Systematicinorga031822mbp.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
540.14Pri.Pdf
Index Element names, parent hydride names and systematic names derived using any of the nomenclature systems described in this book are, with very few exceptions, not included explicitly in this index. If a name or term is referred to in several places in the book, the most informative references appear in bold type, and some of the less informative places are not cited in the index. Endings and suffixes are represented using a hyphen in the usual fashion, e.g. -01, and are indexed at the place where they would appear ignoring the hyphen. Names of compounds or groups not included in the index may be found in Tables P7 (p. 205), P9 (p. 232) and PIO (p. 234). ~, 3,87 acac, 93 *, 95 -acene, 66 \ +, 7,106 acetals, 160-161 - (minus), 7, 106 acetate, 45 - (en dash), 124-126 acetic acid, 45, 78 - (em dash), 41, 91, 107, 115-116, 188 acetic anhydride, 83 --+, 161,169-170 acetoacetic acid, 73 ct, 139, 159, 162, 164, 167-168 acetone, 78 ~, 159, 164, 167-168 acetonitrile, 79 y, 164 acetyl, III, 160, 163 11, 105, 110, 114-115, 117, 119-128, 185 acetyl chloride, 83, 183 K, 98,104-106,117,120,124-125, 185 acetylene, 78 A, 59, 130 acetylide, 41 11, 89-90,98, 104, 107, 113-116, 125-126, 146-147, acid anhydrides, see anhydrides 154, 185 acid halides, 75,83, 182-183 TC, 119 acid hydrogen, 16 cr, 119 acids ~, 167 amino acids, 25, 162-163 00, 139 carboxylic acids, 19,72-73,75--80, 165 fatty acids, 165 A sulfonic acids, 75 ct, 139,159,162,164,167-168 see also at single compounds A, 33-34 acrylic acid, 73, 78 A Guide to IUPAC Nomenclature of Organic actinide, 231 Compounds, 4, 36, 195 actinoids (vs. -
Hemoglobin, Myoglobin and Neuroglobin in Endogenous Thiosulfate Production Processes
International Journal of Molecular Sciences Review The Role of Hemoproteins: Hemoglobin, Myoglobin and Neuroglobin in Endogenous Thiosulfate Production Processes Anna Bilska-Wilkosz *, Małgorzata Iciek, Magdalena Górny and Danuta Kowalczyk-Pachel Chair of Medical Biochemistry, Jagiellonian University Collegium Medicum ,7 Kopernika Street, Kraków 31-034, Poland; [email protected] (M.I.); [email protected] (M.G.); [email protected] (D.K.-P.) * Correspondence: [email protected]; Tel.: +48-12-4227-400; Fax: +48-12-4223-272 Received: 5 May 2017; Accepted: 16 June 2017; Published: 20 June 2017 Abstract: Thiosulfate formation and biodegradation processes link aerobic and anaerobic metabolism of cysteine. In these reactions, sulfite formed from thiosulfate is oxidized to sulfate while hydrogen sulfide is transformed into thiosulfate. These processes occurring mostly in mitochondria are described as a canonical hydrogen sulfide oxidation pathway. In this review, we discuss the current state of knowledge on the interactions between hydrogen sulfide and hemoglobin, myoglobin and neuroglobin and postulate that thiosulfate is a metabolically important product of this processes. Hydrogen sulfide oxidation by ferric hemoglobin, myoglobin and neuroglobin has been defined as a non-canonical hydrogen sulfide oxidation pathway. Until recently, it appeared that the goal of thiosulfate production was to delay irreversible oxidation of hydrogen sulfide to sulfate excreted in urine; while thiosulfate itself was only an intermediate, transient metabolite on the hydrogen sulfide oxidation pathway. In the light of data presented in this paper, it seems that thiosulfate is a molecule that plays a prominent role in the human body. Thus, we hope that all these findings will encourage further studies on the role of hemoproteins in the formation of this undoubtedly fascinating molecule and on the mechanisms responsible for its biological activity in the human body. -
