Sir John Pringle and His Circle, by Dorothea Waley Singer

Total Page:16

File Type:pdf, Size:1020Kb

Sir John Pringle and His Circle, by Dorothea Waley Singer Sir John Pringle and his Circle 127 SII~ JOHN PI~INGLE AND HIS CII~CLE.--PART I. LIFE. By DOROTI~EA WALEY SINGEB. CONTENWS. Page § 1. Introduction ................................................ 127 §2. Early Life .................................................... 128 § 3. London ..................................................... 133 § 4. Closing Years : the Controversy concerning Lightning Conductors .. 163 §1. Introduction. SIR JoH~ P~I~GL~. was a typical figure of the eighteenth century, though he foreshadows activities of the following centuries, both in his sense of public responsibility for the living and working conditions of the labouring population and in his appreciation of the importance of public measures for the prevention rather than the cure of disease. His view of medicine might almost be epitomized as cleanliness, to be achieved by purification of the air without and of the bloodstream within the patient. The first he would effect by ventilation, the second by correct diet. For the former he would utilize the skill of the engineer. For the latter he recognized the need of laboratory experiments, to ascertain the " septic " and " antiseptic " qualities inherent in various substances. His own experiments to this end were highly rated by his Annals of Science 1949.6:127-180. contemporaries. They were carried out on substances organic and inorganic. Pringle was not an innovutor, but his alert and benevolent mind was concerned to apply the creative activity of his contemporaries. In view of his preoccupation with " putrescent " diseases, it is re- markable that Pringle never associates them with living contagion 1, though references to this conception are scattered through the literature of his own and preceding ages. The analogy between putrefaction and fermentation, their association with contagious disease and the suggestion that all alike are caused by minute living organisms, had been familiar in medical writings since the sixteenth century 2. But Pringle, though he emphasized the " fermentation " of the blood in typhus patients, seems never to have considered the hypothesis of living contagion. It is i The only disease that Pringle ascribes to animalcula is Scabies, " best accounted for by Leeuwenhoek ". See Part II. For a review of the subject see C. and D. Singer, " The Development of the Doctrine of Contagium Vivum," in Proceedings of the International Medical Congress, Section of the History of Medicine, London, 1913. But see below, Part II. 128 Dorothea Waley Singer on noteworthy that the Royal Society, which had been the recipient of Leeuwenhoek's e~rly microscopic obserwtions 3, reports no microscopic work during the presidency of Pringle, and indeed very little during his lifetime. Perhups we m~y detect here one reason for Pringte's failure to suspect living contagion in connexion with typhus. His great contri- bution was his continuous and strenuous advocacy of cleanliness and fresh air to combat typhus alike in barracks, g~ols and hospitals. § 2. Early Life. John Pringle was born in 1707 into a comfortable home ~nd an assured social position. He was the youngest son of a Scottish baronet, a neighbour and intimate friend of Lord Auchinleck, father of James Boswell. Two of John's uncles reached distinction, one in the law and one in politics 4. The stages in his education are related by his biographer and younger contemporary, Andrew Kippis (1725-1795), on the authority of Boswell ~. Kippis was himself F.R.S. (1779) as well as F.S.A. (1778). The son of a Nottingham silk hosier, he became a Nonconformist minister, ~nd from 1753 was pastor of the Presbyterian congregation in Princes Street, Westminster. His wife was the daughter of a Boston merchant. Kippis was a prolific writer and edited the second (incomplete) edition of the Biographia Britannica. His affection for Pringle is manifest in the biography, which of course depended on Pringle's older friends (and doubtless on Pringle's own anecdotes) for the earlier years. He mentions that he was also indebted to " the Anecdotes of Mr Bowyer by my friend Mr Nichols " 6. This refers to two remarkable members of tim 3 A~ltony va~l Leewenhoek (1632-1723) communicated one hundred and twelve papers to Annals of Science 1949.6:127-180. the I~oyal Society, all of which were published in the Phil. Trans. either in full or in part. Sir Robert Pringle (1581-1649), son of George Pringell of :Newhall, settled at Stitchill. Of his six children, his eldest son, John Fear (died 1646), predeceased him but, havmgmarried ~iargaret Scott of Buccleugh, left seven children, of whom the eldest was Robert Pringle (c. 1635-1649), who became heir to his grandfather and the first baronet of Stitchill. This Sir Rober~ married Margaret Hope and had nineteen children, of whom ttfirtecn grew up. The