Of Frogs and Men: the Origins of Psychophysiological Time Experiments, 1850–1865 Henning Schmidgen

Total Page:16

File Type:pdf, Size:1020Kb

Of Frogs and Men: the Origins of Psychophysiological Time Experiments, 1850–1865 Henning Schmidgen Of frogs and men: the origins of psychophysiological time experiments, 1850–1865 Henning Schmidgen Towards the end of the 1840s, Hermann von Helmholtz began to investigate experimentally the propagation of stimuli within nerves. Helmholtz’s experiments on animals and human subjects opened a research field that in the following decades was intensively explored by neurophysiologists and experimental psychologists. Helmholtz’s pioneering investigations justify the central place he occupies in accounts of the history of modern psychophysiology. Studying the concrete experimental settings and their local contexts shows how deeply the work of scholars such as Helmholtz is embedded in the history of culture and technology. In particular, the rapidly growing technologies of electromagnetism, which gave rise to telegraphy and electric clocks, facilitated the time measurements of 19th-century physiologists and psychologists. On 15 January 1850, Hermann von Helmholtz (1821–1894) technology and the military were closely interrelated. signed a short report and sent it off to the Physical Three years before publishing the first volume of his Society and the Academy of Sciences in Berlin. Its first path-breaking Investigations on Animal Electricity paragraph read: (1848), Emil Du Bois-Reymond (a friend and colleague of Helmholtz) had made concrete suggestions for meas- I have found that a measurable time passes when the stimu- uring ‘the speed of the muscle and nerve activity’ at a lus exerted by a momentary electric current on the hip plexus meeting of the Physical Society3. Then in 1847, the jour- (Hüftgeflecht) of a frog propagates itself to the nerves of the nal of this society, Advances of Physics, printed the report thigh and enters the calf muscle. In large frogs whose nerves of a young lieutenant in the Prussian artillery. Under the were 50 to 60 millimetres long, and which I had kept at title ‘On speed measurements’, Werner Siemens, who 2–6 degrees Celsius (whereas the temperature of the obser- later founded the well-known electricity group, offered an vation room was between 11 and 15 degrees), this length of overview on the most recent methods for exactly deter- time amounted to 0.0014 and 0.0020 of one second.1 mining the ‘speed of bodies’. Almost all of the devices Siemens presented and explained relied on the application of electromagnetism. And whether it was Charles Helmholtz and the velocity of nervous Wheatstone’s chronoscope or the apparatus devised by stimulation Siemens himself, the main field for using these apparatus Ever since the formation of the reflex concept in the 17th was military research. As Siemens put it, especially century, naturalists had been interested in the speed of the ‘to the artillery it is of importance to know the speed ‘animal spirits’ and the conduction velocity of the ‘nerv- of projectiles at various points of their trajectory.’4 ous principle’. With his investigations, Helmholtz entered Furthermore, the military background of ‘time the history of the experimental life sciences as the first microscopy’ was not unfamiliar to Hemholtz. Between scientist to make precise measurements of nervous action. 1843 and 1848 he had received his training as squadron In nerve-muscle preparations from the frog, Helmholtz surgeon and military physician in Potsdam5. measured a propagation velocity of stimuli between 25 When measuring the propagation velocity of stimula- and 43 meters per second2. tions in nerves, Helmholtz initially used a method sug- Helmholtz’s experiments were carried out in a world gested by Claude Pouillet (1790–1868). As the French in which physiology (or ‘organic physics’), telegraph physician had reasoned, the degree of deflection of a galvanometer needle depended not only on the intensity Henning Schmidgen of the electric current, but also on the time during which Is Research Scholar at the Max Planck Institute for the History the current affected the needle. It thus should also have of Science in Berlin. His research focuses on the modern been possible to deduce the ‘current time’ from the history of experimental physiology and psychology. He also deflection of the needle. Pouillet devised an electric cir- has a strong interest in bringing the history of the cuit in which electric impulses of temporal precision experimental life sciences to the Internet (see, in particular, could be produced by means of a rotating disk on which http://vlp.mpiwg-berlin.mpg.de). Currently, he is writing a book about the history of physiological and psychological circumscribed contact surfaces were mounted. Given a time experiments. constant electric current, the deflection of a galvonometer e-mail: [email protected] needle included in the circuit could be used to derive the 142 Endeavour Vol. 26(4) 2002 0160-9327/02/$ – see front matter © 2002 Elsevier Science Ltd. All rights reserved. PII: S0160-9327(02)01448-5 Figure 1. In the 19th century, most of the procedures to