Substitution and Redox Chemistry of Ruthenium Complexes
iJ il r¿ SUBSTITUTION AND REDOX CHEMISTRY OF RUTHENIUM COMPLEXES by Paul Stuaft Moritz, B. Sc. (Hons) * A Thesis submitted for the Degree of Doctor of Philosophy. The Department of Physical and lnorganic Chemistry, The University of Adelaide. JUNE 1987 lìr.+:-c{,¡l I /tz lZ]' STATEMENT. This Thesis conta¡ns no materialwhich has been accepted for the award of any other Degree or Diploma in any University and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference is made in the text. I give consent that, if this Thesis is accepted for the award of the Degree of Doctor of Philosophy, it may be made available for photocopying and, if applicable, loan. Moritz. SUMMARY The coordination chemislry of ruthenium is domínated by the oxidation states, +2 and +3. Within these oxidation states, the ammine complexes form a large and welt- characterized group. This thesis reports on the chemistry of lhe hitherto neglected triammine complexes, with particular reference to their redox chemistry, and the possible formation of Ru(lV) triammine complexes with terminal oxo ligands. The chemistry of the +4 oxidation state is further explored through the formation of stable chelate complexes. The salt, [Ru(NH3)3(OH2)31(CFgSO3)3, was prepared by hydrotysis of Ru(NHs)sCts in triflic acid solution. lts spectra, electrochemistry and substitution reactions are similar to those of the well-known hexa-, penta-, and tetraammine complexes. At freshly polished platinum and glassy carbon electrodes, a quasi reversible redox wave was detected, corresponding to a proton-coupled reduction involving the pu3+7pu2+ couple. -
APPENDIX G Acid Dissociation Constants
harxxxxx_App-G.qxd 3/8/10 1:34 PM Page AP11 APPENDIX G Acid Dissociation Constants § ϭ 0.1 M 0 ؍ (Ionic strength ( † ‡ † Name Structure* pKa Ka pKa ϫ Ϫ5 Acetic acid CH3CO2H 4.756 1.75 10 4.56 (ethanoic acid) N ϩ H3 ϫ Ϫ3 Alanine CHCH3 2.344 (CO2H) 4.53 10 2.33 ϫ Ϫ10 9.868 (NH3) 1.36 10 9.71 CO2H ϩ Ϫ5 Aminobenzene NH3 4.601 2.51 ϫ 10 4.64 (aniline) ϪO SNϩ Ϫ4 4-Aminobenzenesulfonic acid 3 H3 3.232 5.86 ϫ 10 3.01 (sulfanilic acid) ϩ NH3 ϫ Ϫ3 2-Aminobenzoic acid 2.08 (CO2H) 8.3 10 2.01 ϫ Ϫ5 (anthranilic acid) 4.96 (NH3) 1.10 10 4.78 CO2H ϩ 2-Aminoethanethiol HSCH2CH2NH3 —— 8.21 (SH) (2-mercaptoethylamine) —— 10.73 (NH3) ϩ ϫ Ϫ10 2-Aminoethanol HOCH2CH2NH3 9.498 3.18 10 9.52 (ethanolamine) O H ϫ Ϫ5 4.70 (NH3) (20°) 2.0 10 4.74 2-Aminophenol Ϫ 9.97 (OH) (20°) 1.05 ϫ 10 10 9.87 ϩ NH3 ϩ ϫ Ϫ10 Ammonia NH4 9.245 5.69 10 9.26 N ϩ H3 N ϩ H2 ϫ Ϫ2 1.823 (CO2H) 1.50 10 2.03 CHCH CH CH NHC ϫ Ϫ9 Arginine 2 2 2 8.991 (NH3) 1.02 10 9.00 NH —— (NH2) —— (12.1) CO2H 2 O Ϫ 2.24 5.8 ϫ 10 3 2.15 Ϫ Arsenic acid HO As OH 6.96 1.10 ϫ 10 7 6.65 Ϫ (hydrogen arsenate) (11.50) 3.2 ϫ 10 12 (11.18) OH ϫ Ϫ10 Arsenious acid As(OH)3 9.29 5.1 10 9.14 (hydrogen arsenite) N ϩ O H3 Asparagine CHCH2CNH2 —— —— 2.16 (CO2H) —— —— 8.73 (NH3) CO2H *Each acid is written in its protonated form. -
United States Patent 19 11 4,289,699 Oba Et Al
