The Personality of Henry Cavendish - a Great Scientist with Extraordinary Peculiarities Archimedes NEW STUDIES in the HISTORY and PHILOSOPHY of SCIENCE and TECHNOLOGY

Total Page:16

File Type:pdf, Size:1020Kb

The Personality of Henry Cavendish - a Great Scientist with Extraordinary Peculiarities Archimedes NEW STUDIES in the HISTORY and PHILOSOPHY of SCIENCE and TECHNOLOGY The Personality of Henry Cavendish - A Great Scientist with Extraordinary Peculiarities Archimedes NEW STUDIES IN THE HISTORY AND PHILOSOPHY OF SCIENCE AND TECHNOLOGY VOLUME 36 EDITOR Jed Z. Buchwald , Dreyfuss Professor of History, California Institute of Technology, Pasadena, CA, USA. ASSOCIATE EDITORS FOR MATHEMATICS AND PHYSICAL SCIENCES Jeremy Gray , The Faculty of Mathematics and Computing, The Open University, Buckinghamshire, UK. Tilman Sauer, California Institute of Technology ASSOCIATE EDITORS FOR BIOLOGICAL SCIENCES Sharon Kingsland , Department of History of Science and Technology, Johns Hopkins University, Baltimore, MD, USA. Manfred Laubichler , Arizona State University ADVISORY BOARD FOR MATHEMATICS, PHYSICAL SCIENCES AND TECHNOLOGY Henk Bos , University of Utrecht Mordechai Feingold , California Institute of Technology Allan D. Franklin , University of Colorado at Boulder Kostas Gavroglu , National Technical University of Athens Paul Hoyningen-Huene , Leibniz University in Hannover Trevor Levere , University of Toronto Jesper Lützen , Copenhagen University William Newman , Indian University, Bloomington Lawrence Principe , The Johns Hopkins University Jürgen Renn , Max-Planck-Institut für Wissenschaftsgeschichte Alex Roland , Duke University Alan Shapiro , University of Minnesota Noel Swerdlow , California Institute of Technology ADVISORY BOARD FOR BIOLOGY Michael Dietrich , Dartmouth College, USA Michel Morange , Centre Cavaillès, Ecole Normale Supérieure, Paris Hans-Jörg Rheinberger , Max Planck Institute for the History of Science, Berlin Nancy Siraisi , Hunter College of the City University of New York, USA Archimedes has three fundamental goals; to further the integration of the histories of science and technology with one another: to investigate the technical, social and practical histories of specifi c developments in science and technology; and fi nally, where possible and desirable, to bring the histories of science and technology into closer contact with the philosophy of science. To these ends, each volume will have its own theme and title and will be planned by one or more members of the Advisory Board in consultation with the editor. Although the volumes have specifi c themes, the series itself will not be limited to one or even to a few particular areas. Its subjects include any of the sciences, ranging from biology through physics, all aspects of technology, broadly construed, as well as historically-engaged philosophy of science or technology. Taken as a whole, Archimedes will be of interest to historians, philosophers, and scientists, as well as to those in business and industry who seek to understand how science and industry have come to be so strongly linked. For further volumes: http://www.springer.com/series/5644 Russell McCormmach The Personality of Henry Cavendish - A Great Scientist with Extraordinary Peculiarities Russell McCormmach ISSN 1385-0180 ISSN 2215-0064 (electronic) ISBN 978-3-319-02437-0 ISBN 978-3-319-02438-7 (eBook) DOI 10.1007/978-3-319-02438-7 Springer Cham Heidelberg New York Dordrecht London Library of Congress Control Number: 2014932292 © Springer International Publishing Switzerland 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) For Lewis Pyenson Pref ace When I was fi ve, my mother gave me a copy of Jonathan Norton Leonard’s Crusaders of Chemistry . I still have it, signed and dated by her, 1938. Long after I had forgotten the other chemists, I remembered the one who measured. He is the subject of the chapter in Leonard’s book entitled “Henry Cavendish, the Measuring Machine,” which concludes: “So lived and died the coldest, most unhuman mortal who ever wrote his name large in the history of science …. His sole interest was to measure the objects in the material universe.” Many years later, my boyhood fascination with the measuring machine returned, transformed into a scholarly interest in a scientifi