measure short time intervals were developed within the context of military research. Their primary use was measuring the velocity of projectiles at different points of their trajectories. With the advent of telegraph technology in the late-1830s, electromagnetism began to play an important Figure 2. This contemporary reconstruction shows the use role in this kind of precision measurement. The Figure shows Helmholtz made of Pouillet‘s method for measuring the the use of such a time measuring device in the context of propagation speed of electric stimuli in the nerve. The set-up ballistics. Its basic mechanism was suggested by the French combined two electric circuits: one in which the battery, R, by physicist Claude Pouillet in 1844. The deflection of a passing through the induction spirales I1 and I2, could galvanometer needle served to measure the time during momentarily stimulate the nerve muscle preparation N/M; the which the current was active. In this set-up, firing the rifle other circuit connected the galvanometer T to the battery Z. opened the current which was closed again by the bullet The switch S/P allowed closure of both electric circuits at cutting the wire at the rifle‘s muzzle. In the late-1840s, exactly the same time. The devices within the metallic frame Hermann von Helmholtz adopted Pouillet‘s method for A guaranteed that after the contraction of the frog muscle the measuring the propagation speed in the nerves. Reproduced time-measuring circuit was permanently interrupted. By from Ref. 30. placing the electrode at different points of the nerve (n1, n2), Helmholtz could deduce the time the nerve needed for the time during which the current was active. Pouillet com- conduction of the stimulus. Reproduced from Ref. 31. pared this procedure to the ballistic pendulum Benjamin Robbins had constructed some hundred years previously6. as ‘nerve and muscle physics’ and, in more recent times, No wonder then that contemporary handbooks of electro- has been labeled ‘neurophysiology’. Scholars such as magnetism displayed figures illustrating the use of Gabriel Gustav Valentin and Albert von Bezold, Pouillet’s method for ballistic purposes (Figure 1). Julius Bernstein and Étienne Jules Marey, and Keith In his experiments on the propagation of nerve stimula- Lucas and Edgar Douglas Adrian contributed significant- tions, Helmholtz adopted Pouillet’s ‘means to measure ly to this field. Less widely known is the fact that extremely short time intervals’ for physiological use. Helmholtz was interested in the time relations structured Helmholtz devised two interconnected electric circuits, by the nervous systems of living beings not just from a one to stimulate the nerve-muscle preparation, the other physiological but also from a psychological point of to measure the current time by means of a galvanometer. view8. In fact, at the time at which he performed his stud- Both circuits could be closed in such a way that the prepa- ies on frogs, Helmholtz carried out similar experiments in ration was electrically stimulated and the electric current human beings. Again, Helmholtz’s aim was to measure was simultaneously sent through the galvanometer. When the stimulation propagation in the sensory nerves. the muscle then started contracting, the current in the In comparison with his frog experiments, Helmholtz’s galvanometer circuit was immediately and permanently work on humans presented special challenges. For obvi- interrupted. From the deflection of the needle, Helmholtz ous reasons, the experiments could not be conducted on could read off the time the muscle needed to contract after preservable preparations separated from the rest of the stimulation. Placing the electrode at different parts of the organism. Helmholtz tried to circumvent this difficulty by nerve-muscle preparation, the differences in the results measuring what today’s psychologists would call ‘simple obtained allowed him to calculate the propagation speed reaction times’. In a communication to the Physical of the ‘nervous impulse’ (Figure 2). Society signed by Helmholtz on 15 December 1850, he This, however, was only the initial form of Helmholtz’s reported on ‘experiments on the propagation speed of experiments. In the extended investigations he carried out stimuli in the sensory nerves of human beings’, and after his first report, Helmholtz adopted other methods for described the basic structure of his experiments: his time measurements, turning to graphical procedures. But when devising his famous ‘frog myographion’, he In a human being, a very weak electric shock is applied to a again relied on existing precision technologies – this limited space of skin. When he feels the shock, he is asked time, the indicator tools used by steam engineers7. to carry out a specific movement with the hand or the teeth, interrupting the time measurement as soon as possible.9 Helmholtz’s psychological experiments Amongst historians of biology, it is understood that When all parameters remained constant, Helmholtz found Helmholtz’s work on the propagation speed of nervous in the results of these experiments a ‘surprising constan- stimuli constitutes the beginning of a branch of research cy’.