United States Patent 19 11 4,289,699 Oba et al. 45 Sep. 15, 1981 54 PROCESS FOR THE PRODUCTION OF Primary Examiner-Donald G. Daus N-(HYDROXYPHENYL) MALEIMEDES Assistant Examiner-D. B. Springer 75 Inventors: Masayuki Oba; Motoo Kawamata; Attorney, Agent, or Firm-Fisher, Christen & Sabol Hikotada Tsuboi; Nobuhito Koga, all 57 ABSTRACT of Yokohama, Japan N-(hydroxyphenyl) maleimides of the general formula 73 Assignee: Mitsui Toatsu Chemicals, Incorporated, Tokyo, Japan 21 Appl. No.: 88,825 (22 Filed: Oct. 26, 1979 N CO-m-CH Related U.S. Application Data (HO) 62) Division of Ser. No. 956,971, Nov. 2, 1978, Pat. No. 4,231,934. where R' stands for H, CH3, C2H5, F, Cl, Br or I and in 30 Foreign Application Priority Data is an integer of 1-5 are produced by treating the corre sponding maleamic acid or by treating the ester of said Nov. 2, 1977 (JP) Japan ................................ 52-130905 N-(hydroxyphenyl) maleimide at a temperature of Nov. 4, 1977 (JP Japan ................................ 52-3504 0-150° C. in the presence of at least one dehydrating 51) Int. Cl. .......................................... C07D 207/.452 agent selected for the group consisting of oxides and (52) U.S. Cl. .......................................... 260/326.5 FM oxyacids of sulfur or phosphorus and alkali metal and 58) Field of Search .............................. 260/326.5 FM alkaline earth metal salts of the said oxyacids. The cor responding maleamic acid can be obtained by reacting 56) - References Cited an aminophenol having one or more hydroxyl groups U.S. PATENT DOCUMENTS on its phenyl nucleus with maleic anhydride. -
The Combustion of Phosphorus
Scholars' Mine Professional Degree Theses Student Theses and Dissertations 1944 The combustion of phosphorus Erwin Charles Hoeman Follow this and additional works at: https://scholarsmine.mst.edu/professional_theses Part of the Chemical Engineering Commons Department: Recommended Citation Hoeman, Erwin Charles, "The combustion of phosphorus" (1944). Professional Degree Theses. 284. https://scholarsmine.mst.edu/professional_theses/284 This Thesis - Open Access is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Professional Degree Theses by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. THE COMBUSTION OF PHOSPHORUS BY ERWIN CHA.RLES HODWt A 'l'HESIS subnitted to the faculty of the SCHOOL OF MINES AND METALLURGY OF THE UNIVERSITY OF MISSOURI 1D partial. fulfillment of the work required tor the Degre. of CBDlICAL gGIIllma Rolla~ II1s80url 1944 Approved by: It;-\/ '~I Cha1rmaD,De.partmant of. Chaistry ind Chea1cal IDg1Deer1ng. i ACKNOWLEDGMJ!JiT The author gratefu1lr acknowledges the experience gained in the production and utilization of phosphorus, through his employ ment in the Department of Chemical Engineering of the United States Tennessee Valley Authority. 'SpecificallY', he acknowledges the supervision of work and inspiration gained through his association with Dr. RaY'Dlond L. Copson, Chief of the Research and ,Development Division; Dr. GradY' Tarbutton, Assistant to the Chief; and Mr. John H. Walthall,. Head of the Developllellt Section. Particular thanks for guidanoe in the selection of the general plaD for this paper are due to Mr. -
Recent Developments on the Origin and Nature of Reductive Sulfurous Off-Odours in Wine