eldest, Sir John Pringle, was the father of our subject and was married to Magdalen, daughter of Sir Gilbert Eltio~ of Stobs. The second was Walter :Fringle (1664-I736), who in 1718 became a Scottish Judge with the title Lord ~ewhall and was at £he same time knighted. The third brother was Robert Pringle (died 1736), who became Secretary of State for Scotlar/d and l~ter Secretary to the Scottish Commissioners who negotiated the Union. See also foot-note 11 and Alexander Pringle, The Records of the Pringles or Ho39- ringills, Edinburgh and London, 1933. We have not traced relationship between this f~mily and Thomas Pringle (1789-1834), poet and secretary to the Anti-Slavery Society. Andrew Kippis, Six Discourses delivered by Sir John Pringle Bart. when Presiden~ of the Royal Society on the occasion of six annual assignments of Sir Godfrey Copley's Medal, to which is prefixed the life of the Author, London, 1783. C:f. p. 139. 6 Kippis, op. cir., Preface, pp. iv-v. John Nichols published in 1782, Bibliographical and Literary Anecdotes of William Bowyer, Printer, E.S.A. and many of hi.~ learned frienda Sir John Pringle and his Circle 129 Nonconformist circle in London. William Bowyer the younger (1699- 1777), " the learned printer," was educated first at Headley under the non-juror Ambrose Bowicke who became his life-long friend, and sub- sequently at St. John's College, Cambridge, where, however, he appears not to have proceeded to a degree. He joined the printing-house of his father, also an author of some mark, but in 1757 the younger Bowyer set up his own printing-press and took as apprentice John Nichols (1745-1826), who became his partner and whose son and grandson successively carried on the firm. Bowyer was printer to the Society of Antiquaries (of which he was Fellow), to the Royal Society and to the House of Commons, the latter a remarkable appointment to be bestowed on a non-juror. He was a prolific writer on literary and historical topics. Nichols Mso was F.S.A., and was a friend of Dr. Lettsom (p. 143) and intimate with Dr. Johnson. He was the author of numerous biographical, historical and antiquarian works, many of which are still important to scholars. He was well known to Pringle, who is said to have given considerable financial contributions to assist some of his publications from 1776 onwards. After private tuition, Pringle was sent to study under his relative, Francis Pringle, who was Professor of Greek in the University of St. Andrews. In 1727, at the age of twenty, he proceeded to the University of Edinburgh, where he studied medicine. BUt it seems that he was still uncertain as to his future career. According to Boswell, he was destined for commerce, and was therefore sent, after only a year in Edinburgh, to " learn business " in Amsterdam 7. Visiting Leyden, he attended a lecture by Boerhaave and immediately determined to study medicine under him. Annals of Science 1949.6:127-180. Both Kippis, however, and Charles Hutton s state that Pringle did not deviate from his intention of practising medicine and that he hastened, after only a year in Edinburgh, to Leyden in order to make sure of not losing the opportunity to study under Boerhaave, who wa~ then advanced in years. In July 1730, Pringle graduated in medicine at Leyden with a thesis on Senile Decay 9. In it he exhibits familiarity with both classical ? Ibid., p. iv. 8 Ibid., p. iv; and Ctlarles Ilutton, Mathematical and Philosophical Dictionary, ii, 279 (cf. below, Part III). 9 Dissertatio medica inauguralis, De Marcore Senili quam, ammente Deo ter Opt. l~iax., ex auctoritate Magnifici Rectoris, D. Hermanni Boerh~ave, A.L.M. Phil. et Med. D. et Professoris Ordinarii, necnon Amplissimi Senatus Academici Consensu, et Nobilissimae Facultatis Medieae Decreto, Pro Gradu Doctoratus, Summisque irL Mediciila. Honoribus et Privilegiis rite et legitirae consequendis, Eruditorum Exaxaini submittis Joalmes Pringle Scoto-Brit~rmus, ad diem 20 Julii 1730. hora locoque solitis. Lugduni Batavorum, Apud Joh. Arnold : Langerak, 1730. [Foot-note continued on p. 130. 130 Dorothea Waley Singer on and contemporary views on Che subject. In spite of a good deal of repetition, the little work has something of the ease and sweep of his later writing. He describes how, in advanced age, the circulation of the blood is hindered by hardening and shrinking of the vessels, especially the arteries as well as the secretory glands. This, he says, constitutes senile decay and he gives the resulting fatal diseases. He fortifies his argument by citing post-mortem findings, with which he shows he is familiar. The work is dedicated to two men, both named Francis Pringle ; the first, President of the l%oyal College of Physicians of Edinburgh, and the second, Professor of Greek in the University of St. Andrews, his " former great teacher, his kinsman and dear friend ". The President of of the Edinburgh I~oyal College was no doubt John's uncle, who had himself been educated in Leyden.