Recommended publications
  • The Tuning Fork: an Amazing Acoustics Apparatus
    FEATURED ARTICLE The Tuning Fork: An Amazing Acoustics Apparatus Daniel A. Russell It seems like such a simple device: a U-shaped piece of metal and Helmholtz resonators were two of the most impor- with a stem to hold it; a simple mechanical object that, when tant items of equipment in an acoustics laboratory. In 1834, struck lightly, produces a single-frequency pure tone. And Johann Scheibler, a silk manufacturer without a scientific yet, this simple appearance is deceptive because a tuning background, created a tonometer, a set of precisely tuned fork exhibits several complicated vibroacoustic phenomena. resonators (in this case tuning forks, although others used A tuning fork vibrates with several symmetrical and asym- Helmholtz resonators) used to determine the frequency of metrical flexural bending modes; it exhibits the nonlinear another sound, essentially a mechanical frequency ana- phenomenon of integer harmonics for large-amplitude lyzer. Scheibler’s tonometer consisted of 56 tuning forks, displacements; and the stem oscillates at the octave of the spanning the octave from A3 220 Hz to A4 440 Hz in steps fundamental frequency of the tines even though the tines of 4 Hz (Helmholtz, 1885, p. 441); he achieved this accu- have no octave component. A tuning fork radiates sound as racy by modifying each fork until it produced exactly 4 a linear quadrupole source, with a distinct transition from beats per second with the preceding fork in the set. At the a complicated near-field to a simpler far-field radiation pat- 1876 Philadelphia Centennial Exposition, Rudolph Koenig, tern. This transition from near field to far field can be seen the premier manufacturer of acoustics apparatus during in the directivity patterns, time-averaged vector intensity, the second half of the nineteenth century, displayed his and the phase relationship between pressure and particle Grand Tonometer with 692 precision tuning forks ranging velocity.
    [Show full text]
  • Apparatus Named After Our Academic Ancestors, III
    Digital Kenyon: Research, Scholarship, and Creative Exchange Faculty Publications Physics 2014 Apparatus Named After Our Academic Ancestors, III Tom Greenslade Kenyon College, [email protected] Follow this and additional works at: https://digital.kenyon.edu/physics_publications Part of the Physics Commons Recommended Citation “Apparatus Named After Our Academic Ancestors III”, The Physics Teacher, 52, 360-363 (2014) This Article is brought to you for free and open access by the Physics at Digital Kenyon: Research, Scholarship, and Creative Exchange. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Digital Kenyon: Research, Scholarship, and Creative Exchange. For more information, please contact [email protected]. Apparatus Named After Our Academic Ancestors, III Thomas B. Greenslade Jr. Citation: The Physics Teacher 52, 360 (2014); doi: 10.1119/1.4893092 View online: http://dx.doi.org/10.1119/1.4893092 View Table of Contents: http://scitation.aip.org/content/aapt/journal/tpt/52/6?ver=pdfcov Published by the American Association of Physics Teachers Articles you may be interested in Crystal (Xal) radios for learning physics Phys. Teach. 53, 317 (2015); 10.1119/1.4917450 Apparatus Named After Our Academic Ancestors — II Phys. Teach. 49, 28 (2011); 10.1119/1.3527751 Apparatus Named After Our Academic Ancestors — I Phys. Teach. 48, 604 (2010); 10.1119/1.3517028 Physics Northwest: An Academic Alliance Phys. Teach. 45, 421 (2007); 10.1119/1.2783150 From Our Files Phys. Teach. 41, 123 (2003); 10.1119/1.1542054 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions.