fermentation Review Recent Developments on the Origin and Nature of Reductive Sulfurous Off-Odours in Wine Nikolaus Müller 1,* and Doris Rauhut 2 1 Silvanerweg 9, 55595 Wallhausen, Germany 2 Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366 Geisenheim, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-6706-913103 Received: 9 July 2018; Accepted: 3 August 2018; Published: 8 August 2018 Abstract: Reductive sulfurous off-odors are still one of the main reasons for rejecting wines by consumers. In 2008 at the International Wine Challenge in London, approximately 6% of the more than 10,000 wines presented were described as faulty. Twenty-eight percent were described as faulty because they presented “reduced characters” similar to those presented by “cork taint” and in nearly the same portion. Reductive off-odors are caused by low volatile sulfurous compounds. Their origin may be traced back to the metabolism of the microorganisms (yeasts and lactic acid bacteria) involved in the fermentation steps during wine making, often followed by chemical conversions. The main source of volatile sulfur compounds (VSCs) are precursors from the sulfate assimilation pathway (SAP, sometimes named as the “sulfate reduction pathway” SRP), used by yeast to assimilate sulfur from the environment and incorporate it into the essential sulfur-containing amino acids methionine and cysteine. Reductive off-odors became of increasing interest within the last few years, and the method to remove them by treatment with copper (II) salts (sulfate or citrate) is more and more questioned: The effectiveness is doubted, and after prolonged bottle storage, they reappear quite often. -
NNO. Muscular Genesis
3,772,348 United States Patent Office Patented Nov. 13, 1973 2 and the pharmaceutically acceptable acid addition salts 3,772,348 thereof. DERIVATIVES OF DEBENZObf)PYRROLO(3,4-d Compounds of the Formula I and the pharmaceutically AZEPINE AS CNS-DEPRESSANTS acceptable acid addition salts thereof have valuable phar Hans Blattner, Riehen, Switzerland, and Walter Schindler, deceased, late of Basel, Switzerland, by Leonhard Gysin, macological properties. They exert in particular after oral, executor, Basel, Switzerland, assignors to Ciba-Geigy rectal and parenteral administration a central depressant Corporation, Ardsley, N.Y. action on the central nervous system. For example they No Drawing. Filed May 11, 1971, Ser. No. 142,390 reduce motility, potentiate the action of anaesthetics, and Claims priority, application Switzerland, May 13, 1970, counteract the effect of amphetamine. Moreover, they 7,069/70 10 have an adrenolytic and histamineantagonistic action. Int, C. C07d 27/36 These properties are determined by selected standard tests U.S. C. 260-326.9 15 Claims (cp. R. Domenjoz and W. Theobald, Arch. Int. Pharma codyn. 120, 450 (1959), W. Theobald et al., Arzneimit ABSTRACT OF THE DISCLOSURE telforsch. 17, 561 (1967) and W. Theobald and R. Compounds of the class of 1,2,3,8-tetrahydrodibenzo 15 Domenjoz, Arzneimittelforsch. 8, 19 (1958). (b,f pyrrolo 3,4-diazepines which may be substituted in Thus, merely by illustration, it is demonstrated that 2 the 5- or 6- and/or 8-position by chlorine, the trifluoro methyl-5-chloro-1,2,3,8-tetrahydro - dibenzo[b,flpyrrolo methyl group or alkyl groups respectively or the allyl 3,4-diazepine in the form of the hydrochloride salt ef group respectively and pharmaceutically acceptable addi fects a 50%. -
Science of Synthesis Knowledge Updates 2013/4 © Georg Thieme Verlag KG XVI Table of Contents
