SIS Bulletin Index Issues 1 to 80
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Origin and Evolution of Calipers
History of Precision Measuring Instruments The Origin and Evolution of Calipers MAP1481_E12029_2_MeasuringHistory_Calipers.indd 1 18/5/21 1:34 PM Contents 1. About the Nogisu ...............................................................................................................................1 2. About the Caliper ...............................................................................................................................2 3. Origin of the Name Nogisu and Vernier Graduations ..........................................................................4 4. Oldest Sliding Caliper: Nogisu .............................................................................................................8 5. Scabbard Type Sliding Caliper till the Middle of 19th Century .............................................................9 6. World's Oldest Vernier Caliper (Nogisu) in Existence .........................................................................11 7. Theory That the Vernier Caliper (Nogisu) Was Born in the U.S. ..........................................................12 8. Calipers before Around 1945 (the End of WWII) in the West ...........................................................13 8. 1. Slide-Catching Scale without Vernier Graduations: Simplified Calipers ......................................14 8. 2. Sliding Calipers with Diagonal Scale ..........................................................................................18 8. 3. Sliding Caliper with a Vernier Scale: Vernier Caliper ..................................................................19 -
EDITION 8.1 3 Table of Contents
VICES EDITION 8.1 3 Table of contents VICES NC-Compact vices RKE 4014 RKE-M 4022 RKE-LV 4034 RKK 4040 NC-Compact twin vices RKD-M 4052 NC-Compact self centering vices RZM 4060 RKZ-M 4064 Machine vices RB-K - Orange Line 4076 RBAW 4082 MSR 4088 RS 4090 UZ 4094 Stationary power chucks KZS-P / KZS-PG 4101 KZS-H / KZS-HG 4107 SSP 4112 Drilling machine vices BSS 4120 BOF 4120 BSH 4121 DPV 4122 DPV-3-W 4122 Grinding and inspection vices PL-S micro 4126 PL-S 4126 PLF 4127 PL-G 4127 PS-SV 4128 PS-ZD 4128 Clamping force measurement device F-senso chuck 4129 Zero point clamping system EASYLOCK 4130 Errors and corrections are reserved! Vices Operation guide TYPE RKE RKE-M RKE-LV RKK NC-Compact vices - Highest clamping precision - Highest clamping precision - Very good accessibility - Designed to resist - Clamping force presetting - Without clamping force for 5-axis machining deformation for the highest - Precise, wear-resistant body presetting - Clamping force clamping precision Features - Precise, wear-resistant body presetting - Greatest repeatability - Large clamping range - Clamping force presetting Clamping mechanical-mechanical mechanical mechanical-mechanical mechanical-mechanical system size 92: mechanical-hydraulic Force amplification 3-Side, Duo-Tower 3-Side, Duo-Tower Base 3-Side, Duo-Tower Set-up options Quattro-Tower Quattro-Tower Quattro-Tower Machining centers with Operation guide high working accuracy Universal milling machi- nes with high working accuracy Universal milling machi- nes standard version Jig boring machines 5-axis machining -
Basic Structure Principle and Application of High Precision Microcomputer Automatic Calorimeter
International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391 Basic Structure Principle and Application of High Precision Microcomputer Automatic Calorimeter Gang Li, Jian Chu Tianjin Key Laboratory of Information Sensing and Intelligent Control, Tianjin University of Technology and Education,Tianjin,300222,China Abstract: This paper mainly expounds the system composition and the use of high precision microcomputer automatic calorimeter. Taking 80oA type LRY as an example, this paper introduces the main engine, oxygen bomb, automatic oxygen filling instrument, measurement and control software, computer, printer and other parts of the function and working principle and the problem should pay attention to in the use of the process. Keywords: Microcomputer automatic calorimeter; oxygen bomb; automatic oxygen filling instrument. 