c genius. I entered the fi eld of history of science with a disserta- tion on his work, and for many years after, I saved every fact I could fi nd about him. Popular histories of science like Leonard’s take material from scholarly works. We do not have to look far to discover the source of Leonard’s characterization of the man who was a measuring machine. It was the nineteenth-century chemist George Wilson’s fascinating biography, The Life of the Hon ble Henry Cavendish . Although I have reservations about the measuring machine, I greatly admire Wilson’s portrait of Cavendish, and I am in its debt for my understanding of the man. I took up the study of the history of science in part to learn how the scientifi c view of the world came about. If such a view does actually exist, I thought it probably applied to me, an initial reason for my curiosity. From my study of scien- tists of the past, I came to think that Cavendish came as close as any to holding a scientifi c view of the world. Even in his case, it was not exclusive. He came into the world with an aristocratic take on it. The origin of this book is a diagnosis of Cavendish by the eminent neuropsy- chologist Oliver Sacks, which appeared as a brief communication in the scientifi c journal Neurology in 2001. Skeptical of recent claims of Asperger’s syndrome, a form of autism, for historical fi gures, Sacks considers Cavendish an exceptional case, fi nding the evidence for his autism “almost overwhelming.” 1 In his memoir the same year, Uncle Tungsten , Sacks says that upon rereading Wilson’s biography 1 Oliver Sacks, “Henry Cavendish: An Early Case of Asperger’s Syndrome?” Neurology 57 (2001): 1347. vii viii Preface of Cavendish, he has concluded that Cavendish was a “unique autistic genius.”2 The same nineteenth-century biography was the origin both of the man as measuring machine and of the man with a psychological disorder. Below I examine these characterizations and their connection. In 1996, Christa Jungnickel and I published a biography of Cavendish. We pointed out that because of his strange behaviors he invites a psychological approach, but that it was not the approach we took, as we explained. At the end of the biography, we briefl y mentioned possible psychological descriptions of his behavior such as social anxiety, shyness, and embarrassment. We pointed out that he also showed “autistic-like traits,” 3 which we listed, citing Sacks, who had introduced us to the world of autism with his moving account of the autistic scientist Temple Grandin. 4 Three years later, we brought out an improved version of our biography, in which we again briefl y brought up psychological descriptions, but this time we omitted any mention of autism. Autism is a disorder that begins in childhood, and almost nothing is known about Cavendish’s childhood; also certain criteria for autism seemed a questionable fi t, and we wanted the biography to be solid. Since then I have found in recent writings on the subject a growing acceptance of a more inclusive understanding of autism together with a trend in clinical thinking that favors an autistic continuum approach. In the present book, I consider Sacks’s diagnosis of Cavendish’s autism, which has been on my mind for the past dozen years. Besides Cavendish, a number of eighteenth-century scholars – for example, Jeremy Bentham, John Howard, Carl Friedrich Gauss, and Emmanuel Kant – have been diag- nosed with a form of autism. Without doubt, they all showed autistic-like traits. They pursued their interests obsessively, with little regard for what people might have thought. They also leave us wondering. Might their non-social behaviors have come about through choice? Might they have avoided society and ignored convention in pur- suit of their goals because they could afford to? Did they show the same traits as autistic persons with the signifi cant difference that the latter had no choice in the matter? 2 Oliver Sacks, Uncle Tungsten: Memories of a Chemical Boyhood (2001; New York: Vintage Books, 2002), 121. 3 Hugo Lidbetter writes that Jungnickel and McCormmach “got very close to suggesting” that Cavendish may have had Asperger’s syndrome. We got closer than that: we say it. Since this book went to press, an article by Lidbetter was brought to my attention.