XV Table of Contents Volume 2: Compounds of Groups 7–3 (Mn···, Cr···, V···, Ti···, Sc···, La···, Ac···) 2.12 Product Class 12: Organometallic Complexes of Scandium, Yttrium, and the Lanthanides 2.12.16 Organometallic Complexes of Scandium, Yttrium, and the Lan- 2013 thanides J. Hannedouche 2.12.16 Organometallic Complexes of Scandium, Yttrium, and the Lanthanides .. 1 2.12.16.1 Rare Earth Metal Catalyzed Hydroamination Reactions ...................... 1 2.12.16.1.1 Rare-Earth(II) Complexes ................................................... 1 2.12.16.1.1.1 Synthesis of Rare-Earth(II) Complexes ...................................... 2 2.12.16.1.1.1.1 Method 1: Salt Metathesis ............................................ 2 2.12.16.1.1.2 Applications of Rare-Earth(II) Complexes in Organic Synthesis ............... 3 2.12.16.1.1.2.1 Method 1: Catalytic Intramolecular Hydroamination Reaction of Alkynes 3 2.12.16.1.1.2.2 Method 2: Catalytic Intramolecular Hydroamination Reaction of Alkenes 4 2.12.16.1.2 Cyclooctatetraene–Rare-Earth(III) Complexes ............................... 5 2.12.16.1.2.1 Synthesis of Cyclooctatetraene–Rare-Earth(III) Complexes . .................. 5 2.12.16.1.2.1.1 Method 1: Salt Metathesis ............................................ 5 2.12.16.1.2.2 Applications of Cyclooctatetraene–Rare-Earth(III) Complexes in Organic Syn- thesis ...................................................................... 6 2.12.16.1.2.2.1 Method 1: Catalytic Intramolecular Hydroamination Reaction of Alkynes 6 2.12.16.1.2.2.2 Method 2: Catalytic Intramolecular Hydroamination Reaction of Alkenes 7 2.12.16.1.3 Bis(boratabenzene)yttrium(III) Complexes .................................. 8 2.12.16.1.3.1 Synthesis of Bis(boratabenzene)yttrium(III) Complexes ..................... -
A Manual of Chemistry Physical and Inorganic Chemistry
Universitäts- und Landesbibliothek Tirol A manual of chemistry Physical and inorganic chemistry Watts, Henry 1883 Table of Contents urn:nbn:at:at-ubi:2-4741 TABIE OF CONTENTS. PAGE Introdtt CTIOlf * . 1 Table of Elementary Bodies, with their Symbols and Atomic Weights 3 Difference between Chemical Combination and Mixture . 4 Short Sketch of the most important Elementary Bodies . S G-eneral Laws of Chemical Combination — Chemical Nomenclature and Notation 1 Law of Multiples 10 Law of Equivalents 12 Chemical Equations * . 13 PART I. PHYSICS . Or Density astd Specific G-bayitt 15 Methods of determining the Specific Gravities of Liquids and Solids 15 Construction and Application of the Hydrometer . 20 Op the Physicai Constitution oe the Atmosphere , and os G-ases in G-enebai 23 Elasticity of Gases 23 The Air -pump 24 Weight and Pressure of the Air —Barometer . 25 Sprengel ’s Air -pump 26 Law of Boyle or of Mariotte : Eelations of Density and Elastic force : Correction of Volumes of G-ases for Pressure - . 27 Collection, Transference , and Preservation of Gases . • . 29 Heat 32 Expansion —Thermometers 32 Different Rates of Expansion among Solids . 36 Expansion of Liquids —Absolute Expansion of Mercury —Maxi¬ mum Density of Water 37 Expansion of Gases . 40 Conduction of Heat 41 Specific Heat 42 CONTENTS . PAGE Change of State : 1. Fusion and Solidification 46 Determination of Melting Points 47 Latent Heat of Fusion 48 Freezing Mixtures 50 2. Vaporisation and Condensation 50 Latent Heat of Vapours 51 Boiling or Ebullition 51 Elasticity and Latent Heat of Steam 52 Distillation . 54 Tension of Vapours 56- Maximum Density of Vapours . -
Combination of a Sulfer Compound and Specific Phosphorus Compounds and Their Use in Lubricating Compositions, Concentrates and G