    [Show full text]
  • Early Use of the Scott-Koenig Phonautograph for Documenting Performance G
    Acoustics 08 Paris Early use of the Scott-Koenig phonautograph for documenting performance G. Brock-Nannestada and J.-M. Fontaineb aPatent Tactics, Resedavej 40, DK-2820 Gentofte, Denmark bUniversit´eUPMC - Minist`erede la Culture - CNRS - IJRA - LAM, 11, rue de Lourmel, F-75015 Paris, France [email protected] 6239 Acoustics 08 Paris Acoustics of phenomena in the air in the 1850s combined listening, observation and tabulation. This was "real-time", catching any phenomenon as it appeared. If it was repeatable, one could be prepared. Continuous, rather than tabular data enabled a very different analysis from observation plus notebooks. Édouard-Léon Scott's invention of the phonautograph enabled this. A surface moved below a stylus vibrated by sound in air. Originally the surface was a blackened glass plate, and it became a sheet of blackened paper. The scientific instrument maker Rudolph Koenig contributed his craftsmanship by building a very professional apparatus. A two-dimensional representation of the individual vibrations was obtained. Scott deposited a sealed letter with the Paris Academy of Sciences in January, 1857 and filed a patent application in April, 1857. Later he deposited a further sealed letter and in 1859 he filed an application for patent of addition. Analyzing the thoughts expressed and documented in his manuscripts and by Koenig's licensed production it is feasible to see how they were dependent on each other, although they had different purposes in mind. The paper concentrates on Scott's interests in performance vs. Koenig's in partials, and the structure of original tracings are discussed. the air". Phillips [7] provides a very lucid explanation for these observations.
    [Show full text]
  • Music and the Making of Modern Science
    Music and the Making of Modern Science Music and the Making of Modern Science Peter Pesic The MIT Press Cambridge, Massachusetts London, England © 2014 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. MIT Press books may be purchased at special quantity discounts for business or sales promotional use. For information, please email [email protected]. This book was set in Times by Toppan Best-set Premedia Limited, Hong Kong. Printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Pesic, Peter. Music and the making of modern science / Peter Pesic. pages cm Includes bibliographical references and index. ISBN 978-0-262-02727-4 (hardcover : alk. paper) 1. Science — History. 2. Music and science — History. I. Title. Q172.5.M87P47 2014 509 — dc23 2013041746 10 9 8 7 6 5 4 3 2 1 For Alexei and Andrei Contents Introduction 1 1 Music and the Origins of Ancient Science 9 2 The Dream of Oresme 21 3 Moving the Immovable 35 4 Hearing the Irrational 55 5 Kepler and the Song of the Earth 73 6 Descartes ’ s Musical Apprenticeship 89 7 Mersenne ’ s Universal Harmony 103 8 Newton and the Mystery of the Major Sixth 121 9 Euler: The Mathematics of Musical Sadness 133 10 Euler: From Sound to Light 151 11 Young ’ s Musical Optics 161 12 Electric Sounds 181 13 Hearing the Field 195 14 Helmholtz and the Sirens 217 15 Riemann and the Sound of Space 231 viii Contents 16 Tuning the Atoms 245 17 Planck ’ s Cosmic Harmonium 255 18 Unheard Harmonies 271 Notes 285 References 311 Sources and Illustration Credits 335 Acknowledgments 337 Index 339 Introduction Alfred North Whitehead once observed that omitting the role of mathematics in the story of modern science would be like performing Hamlet while “ cutting out the part of Ophelia.
    [Show full text]
  • SIS Bulletin Index Issues 1 to 80
    Scientific Instrument Society Bulletin of the Scientific Instrument Society Index No 1 to No 80 Scientific Instrument Society Bulletin of the Scientific Instrument Society Index No 1 to No 80 Contents Introduction Index of Topics 3 Index of Articles 37 Index of Book Reviews 51 The Scientific Instrument Society 61 Documents Associated with the Index 61 Introduction Development of the Index of the Bulletin of the Scientific Instrument Society The first 40 issues of the Bulletin were indexed successively, ten issues at a time. With the advent of No 50 it was decided to amalgamate the earlier work and create a single index for all 50 issues. The work involved was a vast undertaking requiring the use of optical character recognition and other computer techniques on the earlier work, and a good deal of careful proof reading. The final product was handsomely produced in A4 size uniform with the Bulletin, running to 64 index pages. Having reached 80 issues, a similar combining exercise has been done, but with fewer categories within the Index. However, whilst the main index of individual topics remains as comprehensive as previously it is presented in a smaller typeface and makes use of more columns. At the time of printing, consideration is being given to the use of this new Index as a facility on the Society's website and also in connection with CDROMs of the Bulletin. Notes for using the 3 sections of the Bulletin Index, Issue No 1 to Issue No 80 Index of Topics Topics are arranged alphabetically by subject. References are shown as 'Issue No : Page No' eg 2:15 or 45:7-11 Index of Articles Authors of articles are listed alphabetically with the titles of their articles following in issue order.