Recommended publications
  • Philosophical Transactions, »
    INDEX TO THE PHILOSOPHICAL TRANSACTIONS, » S e r ie s A, FOR THE YEAR 1898 (VOL. 191). A. Absorption, Change of, produced by Fluorescence (B urke), 87. Aneroid Barometers, Experiments on.—Elastic After-effect; Secular Change; Influence of Temperature (Chree), 441. B. Bolometer, Surface, Construction of (Petavel), 501. Brilliancy, Intrinsic, Law of Variation of, with Temperature (Petavel), 501. Burke (John). On the Change of Absorption produced by Fluorescence, 87. C. Chree (C.). Experiments on Aneroid Barometers at Kew Observatory, and their Discussion, 441. Correlation and Variation, Influence of Random Selection on (Pearson and Filon), 229. Crystals, Thermal Expansion Coefficients, by an Interference Method (Tutton), 313. D. Differential Equations of the Second Order, &c., Memoir on the Integration of; Characteristic Invariant of (Forsyth), 1. 526 INDEX. E. Electric Filters, Testing Efficiency of; Dielectrifying Power of (Kelvin, Maclean, and Galt), 187. Electricity, Diffusion of, from Carbonic Acid Gas to Air; Communication of, from Electrified Steam to Air (Kelvin, Maclean, and Galt), 187. Electrification of Air by Water Jet, Electrified Needle Points, Electrified Flame, &c., at Different Air-pressures; at Different Electrifying Potentials; Loss of Electrification (Kelvin, Maclean, and Galt), 187. Electrolytic Cells, Construction and Calibration of (Veley and Manley), 365. Emissivity of Platinum in Air and other Gases (Petavel), 501. Equations, Laplace's and other, Some New Solutions of, in Mathematical Physics (Forsyth), 1. Evolution, Mathematical Contributions to Theory o f; Influence of Random Selection on the Differentiation of Local Races (Pearson and Filon), 229. F. Filon (L. N. G.) and Pearson (Karl). Mathematical Contributions to the Theory of Evolution.—IV. On the Probable Errors of Frequency Constants and on the Influence of Random Selection on Variation and Correlation, 229.
    [Show full text]
  • Adopting a Chinese Mantle: Designing and Appropriating Chineseness 1750-1820
    This electronic thesis or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ Adopting a Chinese Mantle Designing and Appropriating Chineseness 1750-1820 Newport, Emma Helen Henke Awarding institution: King's College London The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. END USER LICENCE AGREEMENT Unless another licence is stated on the immediately following page this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ You are free to copy, distribute and transmit the work Under the following conditions: Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. No Derivative Works - You may not alter, transform, or build upon this work. Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 24. Sep. 2021 Adopting a Chinese Mantle: Designing and Appropriating Chineseness 1750-1820 Emma Helen Henke Newport King’s College London Thesis submitted for the degree of Doctor of Philosophy in English Research 1 Abstract The thesis examines methods of imagining and appropriating China in Britain in the period 1750 to 1820.
    [Show full text]
  • Cavendish Weighs the Earth, 1797
    CAVENDISH WEIGHS THE EARTH Newton's law of gravitation tells us that any two bodies attract each other{not just the Earth and an apple, or the Earth and the Moon, but also two apples! We don't feel the attraction between two apples if we hold one in each hand, as we do the attraction of two magnets, but according to Newton's law, the two apples should attract each other. If that is really true, it might perhaps be possible to directly observe the force of attraction between two objects in a laboratory. The \great moment" when that was done came on August 5, 1797, in a garden shed in suburban London. The experimenter was Lord Henry Cavendish. Cavendish had inherited a fortune, and was therefore free to follow his inclinations, which turned out to be scientific. In addition to the famous experiment described here, he was also the discoverer of “inflammable air", now known as hydrogen. In those days, science in England was often pursued by private citizens of means, who communicated through the Royal Society. Although Cavendish studied at Cambridge for three years, the universities were not yet centers of scientific research. Let us turn now to a calculation. How much should the force of gravity between two apples actually amount to? Since the attraction between two objects is proportional to the product of their masses, the attraction between the apples should be the weight of an apple times the ratio of the mass of an apple to the mass of the Earth. The weight of an apple is, according to Newton, the force of attraction between the apple and the Earth: GMm W = R2 where G is the \gravitational constant", M the mass of the Earth, m the mass of an apple, and R the radius of the Earth.