Recommended publications
  • SIS Bulletin Issue 77
    Scientific Instrument Society Bulletin June No. 77 2003 Bulletin of the Scientific Instrument Society ISSN 0956-8271 For Table of Contents, see back cover President Gerard Turner Vice-President Howard Dawes Honary Committee Gloria Clifton, Chairman Alexander Crum Ewing, Secretary Simon Cheifetz,Treasurer Willem Hackmann, Editor Peter de Clercq, Meetings Secretary Ron Bristow Tom Lamb Tom Newth Alan Stimpson Sylvia Sumira Trevor Waterman Membership and Administrative matters The Executive Officer (Wg Cdr Geoffrey Bennett) 31 High Street Stanford in the Vale Tel: 01367 710223 Faringdon Fax: 01367 718963 Oxon SN7 8LH e-mail: [email protected] See outside back cover for information on membership Editorial Matters Dr.Willem Hackmann Sycamore House The PLaying Close Tel: 01608 811110 Charlbury Fax: 01608 811971 Oxon OX7 3QP e-mail: [email protected] Society’s Website www.sis.org.uk Advertising See “summary of Advertising Services’ panel elsewhere in this Bulletin. Further enquiries to the Executive Officer, Design and printing Jane Bigos Graphic Design 95 Newland Mill Tel: 01993 209224 Witney Fax: 01993 209255 Oxon OX28 3SZ e-mail: [email protected] Printed by The Flying Press Ltd,Witney The Scientific Instrument Society is Registered Charity No. 326733 © The Scientific Instrument Society 2003 Editorial Spring Time September issue.I am still interested to hear which this time will be published elec- I am off to the States in early June for three from other readers whether they think this tronically on our website.He has been very weeks so had to make sure that this issue project a good idea. industrious on our behalf.
    [Show full text]
  • The Cambridge Mathematical Journal and Its Descendants: the Linchpin of a Research Community in the Early and Mid-Victorian Age ✩
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Historia Mathematica 31 (2004) 455–497 www.elsevier.com/locate/hm The Cambridge Mathematical Journal and its descendants: the linchpin of a research community in the early and mid-Victorian Age ✩ Tony Crilly ∗ Middlesex University Business School, Hendon, London NW4 4BT, UK Received 29 October 2002; revised 12 November 2003; accepted 8 March 2004 Abstract The Cambridge Mathematical Journal and its successors, the Cambridge and Dublin Mathematical Journal,and the Quarterly Journal of Pure and Applied Mathematics, were a vital link in the establishment of a research ethos in British mathematics in the period 1837–1870. From the beginning, the tension between academic objectives and economic viability shaped the often precarious existence of this line of communication between practitioners. Utilizing archival material, this paper presents episodes in the setting up and maintenance of these journals during their formative years. 2004 Elsevier Inc. All rights reserved. Résumé Dans la période 1837–1870, le Cambridge Mathematical Journal et les revues qui lui ont succédé, le Cambridge and Dublin Mathematical Journal et le Quarterly Journal of Pure and Applied Mathematics, ont joué un rôle essentiel pour promouvoir une culture de recherche dans les mathématiques britanniques. Dès le début, la tension entre les objectifs intellectuels et la rentabilité économique marqua l’existence, souvent précaire, de ce moyen de communication entre professionnels. Sur la base de documents d’archives, cet article présente les épisodes importants dans la création et l’existence de ces revues. 2004 Elsevier Inc.