Europaisches Patentamt European Patent Office Office europeen des brevets (11) EP0 695 799 A2 (12) EUROPEANEUR( PATENT APPLICATION (43) Date of publication: (51) intci.6: C10M 141/10, C10M 141/12, 07.02.1996 Bulletin 1996/06 C10M 163/00 //(C10M 141/10, 125:26, (21) Application number: 95305271.9 133:52, 129:95, 135:04, (22) Date of filing: 28.07.1995 135:06, 137:08, 137:10), (C10M141/12, 133:52, 129:95, 135:04, 135:06, 137:08, 137:10, 139:00), (C10M 163/00, 125:26, 129:95, 133:52) (84) Designated Contracting States: (72) Inventor: Richardson, Robert C. BE DE ES FR GB IT NL SE Mentor, Ohio 44060 (US) (30) Priority: 03.08.1994 US 285567 (74) Representative: Crisp, David Norman et al London EC4A 1 DA (GB) (71) Applicant: THE LUBRIZOL CORPORATION Wickliffe, Ohio 44092-2298 (US) (54) Combination of a sulfer compound ancand specific phosphorus compounds and their use in lubricating compositions, concentrateconcentrates and greases (57) This invention relates to a lubricating composi- ester, (c) at least one phosphite, and (d) at least one thi- tion comprising a major amount of an oil of lubricating ophosphate or at least one reaction product of a phos- viscosity and (a) a extreme pressure improving amount phite and sulfur or a source of sulfur. The invention also of at least one sulfur compound, and an antiwear or an relates to concentrates and greases containing the com- extreme pressure improving amount of the combination bination of the sulfur compound and the specific phos- of (b) at least one ammonium salt of a phosphoric acid phorus compounds. -
US 2002/0002128A1 Gernon Et Al
US 2002.0002128A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2002/0002128A1 Gernon et al. (43) Pub. Date: Jan. 3, 2002 (54) AQUEOUS SOLUTIONS CONTAINING Related U.S. Application Data DITHIONIC ACID AND/OR METAL DTHONATE (63) Non-provisional of provisional application No. 60/186,097, filed on Mar. 1, 2000. (76) Inventors: Michael D. Gernon, Upper Providence, Publication Classification PA (US); Sandra L. Bodar, 7 Coulommiers (FR) (51) Int. Cl." ....................................................... C11D 1100 (52) U.S. Cl. .............................................................. 510,363 Correspondence Address: Gilbert W. Rudman (57) ABSTRACT ATOFINA Chemicals, Inc., Patent Department This invention relates to Solutions of dithionic acid and/or 26th Floor dithionate Salts for use in metal finishing processes Such as 2000 Market Street those used for the cleaning, activating, electroplating, elec Philadelphia, PA 19103-3222 (US) troless plating, conversion coating and/or other pre-treat ment or post-treatment of a metallic Surface. In particular the (21) Appl. No.: 09/791,224 Solutions are a useful electrolyte for the electroplating of metallic coatings, especially, Sn, Cu, Ni, Zn and precious (22) Filed: Feb. 22, 2001 metals, onto metal or plastic Substrates and/or other Surfaces. US 2002/0002128A1 Jan. 3, 2002 AQUEOUS SOLUTIONS CONTAINING DITHIONIC 0014) Another embodiment is a surface cleaning solution ACID AND/OR METAL DITHIONATE composition for a Substrate, other than copper, which con tains metal or ammonium dithionate Salts. REFERENCE TO RELATED APPLICATION 0015. Another embodiment is an aqueous solution of 0001. This application claims the benefit of United States ammonium, IA metal and/or IIA metal dithionate Salts for Provisional Application Ser.