Inorganic Chemistry. 477

Total Page:16

File Type:pdf, Size:1020Kb

Inorganic Chemistry. 477 View Article Online / Journal Homepage / Table of Contents for this issue INORGANIC CHEMISTRY. 477 Inorganic Chemistry. Decomposition of Hydrogen Peroxide under the Influence of Radium Bromide. HENRYJ. H. FENTON(Proc. Camb. Phil. SOC., 1904, 12, 424--426).-The velocity coeficient for the decomposition of hydrogen 'peroxide in paraffin-coated vessels, calculated from the expression for a unimolecular reaction, gradually increases as the peroxide concentration diminishes. In glass vessels the decomposition velocity is irregular at first, but becomes approximately constant after a few days. The velocity of decomposition, either in glass or paraffin- Published on 01 January 1904. Downloaded 30/10/2014 10:59:06. coated vessels, is approximately doubled under the influence of radium bromide. J. C. P. Boiling Oxygen. A. RESTELMEYER(Ann. Physik, 1904, [iv], 14, 87-98).-A study of the extent of possible superheating in boiling oxygen. The results obtained make it probable that previous de- terminations of the boiling point of oxygen, in which the thermometer was immersed in the liquid, are a few tenths of a degree too high. On the other hand, the author's results are in harmony with the determinations oE Travers, Senter, and Jaquerod (Abstr., 1903, ii, 9), who used a statical method. J. C. P. The Melting Points of Oxygen and Nitrogen. TADEUSZ ESTREICHER(BUZZ. Acad. Xci. Cracow, 1903, 831--844).-The melting point of oxygen was determined with a helium thermometer; it was found to be approximately -227O. The vapour pressures of melting oxygen, nitrogen, and atmospheric nitrogen were determined by solidifying these gases in a closed vessel connected with a mercury manometer. When the solids were allowed to melt slowly, the pressure, at first zero, gradually rose to a value which remained constant VOL. LXXLXVI.ii. 34 View Article Online 478 ABSTRACTS OF CHEMICAL PAPERS, until complete liquefaction had taken place. In this way, the vapour pressure of melting oxygen was shown to be 0.9 mm., that of melting nitrogen 93.5 mm., and atmospheric nitrogen 90.2 mm. The vapour pressures of nitrogen at temperatures near the melting point have already been determined (Fischer and Alt, Miinchener Akad., 1902, 209); with the aid of Ramsay and Young's method, these values may be used to calculate the temperatiire of nitrogen corresponding with any vapour pressure. Accordingly, the temperature of nitrogen which exerts a pressure of 93.5 millimetres is found to be -210.24' (this figure represents the melting point of pure nitrogen); similarly, atmospheric nitrogen is shown to melt at -210.47'. The difference between the two values, 0.23', is the lowering in the freezing point of liquid nitrogen which is exerted by the argon in atmospheric nitrogen (1.70 grams per 100 grams of nitrogen). In this way, the author calculates the molecular depression of freezing point of liquid nitrogen and finds it to be 5.39, whence the latent heat of fusion equals 14-49 cal. or 60.44 Joules. s. s. Heat of Vaporisation of Oxygen and Sulphur Dioxide. TADEUSZESTREICHER (Bull. Acccd. Xci. Cracow, 1904,183-196).-The method consists in measuring the volume of gas liberated by a known amount of heat which is generated in a platinum resistance wire im- mersed in the liquid. The quantity of electricity passing through the resistance during the experiment was determined by means of a silver voltameter, and t,he difference of potential between the ends of the wire was measured with a standardised voltameter, In measuring the volume of the gas liberated, a correction must be applied for the normal evaporation which takes place without heating the platinum wire. The sulphur dioxide employed was prepared by dropping concentrated sulphuric acid into a strong solution