    [Show full text]
  • Downloading Material Is Agreeing to Abide by the Terms of the Repository Licence
    Cronfa - Swansea University Open Access Repository _____________________________________________________________ This is an author produced version of a paper published in: Transactions of the Honourable Society of Cymmrodorion Cronfa URL for this paper: http://cronfa.swan.ac.uk/Record/cronfa40899 _____________________________________________________________ Paper: Tucker, J. Richard Price and the History of Science. Transactions of the Honourable Society of Cymmrodorion, 23, 69- 86. _____________________________________________________________ This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior permission for personal research or study, educational or non-commercial purposes only. The copyright for any work remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from the original author. Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the repository. http://www.swansea.ac.uk/library/researchsupport/ris-support/ 69 RICHARD PRICE AND THE HISTORY OF SCIENCE John V. Tucker Abstract Richard Price (1723–1791) was born in south Wales and practised as a minister of religion in London. He was also a keen scientist who wrote extensively about mathematics, astronomy, and electricity, and was elected a Fellow of the Royal Society. Written in support of a national history of science for Wales, this article explores the legacy of Richard Price and his considerable contribution to science and the intellectual history of Wales.
    [Show full text]
  • Statutes and Rules for the British Museum
    (ft .-3, (*y Of A 8RI A- \ Natural History Museum Library STATUTES AND RULES BRITISH MUSEUM STATUTES AND RULES FOR THE BRITISH MUSEUM MADE BY THE TRUSTEES In Pursuance of the Act of Incorporation 26 George II., Cap. 22, § xv. r 10th Decembei , 1898. PRINTED BY ORDER OE THE TRUSTEES LONDON : MDCCCXCYIII. PRINTED BY WOODFALL AND KINDER, LONG ACRE LONDON TABLE OF CONTENTS CHAPTER I. PAGE Meetings, Functions, and Privileges of the Trustees . 7 CHAPTER II. The Director and Principal Librarian . .10 Duties as Secretary and Accountant . .12 The Director of the Natural History Departments . 14 CHAPTER III. Subordinate Officers : Keepers and Assistant Keepers 15 Superintendent of the Reading Room . .17 Assistants . 17 Chief Messengers . .18 Attendance of Officers at Meetings, etc. -19 CHAPTER IV. Admission to the British Museum : Reading Room 20 Use of the Collections 21 6 CHAPTER V, Security of the Museum : Precautions against Fire, etc. APPENDIX. Succession of Trustees and Officers . Succession of Officers in Departments 7 STATUTES AND RULES. CHAPTER I. Of the Meetings, Functions, and Privileges of the Trustees. 1. General Meetings of the Trustees shall chap. r. be held four times in the year ; on the second Meetings. Saturday in May and December at the Museum (Bloomsbury) and on the fourth Saturday in February and July at the Museum (Natural History). 2. Special General Meetings shall be sum- moned by the Director and Principal Librarian (hereinafter called the Director), upon receiving notice in writing to that effect signed by two Trustees. 3. There shall be a Standing Committee, standing . • Committee. r 1 1 t-» • 1 t> 1 consisting 01 the three Principal 1 rustees, the Trustee appointed by the Crown, and sixteen other Trustees to be annually appointed at the General Meeting held on the second Saturday in May.