1. Introduction get a high calorific value. After correction of the moisture content of coal (the original water and hydrogen generated The system runs in Wnidow7 and above systems, from coal combustion), the heat of coal was obtained. human-computer interaction that is, learning to use. The soft using the object-oriented programming method, using the 2. The Composition of Microcomputer modular management technology, multi task operation. The Automatic Calorimeter system use advanced serial communication technology, integration of system control and data management, owning 2.1Host good compatibility and easy to maintain. It overcomes the disadvantages of the computer interface board job hopping Automatic water injection, drainage, will not overflow, and has a wide adaptability. Because of the use of scientific water temperature is not required. The system using and effective algorithm, the data accuracy is high, the system scientific and effective algorithm, which can automatically is stable and reliable. -
Technological Instruments in Physics
DRAFT (d.d. Dec. 14th 2006). This article has been published in: A Companion to Philosophy of Technology, (2009). Jan-Kyrre Berg Olsen, Stig Andur Pedersen, Vincent F. Hendricks (eds.), Blackwell Companions to Philosophy Series, Blackwell Publishers. 78-84. Please quote or cite from the published article. INSTRUMENTS IN SCIENCE AND TECHNOLOGY MIEKE BOON Department of Philosophy, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands. E- mail: [email protected] Modern science and technology are interwoven into a complex that is sometimes called 'techno-science': the progress of science is dependent on the sophistication of instrumentation, whereas the progress of ‘high-tech’ instruments and apparatus is dependent on scientific research. Yet, how scientific research contributes to the development of instruments and apparatus for technological use, has not been systematically addressed in the philosophy of technology, nor in the philosophy of science. Philosophers of technology have taken an interest in the specific character of technological knowledge as distinct from scientific knowledge, thereby ignoring the contribution of scientific knowledge to technological developments. Philosophers of science such as the so-called New-Experimentalists, on the other hand, recently has become interested in the role of instrumentation, but merely focus on their role in testing scientific theories. By reviewing the two distinct developments and taking them a step further, an alternative explanation of the interwoveness of science and technology in scientific research is proposed. Additional to testing theories, instruments in scientific practice have an important role in producing reproducible phenomena, and these phenomena may have technological applications. Subsequently, technological development of these applications requires theoretical understanding of the phenomenon and of materials and physical conditions that produce it, is not for the sake of theories about the world, but for the sake of understanding a phenomenon and how it is technologically produced. -
Panthera Series Scientific Instrument Operation Manual
Panthera Series Scientific Instrument Operation Manual If the equipment is used in a manner not specified by the manufacturer, the protection provided by the Note equipment may be impaired. If the equipment is used in a manner not specified by the manufacturer, the protection provided by the Note equipment may be impaired. The clear knowledge of this Instruction Manual is needed to operate Motic Panthera Series Microscopes at maximum performance and to ensure safety at all specified operations. Please familiarize yourself with the use of this microscope and pay special attention to the safety hints given in this manual. This Document is not subject of a update routine, please download a newer version from the Motic website, if needed. Keep this instruction manual in reach and easily accessible for future user reference. All Specifications, Illustrations and