel, showed how light behaved as a wave. For the most part, however, electromagnetism and optics were viewed as separate phenomena. James Clerk Maxwell was a Scottish physicist who lived from 1831 – 1879. Maxwell advanced physics in a number of ways, but his crowning achievement was the manner in which he showed how electricity, magnetism, and optics are inextricably linked. Maxwell did this, in part, by writing out four deceptively simple equations. Physicists love simplicity and symmetry. To a physicist, it is hard to beat the beauty of Maxwell’s equations, shown in Figure 22.1. To us, they might appear to be somewhat imposing, because they require a knowledge of calculus to fully comprehend them. These four equations are immensely powerful, however. Together, they hold the key to understanding much of what is covered in this book in Chapters 16 – 20, as well as Chapters 22 and 25. Seven chapters boiled down to four equations. Think how much work we would have saved if we had just started with Maxwell’s equations instead, assuming we understood all their implications immediately. rrr Qdr Φ Equation 1: EdA•=Equation 3: Edl •=− B term added ∫∫ε dt by Maxwell 0 rrr r dΦ Equation 2: BdA•=0 Equation 4: Bdl •=µµε I + E ∫∫000enclosed dt Figure 22.1: Maxwell’s equations.
    [Show full text]
  • Unit 7: Manipulating Light
    Unit 7: Manipulating Light Unit Overview This unit continues to develop the theme of the practical and foundational effects of quantum mechanics. It focuses on the experimental achievements in reducing the speed of light by factors of tens of millions and covers some of the implications of that research. The first section emphasizes the critical role that the speed of light in a vacuum plays in our understanding of our universe. It also outlines the "natural" way of slowing light by small amounts by passing it through materials of different refractive indices. Section 3 then details the type of experimental setup used to slow down light "artificially" in the laboratory and analyzes the fundamental quantum processes that permit physicists to reduce light's speed to that of a cyclist—and even to stop light altogether and hold it in storage. Next, Section 7 covers methods of converting light into matter and back again. And finally, Section 8 points out various applications, real and potential, of the increasing ability to manipulate light. Content for This Unit Sections: 1. Introduction.............................................................................................................. 2 2. Measuring and Manipulating the Speed of Light ................................................... 4 3. A Sound Design for Slowing Light .........................................................................7 4. Making an Optical Molasses.................................................................................11 5. Slowing Light: Lasers
    [Show full text]
  • Music and the Making of Modern Science
    Music and the Making of Modern Science Music and the Making of Modern Science Peter Pesic The MIT Press Cambridge, Massachusetts London, England © 2014 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. MIT Press books may be purchased at special quantity discounts for business or sales promotional use. For information, please email [email protected]. This book was set in Times by Toppan Best-set Premedia Limited, Hong Kong. Printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Pesic, Peter. Music and the making of modern science / Peter Pesic. pages cm Includes bibliographical references and index. ISBN 978-0-262-02727-4 (hardcover : alk. paper) 1. Science — History. 2. Music and science — History. I. Title. Q172.5.M87P47 2014 509 — dc23 2013041746 10 9 8 7 6 5 4 3 2 1 For Alexei and Andrei Contents Introduction 1 1 Music and the Origins of Ancient Science 9 2 The Dream of Oresme 21 3 Moving the Immovable 35 4 Hearing the Irrational 55 5 Kepler and the Song of the Earth 73 6 Descartes ’ s Musical Apprenticeship 89 7 Mersenne ’ s Universal Harmony 103 8 Newton and the Mystery of the Major Sixth 121 9 Euler: The Mathematics of Musical Sadness 133 10 Euler: From Sound to Light 151 11 Young ’ s Musical Optics 161 12 Electric Sounds 181 13 Hearing the Field 195 14 Helmholtz and the Sirens 217 15 Riemann and the Sound of Space 231 viii Contents 16 Tuning the Atoms 245 17 Planck ’ s Cosmic Harmonium 255 18 Unheard Harmonies 271 Notes 285 References 311 Sources and Illustration Credits 335 Acknowledgments 337 Index 339 Introduction Alfred North Whitehead once observed that omitting the role of mathematics in the story of modern science would be like performing Hamlet while “ cutting out the part of Ophelia.