    [Show full text]
  • Philosophical Transactions, »
    INDEX TO THE PHILOSOPHICAL TRANSACTIONS, » S e r ie s A, FOR THE YEAR 1898 (VOL. 191). A. Absorption, Change of, produced by Fluorescence (B urke), 87. Aneroid Barometers, Experiments on.—Elastic After-effect; Secular Change; Influence of Temperature (Chree), 441. B. Bolometer, Surface, Construction of (Petavel), 501. Brilliancy, Intrinsic, Law of Variation of, with Temperature (Petavel), 501. Burke (John). On the Change of Absorption produced by Fluorescence, 87. C. Chree (C.). Experiments on Aneroid Barometers at Kew Observatory, and their Discussion, 441. Correlation and Variation, Influence of Random Selection on (Pearson and Filon), 229. Crystals, Thermal Expansion Coefficients, by an Interference Method (Tutton), 313. D. Differential Equations of the Second Order, &c., Memoir on the Integration of; Characteristic Invariant of (Forsyth), 1. 526 INDEX. E. Electric Filters, Testing Efficiency of; Dielectrifying Power of (Kelvin, Maclean, and Galt), 187. Electricity, Diffusion of, from Carbonic Acid Gas to Air; Communication of, from Electrified Steam to Air (Kelvin, Maclean, and Galt), 187. Electrification of Air by Water Jet, Electrified Needle Points, Electrified Flame, &c., at Different Air-pressures; at Different Electrifying Potentials; Loss of Electrification (Kelvin, Maclean, and Galt), 187. Electrolytic Cells, Construction and Calibration of (Veley and Manley), 365. Emissivity of Platinum in Air and other Gases (Petavel), 501. Equations, Laplace's and other, Some New Solutions of, in Mathematical Physics (Forsyth), 1. Evolution, Mathematical Contributions to Theory o f; Influence of Random Selection on the Differentiation of Local Races (Pearson and Filon), 229. F. Filon (L. N. G.) and Pearson (Karl). Mathematical Contributions to the Theory of Evolution.—IV. On the Probable Errors of Frequency Constants and on the Influence of Random Selection on Variation and Correlation, 229.
    [Show full text]
  • 1 the Comets of Caroline Herschel (1750-1848)
    Inspiration of Astronomical Phenomena, INSAP7, Bath, 2010 (www.insap.org) 1 publication: Culture and Cosmos, Vol. 16, nos. 1 and 2, 2012 The Comets of Caroline Herschel (1750-1848), Sleuth of the Skies at Slough Roberta J. M. Olson1 and Jay M. Pasachoff2 1The New-York Historical Society, New York, NY, USA 2Hopkins Observatory, Williams College, Williamstown, MA, USA Abstract. In this paper, we discuss the work on comets of Caroline Herschel, the first female comet-hunter. After leaving Bath for the environs of Windsor Castle and eventually Slough, she discovered at least eight comets, five of which were reported in the Philosophical Transactions of the Royal Society. We consider her public image, astronomers' perceptions of her contributions, and the style of her astronomical drawings that changed with the technological developments in astronomical illustration. 1. General Introduction and the Herschels at Bath Building on the research of Michael Hoskini and our book on comets and meteors in British art,ii we examine the comets of Caroline Herschel (1750-1848), the first female comet-hunter and the first salaried female astronomer (Figure 1), who was more famous for her work on nebulae. She and her brother William revolutionized the conception of the universe from a Newtonian one—i.e., mechanical with God as the great clockmaker watching over its movements—to a more modern view—i.e., evolutionary. Figure 1. Silhouette of Caroline Herschel, c. 1768, MS. Gunther 36, fol. 146r © By permission of the Oxford University Museum of the History of Science Inspiration of Astronomical Phenomena, INSAP7, Bath, 2010 (www.insap.org) 2 publication: Culture and Cosmos, Vol.