of sodium Published on 01 January 1904. Downloaded 30/10/2014 10:59:06. sulphite. The heat of vaporisation oE liquid sulphur dioxide at its boiling point (10.1') was found to be 96.2 cal. per gram; a value which agrees very closely with that obtained by Mathias (Abstr., 1888, 773), 96.19 at the same temperature. The oxygen was prepared from potassium chlorate, and was washed with potassium hydroxide before use. The latent heat of vaporisation of liquid oxygen is 58.0 cal. per gram. s. s. OzoneApparatus. W. ELWORTHY(Chem. Centy., 1904,i, 1313-1314; from Electrochem. Zeit., 11, 1--5).-1n the apparatus described, the silent discharge takes place between spirals of aluminium. The air does not require to be cooled by water, the temperature being kept sufficiently low by employing a rapid stream which is made to pass twice through the field of discharge by means of concentric glass tubes. The air is not specially dried. The apparatus comprises a battery of 10 tubes together with other accessories. By employing an alternating current at 130 volts raised to 11,000-12,000 volts by means of a transformer, 70 grams of ozone per kilowatt-hour are obtained, and the concentration of the ozone reaches 0.4-0.5 gram per cubic metre. E. W. W. View Article Online INORGANIC CHEMISTRY. 479 Formation of Ozone at High Temperatures. J. K. CLEMENT (Ann. Phpik, 1904, [ir], 14, 334-353).--8ince the stability of endothermic substances increases as the temperature rises, it is to be expected that at high temperatures oxygen is converted, partly at least, into ozone. Attempts to realise this, in which oxygen was rapidly passed over the electrolytic glow body of a Nernst lamp, were unsuccessful, and no ozone could be detected. So long as traces of nitrogen were present in the oxygen, nitric oxide was produced, a, substance the behaviour of which in small concentrations is very similar to that of ozone. The formation of ozone at high temperatures has been recorded by earlier workers, but it is probable that the reactions observed were those of nitric oxide, since no care was taken to exclude nitrogen. Ozone is certainly produced by an electric spark, but this result may be attributed to the action of ultraviolet light. The author has further studied the rate of decomposition of ozone at higher temperatures. A current of ozonised oxygen, obtained by electrolysis of sulphuric acid, was passed through n vessel kept at a constant temperature, the amounts of ozone before and after the passage of the gas being determined by absorption in potassium iodide and subsequent titration with thiosulphate. The reaction is bimole- cular, as found also by Warburg (Abstr., 1902, ii, 130), and van't Hoff's equation for the change of velocity coefficient with temperature represents the experimental results very satisfactorily. It may thus be shown that at 1000" the percentage of ozone in oxygen would fall from 1.0 to 0.001 in 0.0007 second. Hence, even if ozone is formed in quantity at a temperature of about 2200", it must be decomposed during even the most rapid cooling. J. C. P. Action of Sulphuryl Chloride on Metallic Oxides. E. SPELTA (Gaxxetta, 1904, 34, i, 262-267).-Sulphuryl chloride and lead oxide do not react, even when heated together at 140-150" in a sealed tube Published on 01 January 1904. Downloaded 30/10/2014 10:59:06. for several hours. With lead peroxide, however, sulphuryl chloride readily reacts, sometimes with explosive violence, according to the following equation : 2Pb0, + SO,Cl, = PbSO, + PbC1, + 0,. If the sulphuryl chloride is in slight excess, and the mixture becomes heated above its boiling point, chlorine is also evolved. With mercuric oxide prepared in the dry way, sulphuryl chloride does not react even on prolonged heating. With yellow mercuric oxide (2 mols.), however, sulphuryl chloride (1 mol.) readily reacts at 150" in