items in this Manual are subject to changes. Forwarding, duplication or use in other communication of this WWW.MOTIC.COM MOTIC HONG KONG LIMITED E250223 English: Please familiarize yourselves with the Instruction Manual provided in English language. Other Language versions are available as download on Motic web services under the Address: http://www.motic.com/Panthera/Panthera_Eng_OP.zip 1 TABLE OF CONTENTS 1. Genral notes on instrument safety 5 1.1 General safety notes and Instruction 5 1.2 Instrument safety, FCC and EMC conformity 6 1.3 Transporting, unpacking, storage of the Instrument 7 1.4 Instrument Disposal 7 1.5 Use of the Instrument 7 1.6 Intended use of the Microscope 9 1.7 Instrument warranty 9 2. Nomenclature 10 2.1 Panthera S 10 2.2 Panthera U / C / L / HD 11 3. -
B. Apollo 16 Regional Geologic Setting
B. APOLLO 16REGIONAL GEOLOGIC SETTING By CARROLL ANN HODGES CONTENTS Page Geography 6 Geologic description of Cayley plains and Descartes mountains 6 Relation in time and space to basins and craters 8 ILLUSTRATIONS Page FIGURE 1. Composite photograph of the lunar near side showing geographic features and multiring basins 7 2. Photographic mosaic of Apollo 16 landing site and vicinity 8 GEOGRAPHY Soderblom and Boyce,1972). The type area of the Cayley Formation is east of the crater Cayley, north of Apollo 16 landed at approximately 15”30’ E., 9” S. on the landing site (Morris and Wilhelms, 1967); the the relatively level Cayley plains, adjacent to the rug- name was extended to the apparently similar plains ged Descartes mountains (Milton, 1972; Hodges, material at the Apollo 16 site (Milton, 1972; Hodges, 1972a). Approximately 70 km east is the west-facing 1972a). These materials were presumed to be represen- escarpment of the Kant plateau, part of the uplifted tative of the widespread photogeologic unit, Imbrian third ring of the Nectaris basin and topographically light plains, which covers about 5 percent of the lunar the highest area on the lunar near side. With respect to highlands surface (Wilhelms and McCauley, 1971; the centers of the three best-developed multiringed Howard and others, 1974). Characteristics include rel- basins, the site is about 600 km west of Nectaris, 1,600 atively level surfaces, intermediate albedo, and nearly km southeast of Imbrium, and 3,500 km east-northeast identical crater size-frequency distributions. of Orientale. The nearest mare materials are in The plains were first interpreted as smooth facies of Tranquillitatis, about 300 km north (fig.1). -
Planetary Science : a Lunar Perspective
APPENDICES APPENDIX I Reference Abbreviations AJS: American Journal of Science Ancient Sun: The Ancient Sun: Fossil Record in the Earth, Moon and Meteorites (Eds. R. 0.Pepin, et al.), Pergamon Press (1980) Geochim. Cosmochim. Acta Suppl. 13 Ap. J.: Astrophysical Journal Apollo 15: The Apollo 1.5 Lunar Samples, Lunar Science Insti- tute, Houston, Texas (1972) Apollo 16 Workshop: Workshop on Apollo 16, LPI Technical Report 81- 01, Lunar and Planetary Institute, Houston (1981) Basaltic Volcanism: Basaltic Volcanism on the Terrestrial Planets, Per- gamon Press (1981) Bull. GSA: Bulletin of the Geological Society of America EOS: EOS, Transactions of the American Geophysical Union EPSL: Earth and Planetary Science Letters GCA: Geochimica et Cosmochimica Acta GRL: Geophysical Research Letters Impact Cratering: Impact and Explosion Cratering (Eds. D. J. Roddy, et al.), 1301 pp., Pergamon Press (1977) JGR: Journal of Geophysical Research LS 111: Lunar Science III (Lunar Science Institute) see extended abstract of Lunar Science Conferences Appendix I1 LS IV: Lunar Science IV (Lunar Science Institute) LS V: Lunar Science V (Lunar Science Institute) LS VI: Lunar Science VI (Lunar Science Institute) LS VII: Lunar Science VII (Lunar Science Institute) LS VIII: Lunar Science VIII (Lunar Science Institute LPS IX: Lunar and Planetary Science IX (Lunar and Plane- tary Institute LPS X: Lunar and Planetary Science X (Lunar and Plane- tary Institute) LPS XI: Lunar and Planetary Science XI (Lunar and Plane- tary Institute) LPS XII: Lunar and Planetary Science XII (Lunar and Planetary Institute) 444 Appendix I Lunar Highlands Crust: Proceedings of the Conference in the Lunar High- lands Crust, 505 pp., Pergamon Press (1980) Geo- chim. -