    [Show full text]
  • Benjamin Franklin People Mentioned in Walden
    PEOPLE MENTIONED IN WALDEN BENJAMIN “VERSE-MAKERS WERE GENERALLY BEGGARS” FRANKLIN1 Son of so-and-so and so-and-so, this so-and-so helped us to gain our independence, instructed us in economy, and drew down lightning from the clouds. “NARRATIVE HISTORY” AMOUNTS TO FABULATION, THE REAL STUFF BEING MERE CHRONOLOGY 1. Franklin was distantly related to Friend Lucretia Mott, as was John Greenleaf Whittier, Henry Adams, and Octavius Brooks Frothingham. HDT WHAT? INDEX THE PEOPLE OF WALDEN: BENJAMIN FRANKLIN PEOPLE MENTIONED IN WALDEN WALDEN: In most books, the I, or first person, is omitted; in this PEOPLE OF it will be retained; that, in respect to egotism, is the main WALDEN difference. We commonly do not remember that it is, after all, always the first person that is speaking. I should not talk so much about myself if there were any body else whom I knew as well. Unfortunately, I am confined to this theme by the narrowness of my experience. BENJAMIN FRANKLIN WALDEN: But all this is very selfish, I have heard some of my PEOPLE OF townsmen say. I confess that I have hitherto indulged very little WALDEN in philanthropic enterprises. I have made some sacrifices to a sense of duty, and among others have sacrificed this pleasure also. There are those who have used all their arts to persuade me to undertake the support of some poor family in town; and if I had nothing to do, –for the devil finds employment for the idle,– I might try my hand at some such pastime as that.
    [Show full text]
  • Statutes and Rules for the British Museum
    (ft .-3, (*y Of A 8RI A- \ Natural History Museum Library STATUTES AND RULES BRITISH MUSEUM STATUTES AND RULES FOR THE BRITISH MUSEUM MADE BY THE TRUSTEES In Pursuance of the Act of Incorporation 26 George II., Cap. 22, § xv. r 10th Decembei , 1898. PRINTED BY ORDER OE THE TRUSTEES LONDON : MDCCCXCYIII. PRINTED BY WOODFALL AND KINDER, LONG ACRE LONDON TABLE OF CONTENTS CHAPTER I. PAGE Meetings, Functions, and Privileges of the Trustees . 7 CHAPTER II. The Director and Principal Librarian . .10 Duties as Secretary and Accountant . .12 The Director of the Natural History Departments . 14 CHAPTER III. Subordinate Officers : Keepers and Assistant Keepers 15 Superintendent of the Reading Room . .17 Assistants . 17 Chief Messengers . .18 Attendance of Officers at Meetings, etc. -19 CHAPTER IV. Admission to the British Museum : Reading Room 20 Use of the Collections 21 6 CHAPTER V, Security of the Museum : Precautions against Fire, etc. APPENDIX. Succession of Trustees and Officers . Succession of Officers in Departments 7 STATUTES AND RULES. CHAPTER I. Of the Meetings, Functions, and Privileges of the Trustees. 1. General Meetings of the Trustees shall chap. r. be held four times in the year ; on the second Meetings. Saturday in May and December at the Museum (Bloomsbury) and on the fourth Saturday in February and July at the Museum (Natural History). 2. Special General Meetings shall be sum- moned by the Director and Principal Librarian (hereinafter called the Director), upon receiving notice in writing to that effect signed by two Trustees. 3. There shall be a Standing Committee, standing . • Committee. r 1 1 t-» • 1 t> 1 consisting 01 the three Principal 1 rustees, the Trustee appointed by the Crown, and sixteen other Trustees to be annually appointed at the General Meeting held on the second Saturday in May.
    [Show full text]
  • Reconstructing the Lost Contours of Charles Hutton
    Reconstructing the lost contours of Charles Hutton Karen Rann a, David Fairbairn b, *, Ella Southern c a Queens University, Belfast, UK; [email protected] b Newcastle University, Newcastle upon Tyne, UK; [email protected] c Newcastle University, Newcastle upon Tyne, UK; [email protected] * Corresponding author Keywords: Historical land surveying, contour mapping This study reports on an historical investigation of map-making practice and achievement from the late 18th century, and attempts to reconstruct the practices and outcomes of an innovative surveying and mapping exercise, using historical data and contemporary geospatial data handling. The episode involves the processing of data captured as part of an extensive project by the then (British) Astronomer Royal, Maskelyne, in the mid 1770s, to measure the gravitational attraction and density of the earth. This experiment was conducted on the isolated mountain of Schiehallion in Central Scotland, and resulted in several differing approaches to calculating the mass of the mountain, and determining and interpreting the resultant effect on gravity measurements on its slopes. In order to do this, an accurate determination of “the figure and dimensions of the hill” (Maskelyne, 1775) was required. The survey work was undertaken under Maskelyne’s supervision by his previous assistant, Barrow, and local surveyor, Menzies. The data collected included astronomical observations to establish latitudinal positions, lengths of fixed base lines (one to the north of the mountain and one to the south), a standard traverse around the mountain to establish fixed points, and transects/vertical profiles radiating from those points. The land surveying techniques were known and widely used, although at the time having only been recently documented, in the book ‘A Treatise on Mensuration’.