    [Show full text]
  • Cavendish the Experimental Life
    Cavendish The Experimental Life Revised Second Edition Max Planck Research Library for the History and Development of Knowledge Series Editors Ian T. Baldwin, Gerd Graßhoff, Jürgen Renn, Dagmar Schäfer, Robert Schlögl, Bernard F. Schutz Edition Open Access Development Team Lindy Divarci, Georg Pflanz, Klaus Thoden, Dirk Wintergrün. The Edition Open Access (EOA) platform was founded to bring together publi- cation initiatives seeking to disseminate the results of scholarly work in a format that combines traditional publications with the digital medium. It currently hosts the open-access publications of the “Max Planck Research Library for the History and Development of Knowledge” (MPRL) and “Edition Open Sources” (EOS). EOA is open to host other open access initiatives similar in conception and spirit, in accordance with the Berlin Declaration on Open Access to Knowledge in the sciences and humanities, which was launched by the Max Planck Society in 2003. By combining the advantages of traditional publications and the digital medium, the platform offers a new way of publishing research and of studying historical topics or current issues in relation to primary materials that are otherwise not easily available. The volumes are available both as printed books and as online open access publications. They are directed at scholars and students of various disciplines, and at a broader public interested in how science shapes our world. Cavendish The Experimental Life Revised Second Edition Christa Jungnickel and Russell McCormmach Studies 7 Studies 7 Communicated by Jed Z. Buchwald Editorial Team: Lindy Divarci, Georg Pflanz, Bendix Düker, Caroline Frank, Beatrice Hermann, Beatrice Hilke Image Processing: Digitization Group of the Max Planck Institute for the History of Science Cover Image: Chemical Laboratory.
    [Show full text]
  • Henry Cavendish Outline
    Ann Karimbabai Massihi Sveti Patel Sandy Saekoh Thomas Choe Chemistry 480 Dr. Harold Goldwhite Henry Cavendish I. Childhood A. Henry Cavendish was born in Nice, France, on 10 October1731, and died alone on 24 February 1810. B. His parental grandfather was Duke of Devonshire and his maternal grandfather was Duke of Kent 1 C. His parents were English aristocrats. D. His father was Lord Charles Cavendish, a member of Royal Society in London and an experimental scientist. E. His father made his own scientific equipment for him. II. Education A. At age of 11, he attended Dr. Newcome’s Academy in Hackney, London from 1749-1753. B. In 1749, he went to Peterhouse College. C. He left the college at 1753 without a degree. D. His father encouraged his scientific interest and introduced him to the Royal Society and he became a member in 1760. III. Papers A. Since he did his scientific investigation for his pleasure, he was careless in publishing the results. B. In 1776, he published his 1st paper about the existence of hydrogen as a substance. 1. He received the Copley Medal of the Royal Society for this achievement. C. In 1771, a theoretical study of electricity. D. In 1784, the synthesis of water. E. In 1798, the determination of the gravitational constant. IV. Experiments A. Fixed air (CO2) produced by mixing acids and bases. B. “Inflammable air” (hydrogen) generated by the action of acid on metals. 2 Figure 1. Cavendish's apparatus for making and collecting hydrogen Gas bladder used by Henry Cavendish 3 C.