    [Show full text]
  • Altered Sensations Archimedes NEW STUDIES in the HISTORY of SCIENCE and TECHNOLOGY
    Altered Sensations Archimedes NEW STUDIES IN THE HISTORY OF SCIENCE AND TECHNOLOGY VOLUME 24 EDITOR Jed Z. Buchwald, Dreyfuss Professor of History, California Institute of Technology, Pasadena, CA, USA. ASSOCIATE EDITORS Jeremy Gray, The Faculty of Mathematics and Computing, The Open University, Buckinghamshire, UK. Sharon Kingsland, Department of History of Science and Technology, Johns Hopkins University, Baltimore, MD, USA. ADVISORY BOARD Henk Bos, University of Utrecht Mordechai Feingold, California Institute of Technology Allan D. Franklin, University of Colorado at Boulder Kostas Gavroglu, National Technical University of Athens Anthony Grafton, Princeton University Trevor Levere, University of Toronto Jesper Lützen, Copenhagen University William Newman, Indian University, Bloomington Lawrence Principe, The Johns Hopkins University Jürgen Renn, Max-Planck-Institut für Wissenschaftsgeschichte Alex Roland, Duke University Alan Shapiro, University of Minnesota Nancy Siraisi, Hunter College of the City University of New York Noel Swerdlow, University of Chicago Archimedes has three fundamental goals; to further the integration of the histories of science and technology with one another: to investigate the technical, social and practical histories of specific developments in science and technology; and finally, where possible and desirable, to bring the histories of science and technology into closer contact with the philosophy of science. To these ends, each volume will have its own theme and title and will be planned by one or more members of the Advisory Board in consultation with the editor. Although the volumes have specific themes, the series itself will not be limited to one or even to a few particular areas. Its subjects include any of the sciences, ranging from biology through physics, all aspects of technology, broadly construed, as well as historically-engaged philosophy of science or technology.
    [Show full text]
  • The Philosophical Significance of the Concept of Superposition in Quantum Field Theory
    The Philosophical Significance of the Concept of Superposition in Quantum Field Theory Douglas Scotohu Earl Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Philosophy, Religion and History of Science September 2020 The candidate confirms that the work submitted is his/her/their own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. The right of Douglas Scotohu Earl to be identified as Author of this work has been asserted by Douglas Scotohu Earl in accordance with the Copyright, Designs and Patents Act 1988 ii Acknowledgements I would like to thank my supervisors Juha Saatsi and Steven French for their patience, support and guidance. I am grateful to the Arts and Humanities Research Council for funding this work through the Realism and the Quantum project. iii Abstract I analyse the applicability of the concept of superposition within quantum field theory (QFT) in order to consider the physical interpretation of a simple interacting theory. First, I consider the significance of ‘superposition’ in classical physics motivated by the philosophical framework developed by Wilson (2006; 2017), via the analyses of ‘superposition’ developed by Volkmann (1896; 1910) and Simons (1987) in addition to a historical survey of its application with special reference to Fourier techniques. The concept has a patchwork or façade structure, with application subject to ‘prolongation’ and ‘semantic mimicry’.