1. Hand Tools 3. Related Tools 4. Chisels 5. Hammer 6. Saw Terminology 7. Pliers Introduction
1 1. Hand Tools 2. Types 2.1 Hand tools 2.2 Hammer Drill 2.3 Rotary hammer drill 2.4 Cordless drills 2.5 Drill press 2.6 Geared head drill 2.7 Radial arm drill 2.8 Mill drill 3. Related tools 4. Chisels 4.1. Types 4.1.1 Woodworking chisels 4.1.1.1 Lathe tools 4.2 Metalworking chisels 4.2.1 Cold chisel 4.2.2 Hardy chisel 4.3 Stone chisels 4.4 Masonry chisels 4.4.1 Joint chisel 5. Hammer 5.1 Basic design and variations 5.2 The physics of hammering 5.2.1 Hammer as a force amplifier 5.2.2 Effect of the head's mass 5.2.3 Effect of the handle 5.3 War hammers 5.4 Symbolic hammers 6. Saw terminology 6.1 Types of saws 6.1.1 Hand saws 6.1.2. Back saws 6.1.3 Mechanically powered saws 6.1.4. Circular blade saws 6.1.5. Reciprocating blade saws 6.1.6..Continuous band 6.2. Types of saw blades and the cuts they make 6.3. Materials used for saws 7. Pliers Introduction 7.1. Design 7.2.Common types 7.2.1 Gripping pliers (used to improve grip) 7.2 2.Cutting pliers (used to sever or pinch off) 2 7.2.3 Crimping pliers 7.2.4 Rotational pliers 8. Common wrenches / spanners 8.1 Other general wrenches / spanners 8.2. Spe cialized wrenches / spanners 8.3. Spanners in popular culture 9. Hacksaw, surface plate, surface gauge, , vee-block, files 10. -
The Electric Telegraph
To Mark, Karen and Paul CONTENTS page ORIGINS AND DEVELOPMENTS TO 1837 13 Early experiments—Francis Ronalds—Cooke and Wheatstone—successful experiment on the London & Birmingham Railway 2 `THE CORDS THAT HUNG TAWELL' 29 Use on the Great Western and Blackwall railways—the Tawell murder—incorporation of the Electric Tele- graph Company—end of the pioneering stage 3 DEVELOPMENT UNDER THE COMPANIES 46 Early difficulties—rivalry between the Electric and the Magnetic—the telegraph in London—the overhouse system—private telegraphs and the press 4 AN ANALYSIS OF THE TELEGRAPH INDUSTRY TO 1868 73 The inland network—sources of capital—the railway interest—analysis of shareholdings—instruments- working expenses—employment of women—risks of submarine telegraphy—investment rating 5 ACHIEVEMENT IN SUBMARINE TELEGRAPHY I o The first cross-Channel links—the Atlantic cable— links with India—submarine cable maintenance com- panies 6 THE CASE FOR PUBLIC ENTERPRISE 119 Background to the nationalisation debate—public attitudes—the Edinburgh Chamber of Commerce— Frank Ives. Scudamore reports—comparison with continental telegraph systems 7 NATIONALISATION 1868 138 Background to the Telegraph Bill 1868—tactics of the 7 8 CONTENTS Page companies—attitudes of the press—the political situa- tion—the Select Committee of 1868—agreement with the companies 8 THE TELEGRAPH ACTS 154 Terms granted to the telegraph and railway companies under the 1868 Act—implications of the 1869 telegraph monopoly 9 THE POST OFFICE TELEGRAPH 176 The period 87o-1914—reorganisation of the -
MHA March 2017 Journ
MARITIME HERITAGE ASSOCIATION JOURNAL Volume 28, No. 1. March 2017 Website: www.maritimeheritage.org.au A quarterly publication of the Maritime Heritage Association, Inc. C/o: The Secretary (Marcia Van Zeller) 47 Conochie Crescent Manning, W.A. 6152 Treasurer: Bob Johnson, PO Box 1080, Guilderton, W.A. 6041. Editor: Peter Worsley. 12 Cleopatra Drive, Mandurah, W.A. 6210 The steamer Warrimoo which registered a bizarre set of coincidences. See article page 8 The Maritime Heritage Association Journal is the official newsletter of the Maritime Heritage Association of Western Australia, Incorporated. (If you have an unwanted collection of magazines of a maritime nature, then perhaps its time to let others enjoy reading it. Contact the Association; we may be interested in archiving the collection.) Material for publishing or advertising should be directed, emailed, typed or on disk, to: The Editor, 12 Cleopatra Drive, MANDURAH, Western Australia, 6210. [email protected] Except where shown to be copyright, material published in this Journal may be freely reprinted for non-profit