a closed tube: 2Hg0 + SO,CI, = HgSO, + HgCl,. If the sulphuryl chloride is in excess, sulphur trioxide is also formed, ac- cording to the equation : HgO + SO,Cl, = HgCI, + SO,. Prom these reactions it is seen that sulphuryl chloride, which is readily formed from sulphur dioxide and chlorine, is also readily resolved into these components, the change being hence a reversible one, The chlorinating action of sulphuryl chloride must be due to a slightly stable linking between the sulphur dioxide and chlorine, a linking which must have a special form, since its rupture takes place preferably in presence of elements having an electro-positive character. T. H. P. 34-2 View Article Online 4so ABSTRACTS OF CHEMICAL PAPERS. Electrolytic Oxidation of Sulphites and Electrochemical Formation of Dithionate. ALFREDFRIESSNER (Zed. Elektrochem., 1904, 10, 265-289).-1n neutral or alkaline solutions, the sulphites of the alkali metals are not reduced at the cathode ; at the anode they are oxidised, partly to sulphate, partly to dithionate, 2Na,SO, + 0 + H,O = Na,S,O, + 2NaOH. Dithionate is not formed under any con- ditions when the solution is acid, the only product formed at the anode being sulpbate ;at the cathode, however, hyposulphite and thio- sulphate are produced. The formation of dithionate in neutral or alkaline polutions is found to be conditioned by the potential of the anode. By polarising the (platinum) anode anodically in a solution of sodium hydroxide before use, the formation of dithionate is insured, whereas a cathodically polarised or a depolarised electrode. gives no dithionate. These remarks apply to platinised platinum anodes : a smooth platinum anode soon becomes polarised in the sulphite solu- tion itself sufficiently to produce dithionate even if it is initially depolarised. The formation of dithionate is favoured by a rise of temperature to 60-70'; it is practically unaffected by the concen- tration of the sulphite solution. The latter fact together with the fact that it is not formed in acid solutions shows that the dithionate is produced from SO," ions, and the following equation is given as representing the elect,rical reaction, 2S0," + 20H' + 2H' + 2F= S,O," + 2H,O.
Recommended publications
  • 540.14Pri.Pdf
    Index Element names, parent hydride names and systematic names derived using any of the nomenclature systems described in this book are, with very few exceptions, not included explicitly in this index. If a name or term is referred to in several places in the book, the most informative references appear in bold type, and some of the less informative places are not cited in the index. Endings and suffixes are represented using a hyphen in the usual fashion, e.g. -01, and are indexed at the place where they would appear ignoring the hyphen. Names of compounds or groups not included in the index may be found in Tables P7 (p. 205), P9 (p. 232) and PIO (p. 234). ~, 3,87 acac, 93 *, 95 -acene, 66 \ +, 7,106 acetals, 160-161 - (minus), 7, 106 acetate, 45 - (en dash), 124-126 acetic acid, 45, 78 - (em dash), 41, 91, 107, 115-116, 188 acetic anhydride, 83 --+, 161,169-170 acetoacetic acid, 73 ct, 139, 159, 162, 164, 167-168 acetone, 78 ~, 159, 164, 167-168 acetonitrile, 79 y, 164 acetyl, III, 160, 163 11, 105, 110, 114-115, 117, 119-128, 185 acetyl chloride, 83, 183 K, 98,104-106,117,120,124-125, 185 acetylene, 78 A, 59, 130 acetylide, 41 11, 89-90,98, 104, 107, 113-116, 125-126, 146-147, acid anhydrides, see anhydrides 154, 185 acid halides, 75,83, 182-183 TC, 119 acid hydrogen, 16 cr, 119 acids ~, 167 amino acids, 25, 162-163 00, 139 carboxylic acids, 19,72-73,75--80, 165 fatty acids, 165 A sulfonic acids, 75 ct, 139,159,162,164,167-168 see also at single compounds A, 33-34 acrylic acid, 73, 78 A Guide to IUPAC Nomenclature of Organic actinide, 231 Compounds, 4, 36, 195 actinoids (vs.