    [Show full text]
  • Boston Symphony Orchestra Concert Programs, Summer, 1954-1956
    • *LONG PLAY (lM-1953) $3.96 **THREE LONG PLAY RECORDS (lm-611«) $11.98 • •LONG PLAY (LM-1900) $3.98 1 rcaVictor ^>-\ 1 TCHAIKOVSKY SYMPHONY NO. 4 m: m .".- hm0M . ] 7 k:t - m •LONG PLAY (LM-1907) $3,98 TWO LONG PLAY RECORDS (lm-6011) $7.98 • LONG PLAY (LM-1923) $3.98 ROMEO"? rcaVictorL^; JUUET Beethoven 5th Symphony Schubert "Unfinished" Symphony COM I'LE'I I DEBUSSY THE BLESSED DAMOZEL BERLIOZ SUMMER NIGHTS VICTORIA DE LOS ANGELES BOSTON SYMPHONY / MUNCH BOSTON SYMPH. MUNCH Boston Symphony Orchestra/Charles Munch • LONG PLAY (lM-1959/ $3.98 LONG PLAY (lM-1693) $3.98 LONG PLAY (lM-2Q1s) $3.98 rcaVictor BRAHMS SYMPHONY NO. 2 • TRAGIC OVERTORE BOSTON SYMPHONY ORCHESTRA CHARLES MUNCH BOSTON SYMPHONY CHARLES MUNCH ORCHESTRA munch in person on rca Victor records To Charles Munch, conducting is not a profession but a THE sacred calling. And this dedication, combined with the WORLD'S magnificence of the Boston Symphony, brings you some GREATEST of the greatest performances of our time. You feel and ARTISTS hear this devotion whether he conducts Brahms, Berlioz ARE ON or Beethoven . whether the performance is in Tangle- wood, Symphony Hall or on RCA Victor Records! rcaVictor Nationally Advertised Prices—Optional **A "New Orlhophonic" High Fidelity recording BOSTON SYMPHONY ORCHESTRA CHARLES MUNCH. Music Director Berkshire Festival, Season 1956 NINETEENTH SEASON) TANGLEWOOD, LENOX, MASSACH USETTS FIRST TWO WEEKS Concert Bulletin, tvith historical and descriptive notes by John N. Hlkk Copyright, 1956, lu Boston Symphony Orchestra, Inc. Trustees of the Boston Symphony Orchestra, Inc. Henri B. ('audi. President Jacob J.
    [Show full text]
  • Altered Sensations Rudolph Koenig’S Acoustical Workshop in Nineteenth-Century Paris
    D. Pantalony Altered Sensations Rudolph Koenig’s Acoustical Workshop in Nineteenth-Century Paris Series: Archimedes, Vol. 24 ▶ Presents a portrait of one of the more influential scientific workshops in the history of acoustics ▶ Uses artifacts as historical evidence ▶ Includes a biography of a scientific instrument maker ▶ Coverage combines histories of science, music, commerce, experiment, teaching, and artisanal culture Rudolph Koenig was one of the more prolific and colourful instrument makers in the renowned nineteenth-century precision instrument trade of Paris. Beginning his career as a violin maker, in 1858 the young Prussian immigrant shifted his talents towards the growing field of acoustics. Altered Sensations is a portrait of his vibrant atelier, a place 2009, XXXVI, 372 p. 60 illus. of construction, commerce and experiment. For over forty years it was also a popular meeting place for scientists, artisans, musicians and teachers. Using archival and collection research from across North American and Europe, David Pantalony has traced the material Printed book and social influences of this space on the development of modern acoustics. In particular, Hardcover he has detailed the manner in which Koenig modified, extended, spread and challenged Hermann von Helmholtz's Sensations of Tone. ▶ 169,99 € | £149.99 | $219.99 ▶ *181,89 € (D) | 186,99 € (A) | CHF 200.50 A large part of the research on Koenig comes from the actual products of his workshop which survive in museums and collections around the world. The second section of eBook Altered Sensations provides a Catalogue Raisonné of Koenig’s entire line of instruments, Available from your bookstore or including their history, details from specific examples, locations, and references in the literature.
