United States Patent Office Patented Feb
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
540.14Pri.Pdf
Index Element names, parent hydride names and systematic names derived using any of the nomenclature systems described in this book are, with very few exceptions, not included explicitly in this index. If a name or term is referred to in several places in the book, the most informative references appear in bold type, and some of the less informative places are not cited in the index. Endings and suffixes are represented using a hyphen in the usual fashion, e.g. -01, and are indexed at the place where they would appear ignoring the hyphen. Names of compounds or groups not included in the index may be found in Tables P7 (p. 205), P9 (p. 232) and PIO (p. 234). ~, 3,87 acac, 93 *, 95 -acene, 66 \ +, 7,106 acetals, 160-161 - (minus), 7, 106 acetate, 45 - (en dash), 124-126 acetic acid, 45, 78 - (em dash), 41, 91, 107, 115-116, 188 acetic anhydride, 83 --+, 161,169-170 acetoacetic acid, 73 ct, 139, 159, 162, 164, 167-168 acetone, 78 ~, 159, 164, 167-168 acetonitrile, 79 y, 164 acetyl, III, 160, 163 11, 105, 110, 114-115, 117, 119-128, 185 acetyl chloride, 83, 183 K, 98,104-106,117,120,124-125, 185 acetylene, 78 A, 59, 130 acetylide, 41 11, 89-90,98, 104, 107, 113-116, 125-126, 146-147, acid anhydrides, see anhydrides 154, 185 acid halides, 75,83, 182-183 TC, 119 acid hydrogen, 16 cr, 119 acids ~, 167 amino acids, 25, 162-163 00, 139 carboxylic acids, 19,72-73,75--80, 165 fatty acids, 165 A sulfonic acids, 75 ct, 139,159,162,164,167-168 see also at single compounds A, 33-34 acrylic acid, 73, 78 A Guide to IUPAC Nomenclature of Organic actinide, 231 Compounds, 4, 36, 195 actinoids (vs. -
(EU) No 305/2014 of 25 March 2014 Concerning the Authorisation of Propionic Acid, Sodium Prop
L 90/12 EN Official Journal of the European Union 26.3.2014 COMMISSION IMPLEMENTING REGULATION (EU) No 305/2014 of 25 March 2014 concerning the authorisation of propionic acid, sodium propionate and ammonium propionate as feed additives for all animal species other than ruminants, pigs and poultry (Text with EEA relevance) THE EUROPEAN COMMISSION, that, under the proposed conditions of use, propionic acid, sodium propionate and ammonium propionate do Having regard to the Treaty on the Functioning of the European not have an adverse effect on animal health, human Union, health or the environment. It was also concluded that the substances improve the aerobic stability of easy to Having regard to Regulation (EC) No 1831/2003 of the ensile materials. The Authority does not consider that European Parliament and of the Council of 22 September there is a need for specific requirements of post-market 2003 on additives for use in animal nutrition ( 1 ), and in monitoring. It also verified the report on the methods of particular Article 9(2) thereof, analysis of the feed additives in feed submitted by the Reference Laboratory set up by Regulation (EC) No Whereas: 1831/2003. (1) Regulation (EC) No 1831/2003 provides for the auth (5) The assessment of the substances concerned shows that orisation of additives for use in animal nutrition and the conditions for authorisation, as provided for in for the grounds and procedures for granting such auth Article 5 of Regulation (EC) No 1831/2003, are satisfied. orisation. Accordingly, the use of those substances should be auth orised as specified in the Annex to this Regulation. -
United States Patent 1191 1111 3,931,208 Offermanns Et Al
United States Patent 1191 1111 3,931,208 Offermanns et al. [451 Jan. 6, 1976 [54] PROCESS FOR THE PRODUCTION OF formula: THlAZOLINES-( 3) [75] Inventors: lleribert Offermanns, Grossauheim; Friedrich Asinger, Rott; Wolf-Dieter Pfeifer, Grossauheim; Paul (l) Scherberich, Neu lsenburg; Gerd Schreyer, Grossauheim, all of Germany in which R‘, R2, and R3 and R4 are the same or differ [73] Assignee: Deutsche Gold- und _ ent, R‘ and R2 are straight or branched chain lower Silber-Scheideanstalt vormals alkyl, alkenyl ‘or aralkyl groups or together are a Roessler, Frankfurt am Main, straight or branched chain alkylene or ethylenically Germany unsaturated divalent aliphatic hydrocarbon group which joins with the adjacent carbon atom to form a 1221 Filed: Nov. 5, 1973 ring and R3 and R4 are similarly de?ned except R3 can 1211 Appl. No.: 413,048 also be hydrogen by reaching a 2,2’ dioxodisul?deof the formula ‘ [30] Foreign Application Priority Data Nov. 9, 1972 Germany .............. .... 2254701 ' [52] U.S. Cl ......................................... .. 260/306.7 R [5]] Int. Cl.2 ...................................... .. C07D 277/10 [58] Field of Search ............................ .. 260/306.7 R V[ 56] References Cited UNITED STATES PATENTS 2,879,273 3/1959 Asinger ct al .............. .. 260/3()6.7 R 3,004,981 l0/l96l Asingcr ct al .............. .. 26()/306.7 R 3.700.683 10/1972 Asinger ct al ............. .._. 260/306.7 R Primary Examiner—Richard J. Gallagher Assistant E.raminer—Anne Marie T. Tighe Attorney, Agent, or Firm——Cushman, Darby & Cushman and with ammonia and hydrogen sulfide in the pres ence of an amine and an ammonium salt. -