    [Show full text]
  • Substitution and Redox Chemistry of Ruthenium Complexes
    iJ il r¿ SUBSTITUTION AND REDOX CHEMISTRY OF RUTHENIUM COMPLEXES by Paul Stuaft Moritz, B. Sc. (Hons) * A Thesis submitted for the Degree of Doctor of Philosophy. The Department of Physical and lnorganic Chemistry, The University of Adelaide. JUNE 1987 lìr.+:-c{,¡l I /tz lZ]' STATEMENT. This Thesis conta¡ns no materialwhich has been accepted for the award of any other Degree or Diploma in any University and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference is made in the text. I give consent that, if this Thesis is accepted for the award of the Degree of Doctor of Philosophy, it may be made available for photocopying and, if applicable, loan. Moritz. SUMMARY The coordination chemislry of ruthenium is domínated by the oxidation states, +2 and +3. Within these oxidation states, the ammine complexes form a large and welt- characterized group. This thesis reports on the chemistry of lhe hitherto neglected triammine complexes, with particular reference to their redox chemistry, and the possible formation of Ru(lV) triammine complexes with terminal oxo ligands. The chemistry of the +4 oxidation state is further explored through the formation of stable chelate complexes. The salt, [Ru(NH3)3(OH2)31(CFgSO3)3, was prepared by hydrotysis of Ru(NHs)sCts in triflic acid solution. lts spectra, electrochemistry and substitution reactions are similar to those of the well-known hexa-, penta-, and tetraammine complexes. At freshly polished platinum and glassy carbon electrodes, a quasi reversible redox wave was detected, corresponding to a proton-coupled reduction involving the pu3+7pu2+ couple.
    [Show full text]
  • US 2002/0002128A1 Gernon Et Al
    US 2002.0002128A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2002/0002128A1 Gernon et al. (43) Pub. Date: Jan. 3, 2002 (54) AQUEOUS SOLUTIONS CONTAINING Related U.S. Application Data DITHIONIC ACID AND/OR METAL DTHONATE (63) Non-provisional of provisional application No. 60/186,097, filed on Mar. 1, 2000. (76) Inventors: Michael D. Gernon, Upper Providence, Publication Classification PA (US); Sandra L. Bodar, 7 Coulommiers (FR) (51) Int. Cl." ....................................................... C11D 1100 (52) U.S. Cl. .............................................................. 510,363 Correspondence Address: Gilbert W. Rudman (57) ABSTRACT ATOFINA Chemicals, Inc., Patent Department This invention relates to Solutions of dithionic acid and/or 26th Floor dithionate Salts for use in metal finishing processes Such as 2000 Market Street those used for the cleaning, activating, electroplating, elec Philadelphia, PA 19103-3222 (US) troless plating, conversion coating and/or other pre-treat ment or post-treatment of a metallic Surface. In particular the (21) Appl. No.: 09/791,224 Solutions are a useful electrolyte for the electroplating of metallic coatings, especially, Sn, Cu, Ni, Zn and precious (22) Filed: Feb. 22, 2001 metals, onto metal or plastic Substrates and/or other Surfaces. US 2002/0002128A1 Jan. 3, 2002 AQUEOUS SOLUTIONS CONTAINING DITHIONIC 0014) Another embodiment is a surface cleaning solution ACID AND/OR METAL DITHIONATE composition for a Substrate, other than copper, which con tains metal or ammonium dithionate Salts. REFERENCE TO RELATED APPLICATION 0015. Another embodiment is an aqueous solution of 0001. This application claims the benefit of United States ammonium, IA metal and/or IIA metal dithionate Salts for Provisional Application Ser.