    [Show full text]
  • SIS Bulletin Index Issues 1 to 80
    Scientific Instrument Society Bulletin of the Scientific Instrument Society Index No 1 to No 80 Scientific Instrument Society Bulletin of the Scientific Instrument Society Index No 1 to No 80 Contents Introduction Index of Topics 3 Index of Articles 37 Index of Book Reviews 51 The Scientific Instrument Society 61 Documents Associated with the Index 61 Introduction Development of the Index of the Bulletin of the Scientific Instrument Society The first 40 issues of the Bulletin were indexed successively, ten issues at a time. With the advent of No 50 it was decided to amalgamate the earlier work and create a single index for all 50 issues. The work involved was a vast undertaking requiring the use of optical character recognition and other computer techniques on the earlier work, and a good deal of careful proof reading. The final product was handsomely produced in A4 size uniform with the Bulletin, running to 64 index pages. Having reached 80 issues, a similar combining exercise has been done, but with fewer categories within the Index. However, whilst the main index of individual topics remains as comprehensive as previously it is presented in a smaller typeface and makes use of more columns. At the time of printing, consideration is being given to the use of this new Index as a facility on the Society's website and also in connection with CDROMs of the Bulletin. Notes for using the 3 sections of the Bulletin Index, Issue No 1 to Issue No 80 Index of Topics Topics are arranged alphabetically by subject. References are shown as 'Issue No : Page No' eg 2:15 or 45:7-11 Index of Articles Authors of articles are listed alphabetically with the titles of their articles following in issue order.
    [Show full text]
  • The Short History of Science
    PHYSICS FOUNDATIONS SOCIETY THE FINNISH SOCIETY FOR NATURAL PHILOSOPHY PHYSICS FOUNDATIONS SOCIETY THE FINNISH SOCIETY FOR www.physicsfoundations.org NATURAL PHILOSOPHY www.lfs.fi Dr. Suntola’s “The Short History of Science” shows fascinating competence in its constructively critical in-depth exploration of the long path that the pioneers of metaphysics and empirical science have followed in building up our present understanding of physical reality. The book is made unique by the author’s perspective. He reflects the historical path to his Dynamic Universe theory that opens an unparalleled perspective to a deeper understanding of the harmony in nature – to click the pieces of the puzzle into their places. The book opens a unique possibility for the reader to make his own evaluation of the postulates behind our present understanding of reality. – Tarja Kallio-Tamminen, PhD, theoretical philosophy, MSc, high energy physics The book gives an exceptionally interesting perspective on the history of science and the development paths that have led to our scientific picture of physical reality. As a philosophical question, the reader may conclude how much the development has been directed by coincidences, and whether the picture of reality would have been different if another path had been chosen. – Heikki Sipilä, PhD, nuclear physics Would other routes have been chosen, if all modern experiments had been available to the early scientists? This is an excellent book for a guided scientific tour challenging the reader to an in-depth consideration of the choices made. – Ari Lehto, PhD, physics Tuomo Suntola, PhD in Electron Physics at Helsinki University of Technology (1971).
    [Show full text]
  • Rethinking the Foundations of the Theory of Special Relativity: Stellar Aberration and the Fizeau Experiment
    Rethinking the Foundations of the Theory of Special Relativity: Stellar Aberration and the Fizeau Experiment 1 2 A.F. Maers and R. Wayne 1Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14853 USA 2Department of Plant Biology, Cornell University, Ithaca, NY14853 USA In a previous paper published in this journal, we described a new relativistic wave equation that accounts for the propagation of light from a source to an observer in two different inertial frames. This equation, which is based on the primacy of the Doppler effect, can account for the relativity of simultaneity and the observation that charged particles cannot exceed the speed of light. In contrast to the Special Theory of Relativity, it does so without the necessity of introducing the relativity of space and time. Here we show that the new relativistic wave equation based on the primacy of the Doppler effect is quantitatively more accurate than the standard theory based on the Fresnel drag coefficient or the relativity of space and time in accounting for the results of Fizeau’s experiment on the optics of moving media—the very experiment that Einstein considered to be “a crucial test in favour of the theory of relativity.” The new relativistic wave equation quantitatively describes other observations involving the optics of moving bodies, including stellar aberration and the null results of the Michelson- Morley experiment. In this paper, we propose an experiment to test the influence of the refractive index on the interference fringe shift generated by moving media. The Special Theory of Relativity, which is based on the relativity of space and time, and the new relativistic wave equation, which is based on the primacy of the Doppler effect, make different predictions concerning the influence of the refractive index on the optics of moving media.
    [Show full text]