    [Show full text]
  • Back Matter (PDF)
    INDEX TO THE PHILOSOPHICAL TRANSACTIONS (A) FOR THE YEAR 1894. A. Arc spectrum of electrolytic ,iron on the photographic, 983 (see Lockyer). B. Bakerian L ecture.—On the Relations between the Viscosity (Internal 1 riction) of Liquids and then Chemical Nature, 397 (see T iiorpe and R odger). Bessemer process, the spectroscopic phenomena and thermo-chemistry of the, 1041 IIarimo). C. Capstick (J. W.). On the Ratio of the Specific Heats of the Paraffins, and their Monohalogei.. Derivatives, 1. Carbon dioxide, on the specific heat of, at constant volume, 943 (sec ). Carbon dioxide, the specific heat of, as a function of temperatuie, ddl (mo I j . , , Crystals, an instrument of precision for producing monochromatic light of any desire. ua\e- eng », * its use in the investigation of the optical properties of, did (see it MDCCCXCIV.— A. ^ <'rystals of artificial preparations, an instrument for grinding section-plates and prisms of, 887 (see Tutton). Cubic surface, on a special form of the general equation of a, and on a diagram representing the twenty- seven lines on the surface, 37 (see Taylor). •Cables, on plane, 247 (see Scott). D. D unkeelky (S.). On the Whirling and Vibration of Shafts, 279. Dynamical theory of the electric and luminifei’ous medium, a, 719 (see Larmor). E. Eclipse of the sun, April 16, 1893, preliminary report on the results obtained with the prismatic cameras during the total, 711 (see Lockyer). Electric and luminiferous medium, a dynamical theory of the, 719 (see Larmor). Electrolytic iron, on the photographic arc spectrum of, 983 (see Lockyer). Equation of the general cubic surface, 37 (see Taylor).
    [Show full text]
  • Section 1 – Oxygen: the Gas That Changed Everything
    MYSTERY OF MATTER: SEARCH FOR THE ELEMENTS 1. Oxygen: The Gas that Changed Everything CHAPTER 1: What is the World Made Of? Alignment with the NRC’s National Science Education Standards B: Physical Science Structure and Properties of Matter: An element is composed of a single type of atom. G: History and Nature of Science Nature of Scientific Knowledge Because all scientific ideas depend on experimental and observational confirmation, all scientific knowledge is, in principle, subject to change as new evidence becomes available. … In situations where information is still fragmentary, it is normal for scientific ideas to be incomplete, but this is also where the opportunity for making advances may be greatest. Alignment with the Next Generation Science Standards Science and Engineering Practices 1. Asking Questions and Defining Problems Ask questions that arise from examining models or a theory, to clarify and/or seek additional information and relationships. Re-enactment: In a dank alchemist's laboratory, a white-bearded man works amidst a clutter of Notes from the Field: vessels, bellows and furnaces. I used this section of the program to introduce my students to the concept of atoms. It’s a NARR: One night in 1669, a German alchemist named Hennig Brandt was searching, as he did more concrete way to get into the atomic every night, for a way to make gold. theory. Brandt lifts a flask of yellow liquid and inspects it. Notes from the Field: Humor is a great way to engage my students. NARR: For some time, Brandt had focused his research on urine. He was certain the Even though they might find a scientist "golden stream" held the key.
    [Show full text]
  • Rulers of Opinion Women at the Royal Institution of Great Britain, 1799
    Rulers of Opinion Women at the Royal Institution of Great Britain, 1799-1812 Harriet Olivia Lloyd UCL Submitted for the Degree of Doctor of Philosophy in History of Science 2018 1 I, Harriet Olivia Lloyd, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. 2 Abstract This thesis examines the role of women at the Royal Institution of Great Britain in its first decade and contributes to the field by writing more women into the history of science. Using the method of prosopography, 844 women have been identified as subscribers to the Royal Institution from its founding on 7 March 1799, until 10 April 1812, the date of the last lecture given by the chemist Humphry Davy (1778- 1829). Evidence suggests that around half of Davy’s audience at the Royal Institution were women from the upper and middle classes. This female audience was gathered by the Royal Institution’s distinguished patronesses, who included Mary Mee, Viscountess Palmerston (1752-1805) and the chemist Elizabeth Anne, Lady Hippisley (1762/3-1843). A further original contribution of this thesis is to explain why women subscribed to the Royal Institution from the audience perspective. First, Linda Colley’s concept of the “service élite” is used to explain why an institution that aimed to apply science to the “common purposes of life” appealed to fashionable women like the distinguished patronesses. These women were “rulers of opinion,” women who could influence their peers and transform the image of a degenerate ruling class to that of an élite that served the nation.