    [Show full text]
  • Nomenclature of Organic Chemistry. IUPAC Recommendations and Preferred Names 2013
    International Union of Pure and Applied Chemistry Division VIII Chemical Nomenclature and Structure Representation Division Nomenclature of Organic Chemistry. IUPAC Recommendations and Preferred Names 2013. Prepared for publication by Henri A. Favre and Warren H. Powell, Royal Society of Chemistry, ISBN 978-0-85404-182-4 Chapter P-6 APPLICATIONS TO SPECIFIC CLASSES OF COMPOUNDS (continued) (P-66 to P-69) (continued from P-60 to P-65) P-60 Introduction P-61 Substitutive nomenclature: prefix mode P-62 Amines and imines P-63 Hydroxy compounds, ethers, peroxols, peroxides and chalcogen analogues P-64 Ketones, pseudoketones and heterones, and chalcogen analogues P-65 Acids and derivatives P-66 Amides, hydrazides, nitriles, aldehydes P-67 Oxoacids used as parents for organic compounds P-68 Nomenclature of other classes of compounds P-69 Organometallic compounds P-66 AMIDES, IMIDES, HYDRAZIDES, NITRILES, AND ALDEHYDES, P-66.0 Introduction P-66.1 Amides P-66.2 Imides P-66.3 Hydrazides P-66.4 Amidines, amidrazones, hydrazidines, and amidoximes (amide oximes) P-66.5 Nitriles P-66.6 Aldehydes P-66.0 INTRODUCTION The classes dealt with in this Section have in common the fact that their retained names are derived from those of acids by changing the ‘ic acid’ ending to a class name, for example ‘amide’, ‘ohydrazide’, ‘nitrile’, or ‘aldehyde’. Their systematic names are formed substitutively by the suffix mode using one of two types of suffix, one that includes the carbon atom, for example, ‘carbonitrile’ for –CN, and one that does not, for example, ‘-nitrile’ for –(C)N. Amidines are named as amides, hydrazidines as hydrazides, and amidrazones as amides or hydrazides.
    [Show full text]
  • Decomposition of Dithionates Dissertation
    DECOMPOSITION OF DITHIONATE S DISSE RTATI ON PRESEN TE D IN PA RTIAL F%LFI L LM EN T O F TH E REQ %IREM ENTS FO R THE D EG REE O F DO C TO R O F PHI LO SO PH Y IN THE G RA D%A TE S C H O O L O F THE O HIO STATE %N I%ERSITY BY JACOB CORNOG 1921 TABLE O F C ONTE NTS R eview of th e Lit er atur e P ertin ent t o th e Form ation and f t t po sition o Di hiona es . Aim s of th e Pr es ent Work on of B ar i um Dithionate a x e e t al of V riou s Dithionates (E p rim n . ) G en eral C on sider ation s an d Proc edur e T he D ecompo s ition of Barium Dithion at e of Some Other Dithionat es th e Lit eratur e P LYT H I O A T E I . T H E O N S H Dithionic acid , 2 8 2 0 6 , the first ember of this remarkable 1 - group of acids , was discovered in 9 by Welter and Gay Lus 1 5“ sacl H 1 842 Lan lo i s z ; trithionic acid , 2 S 3 0 6 , in , by g ; tetrathionic H 1 843 G elis 3 a acid , 2 8 4 0 6 , in , by Fordos and ; pent thionic acid , H 8 0 1 845 Wacken roder“ hexathi 2 5 6 , in , by ; finally potassium K 1 88 5 onate , Q S 6 , was discovered in 8 by D ebu s as a part of ’ roder his classic investigation of Wacken s solution .
    [Show full text]
  • Nomenclature of Inorganic Chemistry (IUPAC Recommendations 2005)
    NOMENCLATURE OF INORGANIC CHEMISTRY IUPAC Recommendations 2005 IUPAC Periodic Table of the Elements 118 1 2 21314151617 H He 3 4 5 6 7 8 9 10 Li Be B C N O F Ne 11 12 13 14 15 16 17 18 3456 78910 11 12 Na Mg Al Si P S Cl Ar 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 55 56 * 57− 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Cs Ba lanthanoids Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 87 88 ‡ 89− 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 Fr Ra actinoids Rf Db Sg Bh Hs Mt Ds Rg Uub Uut Uuq Uup Uuh Uus Uuo * 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ‡ 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr International Union of Pure and Applied Chemistry Nomenclature of Inorganic Chemistry IUPAC RECOMMENDATIONS 2005 Issued by the Division of Chemical Nomenclature and Structure Representation in collaboration with the Division of Inorganic Chemistry Prepared for publication by Neil G.