pur- poses provided suitable acknowledgment is made of its source. www.maritimeheritage.org.au Annual General Meeting Where: 12 Cleopatra Drive, MANDURAH When: 10.00am, Sunday 2 April 2017 How: Don’t forget the train option (For details contact Peter and Jill, or Julie Taylor on 0432 618 879) Come for morning tea and stay for lunch For catering purposes please let Jill or Peter know at: [email protected] or 9586 9003 2 The Ditty Bag An occasional collection of nautical trivia to inform, astound, amuse and inspire. (The inspiration could take the form of contributions to this page!) Between 1947 and 1971, the Montrose Chemical the many islands are included, these add another Company dumped residue from sloppy manufac- 24,000 km. -
Kew Observatory and the Evolution of Victorian Science, 1840–1910
introduction Kew Observatory, Victorian Science, and the “Observatory Sciences” One more recent instance of the operations of this Society in this respect I may mention, in addition to those I have slightly enumerated. I mean the important accession to the means of this Society of a fixed position, a place for deposit, regula- tion, and comparison of instruments, and for many more purposes than I could name, perhaps even more than are yet contemplated, in the Observatory at Kew. Address by Lord Francis Egerton to British Association for the Advancement of Science, June 1842 When in 1842 Lord Egerton, president of the British Association for the Advancement of Science (BAAS), announced the association’s acquisition of Kew Observatory (figure I.1), he heralded the inaugura- tion of what would become one of the major institutions of nineteenth- century British—indeed international—science. Originally built as a pri- vate observatory for King George III and long in a moribund state, after 1842 the Kew building would, as Egerton predicted, become a multi- functional observatory, put to more purposes than were even imagined in 1842. It became distinguished in several sciences: geomagnetism, me- teorology, solar astronomy, and standardization—the latter term being used in this book to refer to testing scientific instruments and develop- ing prototypes of instruments to be used elsewhere, as well as establish- ing and refining constants and standards of measurement. Many of the major figures in the physical sciences of the nineteenth century were in some way involved with Kew Observatory. For the first twenty months of the twentieth century, Kew was the site of the National Physical Labora- 3 © 2018 University of Pittsburgh Press. -
Apollo 12 Photography Index
%uem%xed_ uo!:q.oe_ s1:s._l"e,d_e_em'I flxos'p_zedns O_q _/ " uo,re_ "O X_ pea-eden{ Z 0 (D I I 696L R_K_D._(I _ m,_ -4 0", _z 0', l',,o ._ rT1 0 X mm9t _ m_o& ]G[GNI XHdV_OOZOHd Z L 0T'I0_V 0 0 11_IdVdONI_OM T_OINHDZZ L6L_-6 GYM J_OV}KJ_IO0VSVN 0 C O_i_lOd-VJD_IfO1_d 0 _ •'_ i wO _U -4 -_" _ 0 _4 _O-69-gM& "oN GSVH/O_q / .-, Z9946T-_D-VSVN FOREWORD This working paper presents the screening results of Apollo 12, 70mmand 16mmphotography. Photographic frame descriptions, along with ground coverage footprints of the Apollo 12 Mission are inaluded within, by Appendix. This report was prepared by Lockheed Electronics Company,Houston Aerospace Systems Division, under Contract NAS9-5191 in response to Job Order 62-094 Action Document094.24-10, "Apollo 12 Screening IndeX', issued by the Mapping Sciences Laboratory, MannedSpacecraft Center, Houston, Texas. Acknowledgement is made to those membersof the Mapping Sciences Department, Image Analysis Section, who contributed to the results of this documentation. Messrs. H. Almond, G. Baron, F. Beatty, W. Daley, J. Disler, C. Dole, I. Duggan, D. Hixon, T. Johnson, A. Kryszewski, R. Pinter, F. Solomon, and S. Topiwalla. Acknowledgementis also made to R. Kassey and E. Mager of Raytheon Antometric Company ! I ii TABLE OF CONTENTS Section Forward ii I. Introduction I II. Procedures 1 III. Discussion 2 IV. Conclusions 3 V. Recommendations 3 VI. Appendix - Magazine Summary and Index 70mm Magazine Q II II R ii It S II II T II I! U II t! V tl It .X ,, ,, y II tl Z I! If EE S0-158 Experiment AA, BB, CC, & DD 16mm Magazines A through P VII.