    [Show full text]
  • Philosophical Transactions (A)
    INDEX TO THE PHILOSOPHICAL TRANSACTIONS (A) FOR THE YEAR 1889. A. A bney (W. de W.). Total Eclipse of the San observed at Caroline Island, on 6th May, 1883, 119. A bney (W. de W.) and T horpe (T. E.). On the Determination of the Photometric Intensity of the Coronal Light during the Solar Eclipse of August 28-29, 1886, 363. Alcohol, a study of the thermal properties of propyl, 137 (see R amsay and Y oung). Archer (R. H.). Observations made by Newcomb’s Method on the Visibility of Extension of the Coronal Streamers at Hog Island, Grenada, Eclipse of August 28-29, 1886, 382. Atomic weight of gold, revision of the, 395 (see Mallet). B. B oys (C. V.). The Radio-Micrometer, 159. B ryan (G. H.). The Waves on a Rotating Liquid Spheroid of Finite Ellipticity, 187. C. Conroy (Sir J.). Some Observations on the Amount of Light Reflected and Transmitted by Certain 'Kinds of Glass, 245. Corona, on the photographs of the, obtained at Prickly Point and Carriacou Island, total solar eclipse, August 29, 1886, 347 (see W esley). Coronal light, on the determination of the, during the solar eclipse of August 28-29, 1886, 363 (see Abney and Thorpe). Coronal streamers, observations made by Newcomb’s Method on the Visibility of, Eclipse of August 28-29, 1886, 382 (see A rcher). Cosmogony, on the mechanical conditions of a swarm of meteorites, and on theories of, 1 (see Darwin). Currents induced in a spherical conductor by variation of an external magnetic potential, 513 (see Lamb). 520 INDEX.
    [Show full text]
  • Back Matter (PDF)
    [ 395 ] INDEX TO THE PHILOSOPHICAL TRANSACTIONS, S e r ie s A, V o l . 193. A. Abney (W. de W.). The Colour Sensations in Terms of Luminosity, 259. Atmospheric electricity—experiments in connection with precipitation (Wilson), 289. Bakebian Lectube. See Ewing and Kosenhain. C. Colour-blind, neutral points in spectra found by (Abney), 259. Colour sensations in terms of luminosity (Abney), 259. Condensation nuclei, positively and negatively charged ions as (W ilson), 289. Crystalline aggregates, plasticity in (Ewing and Rosenhain), 353. D. Dawson (H. M.). See Smithells, Dawson, and Wilson VOL. CXCIII.— Ao : S F 396 INDEX. Electric spark, constitution of (Schuster and Hemsalech), 189; potential—variation with pressure (Strutt), 377. Electrical conductivity of flames containing vaporised salts (Smithells, Dawson, and Wilson), 89. Electrocapillary phenomena, relation to potential differences between‘solutions (Smith), 47. Electrometer, capillary, theory of (Smith), 47. Ewing (J. A.) and Rosenhain (W.). The Crystalline Structure of Metals.—Bakerian Lecture, 353. F. Filon (L. N. G ). On the Resistance to Torsion of certain Forms of Shafting, with special Reference to the Effect of Keyways, 309. Flames, electrical conductivity of, and luminosity of salt vapours in (Smithells, Dawson, and Wilson), 89. G. Gravity balance, quartz thread (Threlfall and Pollock), 215. H. Hemsalech (Gustav). See Schuster and Hemsalech. Hertzian oscillator, vibrations in field of (Pearson and Lee), 159. Hysteresis in the relation of extension to stress exhibited by overstrained iron (Muir), 1. I. Ions, diffusion into gases, determination of coefficient (Townsend), 129. Ions positively and negatively charged, as condensation nuclei (Wilson), 289. Iron, recovery of, from overstrain (Muir), 1.
    [Show full text]