    [Show full text]
  • United States Patent Office
    3,140,251 United States Patent Office Patented July 7, 1964 1 2 The high activity catalysts contemplated herein are alu 3,140,251 minosilicate compositions which are strongly acidic in PROCESS FOR CRACKING HYDROCARBONS WITH A CRYSTALLINE ZEOLTE character as a result of treatment with a fluid medium Charles J. Plank, Woodbury, and Edward J. Rosinski, containing at least one metallic cation and a hydrogen ion Almonesson, N.J., assignors to Socony Mobi Oil Com or ion capable of conversion to a hydrogen ion. Inor pany, Eric a corporation of New York ganic and organic acids broadly represent the source of No Drawing. Filled Dec. 21, 1961, Ser. No. 161,241. hydrogen ions; metallic salts the source of metal cations; 19 Claims. (CI. 208-120) and ammonium compounds the source of cations capable of conversion to hydrogen ions. The product resulting This invention relates to the catalytic conversion of 0. from treatment with the fluid medium is an activated hydrocarbons and more particularly to the catalytic crack crystalline and/or amorphous aluminosilicate in which ing of high boiling hydrocarbon oils into hydrocarbons of the nuclear structure thereof has been modified solely to lower boiling range in the presence of a new and im the extent of having protons and metallic cations chem proved catalyst. isorbed or ionically bonded thereto. The activated alu A wide variety of materials have heretofore been pro 5 minosilicate contains at least 0.5 equivalent and prefer posed as catalysts for the cracking of high boiling hydro ably contains more than 0.9 equivalent of ions of positive carbons, such as gas oils, topped crudes, reduced crudes valence per gram atom of aluminum.
    [Show full text]
  • Xxvili.-&Br./Matio/Ll of Dithionic Acid by the Oxidation of Szdphu~Oas
    View Article Online / Journal Homepage / Table of Contents for this issue 314 DYMOND AND HUGHES : FORMATION OF DITHIONIC ACID Published on 01 January 1897. Downloaded by University of Windsor 31/10/2014 06:56:11. XXVIlI.-&br./matio/lL of Dithionic Acid by the Oxidation of SZdphu~oasAcid wit?$Potassium Perwaawpnate. By THOMAS5. DYMONDand FRANKHUGHES. IT is usually stated that sulphurous acid is oxidised by potassium perrnanganate to sulphuric acid. Sulphuric acid is undoubtedly the principal product of the action, but if an acidified solution of sulphurous acid of known strength is titrated with a standardised solution of potas sium permanganate, the permanganate ceases to be decolorised when the quantity used is aboiit nine-tenths of that necessary to completely oxidise the sulphurous acid to sulphuric acid. Lunge and Smith View Article Online BY THE OXIDATION OF SULPHUROUS ACID, ETC. 315 (J. Soc. Chem. Ind., 1883, p. 460) ascribe this discrepancy to loss of sulphur dioxide by volatilisation. As the constancy of the results under different conditions of dilution gave us reason to believe that this was not the true explanation, we determined to carry out the ex- periment under conditions in which loss by volatilisation and also atmos- pheric oxidation were impossible. The apparatus employed mas that suggested by one of us, in con- junction with Professor Dunstan, for the estimation of nitrites (Phtcinb. J., 1889, [III.], 19, 741). A round-bottomed flask is fitted with an india-rubber cork and wide glass tube, and to this is connected a burette, by a piece of pressure tubing, which can be closed bya screw clip.