    [Show full text]
  • Early Auditory Studies Activities in the Psychology Laboratories of American Universities
    EARLY AUDITORY STUDIES ACTIVITIES IN THE PSYCHOLOGY LABORATORIES OF AMERICAN UNIVERSITIES Audrey B. Davis and Uta C. M.er%bach ^mitlisonian Ii^^titution SMITHSONIAN STUDIES IN HISTORY AND TECHNOLOGY / NUMBER 31 Early Auditory Studies ACTIVITIES IN THE PSYCHOLOGY LABORATORIES OF AMERICAN UNIVERSITIES Audrey B. Davis and Uta C. Mer^bach ^mit/isonian Ii;istitution Ti^ss CITY OF WASHINGTON 1975 ABSTRACT Davis, Audrey B., and Uta C. Merzbach. Early Auditory Studies: Activities in the Psychology Laboratories of American Universities. Smithsonian Studies in History and Technology, number 31, 39 pages, 36 figures, 1975.—The last quarter of the nineteenth century was a formative period for experimental psychology. American pioneers in the field joined their Continental colleagues in basing the "new" psychology on the methods, apparatus, and experiments of physics and physiology. Hermann von Helmholtz, claimed by both fields, was a pilot in their new endeavors. Auditory studies reflect this general pattern. Specialized equipment used in the psychology acoustics laboratory ranged from models of the anatomy of the ear, mechanical models to explain the functions of the ear, sound producers, receivers and measurers, to analyzers and synthesizers. Discussion of the role of the instru­ ments in posing and answering subject-related questions of the psychologist leads to further questions on the development of the intellectual and physical institutions of psychological research. OFFICIAL PUBLICATION DATE is handstamped in a limited number of initial copies and is recorded in the Institution's annual report, Smithsonian Tear. SI PRESS NUMBER 5347. COVER DESIGN : Model of the human ear by Auzoux (USNMHT 21892.01). Library of Congress Cataloging in Publication Data Davis, Audrey B.
    [Show full text]
  • Conclusion – Beyond Sensations Increasingly Divergent Points of View in Acoustics – Analytic and Holistic
    Conclusion – Beyond Sensations Instruments constitute a large part of what we know about Rudolph Koenig. They chronicle scientific, artisanal, social and deeply personal dimensions of their maker. And they continue to speak. I have sounded hundreds of tuning forks around Europe and North America, which resonate with a distinctively even, colourless and pure sound, one that came into being under specific conditions in the workshop cul- ture of nineteenth-century Paris. For well over 150 years, thousands of students have been introduced to the science of sound through the influence of Koenig’s atelier. The following chapters presented a portrait of this space and its role in the estab- lishment of a radically altered novel material foundation for the scientific study of sound between the 1860s and 1900. In the workshop, Koenig transformed acous- tics into a wide-ranging line of precision instruments in the mould of other fields represented in the Parisian precision trade; in his private laboratory, he pushed the technical boundaries of the field, shaped practice, and created a visual element for studying sound; in the commercial sphere he facilitated the transmission of specific kinds of teaching and research instruments throughout Europe and North America; in the social and material realms, his atelier served as a vibrant mediating space for diverse people, skills, instruments and materials. It was “chez Koenig” that many of the world’s influential scientists learned about developments in acoustics; in turn, it was “chez Koenig” that these same people influenced the products and scope of acoustical practice. Above all, Koenig’s atelier served as a platform for modifying, extending, spreading and challenging Helmholtz’s Sensations of Tone.
    [Show full text]
  • Altered Sensations
    David Pantalony Altered Sensations Rudolph Koenig’s Acoustical Workshop in Nineteenth-Century Paris 123 Chapter 2 Hermann von Helmholtz and the Sensations of Tone Music has hitherto withdrawn itself from scientific treatment more than any other art....It always struck me as a wonderful and peculiarly interesting mystery, that in the theory of musical sounds, in the physical and technical foundations of music, which above all other arts seems in its action on the mind the most immaterial, evanescent, and tender creator of incalculable and indescribable states of consciousness, that here in especial the science of purest and strictest thought—mathematics— should prove pre-eminently fertile.1 Hermann von Helmholtz, Bonn, 1857. In the 1840s it seemed improbable, even offensive to some, that musical sounds could be analysed in the same way that a chemical compound could be reduced to elements, or the way light could be separated into a spectrum. Today we take for granted the notion that musical sounds are in fact a compound of simple, pure frequencies. Electronic equipment does this analysis automatically. We play a trumpet into a microphone and a spectrogram appears on a monitor. The basis for this, Fourier analysis (a mathematical description of periodic behaviour), first appeared in the mid nineteenth century. What historical circumstances made this mathematical theory so “pre-eminently fertile”? How did musical sounds, “the most immaterial, evanescent, and tender creator of incalculable and indescribable states of consciousness,”2 enter into the laboratory to be analyzed, manipulated and mea- sured? How was the German context of this development different from Koenig’s unique Parisian training with sound? Through a seminal book and new instruments, Hermann von Helmholtz laid the foundation for an analytic conception and practice of sound.
    [Show full text]