    [Show full text]
  • Cavendish the Experimental Life
    Cavendish The Experimental Life Revised Second Edition Max Planck Research Library for the History and Development of Knowledge Series Editors Ian T. Baldwin, Gerd Graßhoff, Jürgen Renn, Dagmar Schäfer, Robert Schlögl, Bernard F. Schutz Edition Open Access Development Team Lindy Divarci, Georg Pflanz, Klaus Thoden, Dirk Wintergrün. The Edition Open Access (EOA) platform was founded to bring together publi- cation initiatives seeking to disseminate the results of scholarly work in a format that combines traditional publications with the digital medium. It currently hosts the open-access publications of the “Max Planck Research Library for the History and Development of Knowledge” (MPRL) and “Edition Open Sources” (EOS). EOA is open to host other open access initiatives similar in conception and spirit, in accordance with the Berlin Declaration on Open Access to Knowledge in the sciences and humanities, which was launched by the Max Planck Society in 2003. By combining the advantages of traditional publications and the digital medium, the platform offers a new way of publishing research and of studying historical topics or current issues in relation to primary materials that are otherwise not easily available. The volumes are available both as printed books and as online open access publications. They are directed at scholars and students of various disciplines, and at a broader public interested in how science shapes our world. Cavendish The Experimental Life Revised Second Edition Christa Jungnickel and Russell McCormmach Studies 7 Studies 7 Communicated by Jed Z. Buchwald Editorial Team: Lindy Divarci, Georg Pflanz, Bendix Düker, Caroline Frank, Beatrice Hermann, Beatrice Hilke Image Processing: Digitization Group of the Max Planck Institute for the History of Science Cover Image: Chemical Laboratory.
    [Show full text]
  • Reconstructing the Lost Contours of Charles Hutton
    Reconstructing the lost contours of Charles Hutton Karen Rann a, David Fairbairn b, *, Ella Southern c a Queens University, Belfast, UK; [email protected] b Newcastle University, Newcastle upon Tyne, UK; [email protected] c Newcastle University, Newcastle upon Tyne, UK; [email protected] * Corresponding author Keywords: Historical land surveying, contour mapping This study reports on an historical investigation of map-making practice and achievement from the late 18th century, and attempts to reconstruct the practices and outcomes of an innovative surveying and mapping exercise, using historical data and contemporary geospatial data handling. The episode involves the processing of data captured as part of an extensive project by the then (British) Astronomer Royal, Maskelyne, in the mid 1770s, to measure the gravitational attraction and density of the earth. This experiment was conducted on the isolated mountain of Schiehallion in Central Scotland, and resulted in several differing approaches to calculating the mass of the mountain, and determining and interpreting the resultant effect on gravity measurements on its slopes. In order to do this, an accurate determination of “the figure and dimensions of the hill” (Maskelyne, 1775) was required. The survey work was undertaken under Maskelyne’s supervision by his previous assistant, Barrow, and local surveyor, Menzies. The data collected included astronomical observations to establish latitudinal positions, lengths of fixed base lines (one to the north of the mountain and one to the south), a standard traverse around the mountain to establish fixed points, and transects/vertical profiles radiating from those points. The land surveying techniques were known and widely used, although at the time having only been recently documented, in the book ‘A Treatise on Mensuration’.