    [Show full text]
  • J. Rohonczy: Inorganic Chemistry I
    Dr. János Rohonczy Lecture Notes Eötvös Loránd University, Budapest Faculty of Sciences Dr. János Rohonczy INORGANIC CHEMISTRY I. Lecture Notes Eötvös Loránd University Faculty of Sciences BUDAPEST 2017. János Rohonczy: Inorganic Chemistry I. Lecture Notes. Copyright © 2017 Dr. János Rohonczy, Eötvös Loránd University, Budapest, Faculty of Sciences All Right are Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic tape, mechanical, photographical, photocopying, recording or otherwise, without permission in writing form the publisher. This book is written utilized the lecture notes of the Inorganic Chemistry lectures of the author at the Department of Inorganic Chemistry of Eötvös Loránd University, Budapest. Revised, and the fullerene and boron cluster topics remarked by Dr. Béla Csákvári professor emeritus. First edition 2017 Edited and cover page made by Dr. János Rohonczy Publisher: Eötvös Loránd University, Faculty of Sciences ISBN: 978-963-284-853-2 DOI: 10.21862/ 3 Table of Contents Introduction 7 1. Hydrogen 8 1.1. Hydrogen compounds 9 2. Halogens: F, Cl, Br, I, At 10 2.1. Hydrogen halides 13 2.2. Interhalogens 14 2.3. Polyhalogen and interhalogen ions, organic derivatives 16 3. (16th column) O, S, Se, Te, Po 17 3.1. Oxygen (O) 17 3.1.1. Oxygen compounds 19 3.1.2. Halogen oxides and oxygen halides 21 3.1.3. Halogen oxoacids and their salts 24 3.1.4. Halogen oxofluorides and fluorinated oxoacids 28 3.2. Sulfur(S) 29 3.2.1. Sulfur containing compounds 31 3.2.2.
    [Show full text]
  • IUPAC Provisional Recommendations] 2 ] 2 2 2 +D O 2 − − 3 Osi(O) ] ]
    1 Table IR-8.1 Acceptable common names and fully systematic (additive) names for oxoacid and related structures. (March 2004) This Table includes compounds containing oxygen and hydrogen and at least one other element and with at least one OH group; certain isomers; and examples of corresponding partially and fully dehydronated anions. Formulae are given in the classical oxoacid format with the 'acid' (oxygen-bound) hydrogens listed first, followed by the central atom(s), then the hydrogen atoms bound directly to the central atom, and then the oxygen atoms (e.g. HBH2O, H2P2H2O5), except for chain compounds such as e.g. HOCN. In most cases formulae are also written as for coordination entities, assembled according to the principles of Chapter IR-7 (e.g. the Table gives 'HBH2O = [BH2(OH)]' and 'H2SO4 = [SO2(OH)2]'). More names of oxoanions are given in Table IX. Note that Section P-42 of Ref. 1 lists a great many inorganic oxoacid structures for use as parent structures in the naming of organic derivatives, cf. the discussion in Section IR-8.1. Most of those structures, but not all, are included here; a number of di- and polynuclear acids are not explicitly included. Formula Common name Fully systematic additive name(s) (unless otherwise stated) a H3BO3 = [B(OH)3] boric acid trihydroxidoboron − − H2BO3 = [BO(OH)2] dihydrogenborate dihydroxidooxidoborate(1−) − 2− HBO32 = [BO2(OH)] hydrogenborate hydroxidodioxidoborate(2−) 3− − [BO3] borate trioxidoborate(3 ) (HBO2)n = (B(OH)O)n metaboric acid catena-poly[hydroxidoboron-µ-oxido] − n− (BO2
    [Show full text]
  • (12) United States Patent (10) Patent N0.: US 7,163,915 B2 Gernon Et Al
    US007163915B2 (12) United States Patent (10) Patent N0.: US 7,163,915 B2 Gernon et al. (45) Date of Patent: Jan. 16, 2007 (54) AQUEOUS SOLUTIONS CONTAINING (56) References Cited DITHIONIC ACID AND/OR METAL DITHIONATE FOR METAL FINISHING U.S. PATENT DOCUMENTS 2,717,870 A * 9/1955 Dean ........................ .. 205/262 (75) Inventors: Michael D. Gernon, Upper Providence, 4,130,431 A * 12/1978 Kogure .................. .. 106/14.33 PA (US); Sandra L. Bodar, 5,441,665 A * 8/1995 Massaioli ................. .. 510/169 Coulommiers (FR) 5,547,559 A * 8/1996 Kukanskis et a1. 205/125 5,718,818 A * 2/1998 Martyak et a1. .... .. 205/305 (73) Assignee: Arkema Inc., Philadelphia, PA (US) 5,747,635 A * 5/1998 Kroner et a1. 528/328 5,788,822 A * 8/1998 Martyak et a1. .......... .. 205/313 (*) Notice: Subject to any disclaimer, the term of this 6,585,812 B1* 7/2003 Martyak et a1. ....... .. 106/1444 patent is extended or adjusted under 35 FOREIGN PATENT DOCUMENTS U.S.C. 154(b) by 421 days. DE 19639174 4/1997 (21) Appl. No.: 10/723,921 JP 08269726 A 10/1996 JP 08269727 A 10/1996 Filed: Nov. 26, 2003 (22) * cited by examiner (65) Prior Publication Data Primary Examiner4Gregory Webb US 2004/0082489 A1 Apr. 29, 2004 (74) Attorney, Agent, or F irmiSteven D. Boyd Related US. Application Data (57) ABSTRACT (62) Division of application No. 09/791,224, ?led on Feb. This invention relates to solutions of dithionic acid and/or 22, 2001, noW abandoned. dithionate salts Which use in metal ?nishing processes such (60) Provisional application No.
    [Show full text]
  • Draft Alphabetical Commodity Index Bhutan Trade Classification, 2017
    Draft Alphabetical Commodity Index Bhutan Trade Classification, 2017 Department of Revenue & Customs Ministry of Finance Alphabetical Index: Bhutan Trade Classification, 2017 Explanatory Goods HS/BTC Code Notes Abaci, toy 95.03 Abcess needles, dental 90.18 Abietates 38.06 Abietic acids 38.06 Abietyl alcohol 38.06 Abrasion testing machines and appliances 90.24 Abroma augusta (textile fibres) 53.03 Abs copolymers 3903.3 39.03 Absinth (alcoholic aperitive) 22.08 Absolutes (essential oils) 33.01 33.01 Absorptiometers 90.27 Absorption drums, of glass, for hydrochloric acid 70.2 Abutilon avicennae (textile fibres) 53.03 Abutilon hemp (textile fibres) 53.03 Acacia catechu dyeing extract 32.03 Acaricides 38.08 Acaroid 13.01 Accelerometers (air navigational instruments) 90.14 Account books 4820.1 48.2 Accounting machines 84.7 84.7 1 Alphabetical Index: Bhutan Trade Classification, 2017 Explanatory Goods HS/BTC Code Notes Acenaphthene 29.02 Acenaphthenequinone 29.14 Acetaldehyde (ethanal) 2912.12 29.12 Acetaldoxime 29.28 Acetamide 29.24 Acetanhydride (acetic anhydride) 29- (E) List Acetanilide 29.24 Acetate pulp (wood pulp) 47.02 Acetate(s) 29.15 Acetic acid (including commercial) 2915.21 29.15 Acetic anhydride 2915.24 29- Prec. Acetic oxide 29- (E) List Acetification machines used in vinegar-making 84.38 Acetol 29.14 Acetone cyanohydrin 29.26 Acetone sodium bisulphite 29.05 Acetone 2914.11 29- Prec. Acetonylacetone 29.14 Narc.List Acetorphine (inn), acetorphine hydrochloride 2939.19 Acetoxime 29.28 2 Alphabetical Index: Bhutan Trade Classification, 2017 Explanatory Goods HS/BTC Code Notes Acet-p-phenetidide 29.24 29-Narc.
    [Show full text]