    [Show full text]
  • Back Matter (PDF)
    INDEX TO THE PHILOSOPHICAL TRANSACTIONS (A) FOR THE YEAR 1894. A. Arc spectrum of electrolytic ,iron on the photographic, 983 (see Lockyer). B. Bakerian L ecture.—On the Relations between the Viscosity (Internal 1 riction) of Liquids and then Chemical Nature, 397 (see T iiorpe and R odger). Bessemer process, the spectroscopic phenomena and thermo-chemistry of the, 1041 IIarimo). C. Capstick (J. W.). On the Ratio of the Specific Heats of the Paraffins, and their Monohalogei.. Derivatives, 1. Carbon dioxide, on the specific heat of, at constant volume, 943 (sec ). Carbon dioxide, the specific heat of, as a function of temperatuie, ddl (mo I j . , , Crystals, an instrument of precision for producing monochromatic light of any desire. ua\e- eng », * its use in the investigation of the optical properties of, did (see it MDCCCXCIV.— A. ^ <'rystals of artificial preparations, an instrument for grinding section-plates and prisms of, 887 (see Tutton). Cubic surface, on a special form of the general equation of a, and on a diagram representing the twenty- seven lines on the surface, 37 (see Taylor). •Cables, on plane, 247 (see Scott). D. D unkeelky (S.). On the Whirling and Vibration of Shafts, 279. Dynamical theory of the electric and luminifei’ous medium, a, 719 (see Larmor). E. Eclipse of the sun, April 16, 1893, preliminary report on the results obtained with the prismatic cameras during the total, 711 (see Lockyer). Electric and luminiferous medium, a dynamical theory of the, 719 (see Larmor). Electrolytic iron, on the photographic arc spectrum of, 983 (see Lockyer). Equation of the general cubic surface, 37 (see Taylor).
    [Show full text]
  • Charles Hutton: Scientist, Mathematician and the Density of the Earth
    Charles Hutton: scientist, mathematician and the density of the Earth Robin Johnson Outline his life his science his mathematics & teaching the Schiehallion experiment overview & summary 2 Charles Hutton: his life 3 Born on Percy Street; father Henry, mother Eleanor. Taught to read (Percy St.), and then to write (Benwell). Educated at Rev. Mr. Ivison’s school in Jesmond – and he then took over the school. 1737-1823 He moved the school to Stotes Hall, with three further moves as the school expanded. 3 Teaching by day, studying mathematics in the 4 evenings at Mr. James’ Mathematical School in Newcastle. Started teaching at the school; married Isabella in 1760; took over the school (advert). Pupils included John Scott (later Lord Eldon, Lord High Chancellor of England), his wife-to-be Elizabeth Surtees, and the children of Robert Shafto. 4 In 1773, he was appointed 5 Professor of Mathematics at the Royal Military Academy in Woolwich. Left Isabella and his children in Newcastle. Elected to the Royal Society in 1774, and was its foreign secretary 1779-’83. 5 Isabella died in 1785; he remarried (Margaret). 6 Four daughters by first wife and one by his second, but two predeceased him. In 1786 he began to suffer from pulmonary disorders, so decided to move away from the Thames. New Royal Military Academy – closed in 1939 by Andrew Morton (1802–1845) 6 Ill health forced him to resign his Chair in 1807; he died in 1823. 7 In his last year, a fund was set up to honour him: to cover the cost of a marble bust and, so much was raised, also a medal.
    [Show full text]
  • Philosophical Transactions (A)
    INDEX TO THE PHILOSOPHICAL TRANSACTIONS (A) FOR THE YEAR 1889. A. A bney (W. de W.). Total Eclipse of the San observed at Caroline Island, on 6th May, 1883, 119. A bney (W. de W.) and T horpe (T. E.). On the Determination of the Photometric Intensity of the Coronal Light during the Solar Eclipse of August 28-29, 1886, 363. Alcohol, a study of the thermal properties of propyl, 137 (see R amsay and Y oung). Archer (R. H.). Observations made by Newcomb’s Method on the Visibility of Extension of the Coronal Streamers at Hog Island, Grenada, Eclipse of August 28-29, 1886, 382. Atomic weight of gold, revision of the, 395 (see Mallet). B. B oys (C. V.). The Radio-Micrometer, 159. B ryan (G. H.). The Waves on a Rotating Liquid Spheroid of Finite Ellipticity, 187. C. Conroy (Sir J.). Some Observations on the Amount of Light Reflected and Transmitted by Certain 'Kinds of Glass, 245. Corona, on the photographs of the, obtained at Prickly Point and Carriacou Island, total solar eclipse, August 29, 1886, 347 (see W esley). Coronal light, on the determination of the, during the solar eclipse of August 28-29, 1886, 363 (see Abney and Thorpe). Coronal streamers, observations made by Newcomb’s Method on the Visibility of, Eclipse of August 28-29, 1886, 382 (see A rcher). Cosmogony, on the mechanical conditions of a swarm of meteorites, and on theories of, 1 (see Darwin). Currents induced in a spherical conductor by variation of an external magnetic potential, 513 (see Lamb). 520 INDEX.
    [Show full text]