Substitution and Redox Chemistry of Ruthenium Complexes
iJ il r¿ SUBSTITUTION AND REDOX CHEMISTRY OF RUTHENIUM COMPLEXES by Paul Stuaft Moritz, B. Sc. (Hons) * A Thesis submitted for the Degree of Doctor of Philosophy. The Department of Physical and lnorganic Chemistry, The University of Adelaide. JUNE 1987 lìr.+:-c{,¡l I /tz lZ]' STATEMENT. This Thesis conta¡ns no materialwhich has been accepted for the award of any other Degree or Diploma in any University and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference is made in the text. I give consent that, if this Thesis is accepted for the award of the Degree of Doctor of Philosophy, it may be made available for photocopying and, if applicable, loan. Moritz. SUMMARY The coordination chemislry of ruthenium is domínated by the oxidation states, +2 and +3. Within these oxidation states, the ammine complexes form a large and welt- characterized group. This thesis reports on the chemistry of lhe hitherto neglected triammine complexes, with particular reference to their redox chemistry, and the possible formation of Ru(lV) triammine complexes with terminal oxo ligands. The chemistry of the +4 oxidation state is further explored through the formation of stable chelate complexes. The salt, [Ru(NH3)3(OH2)31(CFgSO3)3, was prepared by hydrotysis of Ru(NHs)sCts in triflic acid solution. lts spectra, electrochemistry and substitution reactions are similar to those of the well-known hexa-, penta-, and tetraammine complexes. At freshly polished platinum and glassy carbon electrodes, a quasi reversible redox wave was detected, corresponding to a proton-coupled reduction involving the pu3+7pu2+ couple. -
Nitroxyl (Hno) and Carbonylnitrenes
INVESTIGATION OF REACTIVE INTERMEDIATES: NITROXYL (HNO) AND CARBONYLNITRENES by Tyler A. Chavez A dissertation submitted to the Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland February 2016 © 2016 Tyler A. Chavez All rights reserved Abstract Membrane inlet mass spectrometry (MIMS) is a well-established method used to detect gases dissolved in solution through the use of a semipermeable hydrophobic membrane that allows the dissolved gases, but not the liquid phase, to enter a mass spectrometer. Interest in the unique biological activity of azanone (nitroxyl, HNO) has highlighted the need for new sensitive and direct detection methods. Recently, MIMS has been shown to be a viable method for HNO detection with nanomolar sensitivity under physiologically relevant conditions (Chapter 2). In addition, this technique has been used to explore potential biological pathways to HNO production (Chapter 3). Nitrenes are reactive intermediates containing neutral, monovalent nitrogen atoms. In contrast to alky- and arylnitrenes, carbonylnitrenes are typically ground state singlets. In joint synthesis, anion photoelectron spectroscopic, and computational work we studied the three nitrenes, benzoylnitrene, acetylnitrene, and trifluoroacetylnitrene, with the purpose of determining the singlet-triplet splitting (ΔEST = ES – ET) in each case (Chapter 7). Further, triplet ethoxycarbonylnitrene and triplet t-butyloxycarbonylnitrene have been observed following photolysis of sulfilimine precursors by time-resolved infrared (TRIR) spectroscopy (Chapter 6). The observed growth kinetics of nitrene products suggest a contribution from both the triplet and singlet nitrene, with the contribution from the singlet becoming more prevalent in polar solvents. Advisor: Professor John P. Toscano Readers: Professor Kenneth D. -
List of Reactive Chemicals
LIST OF REACTIVE CHEMICALS Chemical Prefix Chemical Name Reactive Reactive Reactive CAS# Chemical Chemical Chemical Stimulus 1 Stimulus 2 Stimulus 3 111-90-0 "CARBITOL" SOLVENT D 111-15-9 "CELLOSOLVE" ACETATE D 110-80-5 "CELLOSOLVE" SOLVENT D 2- (2,4,6-TRINITROPHENYL)ETHYL ACETATE (1% IN ACETONE & BENZENE S 12427-38-2 AAMANGAN W 88-85-7 AATOX S 40487-42-1 AC 92553 S 105-57-7 ACETAL D 75-07-0 ACETALDEHYDE D 105-57-7 ACETALDEHYDE, DIETHYL ACETAL D 108-05-4 ACETIC ACID ETHENYL ESTER D 108-05-4 ACETIC ACID VINYL ESTER D 75-07-0 ACETIC ALDEHYDE D 101-25-7 ACETO DNPT T 126-84-1 ACETONE DIETHYL ACETAL D 108-05-4 ACETOXYETHYLENE D 108-05-4 1- ACETOXYETHYLENE D 37187-22-7 ACETYL ACETONE PEROXIDE, <=32% AS A PASTE T 37187-22-7 ACETYL ACETONE PEROXIDE, <=42% T 37187-22-7 ACETYL ACETONE PEROXIDE, >42% T S 644-31-5 ACETYL BENZOYL PEROXIDE (SOLID OR MORE THAN 45% IN SOLUTION) T S 644-31-5 ACETYL BENZOYL PEROXIDE, <=45% T 506-96-7 ACETYL BROMIDE W 75-36-5 ACETYL CHLORIDE W ACETYL CYCLOHEXANE SULFONYL PEROXIDE (>82% WITH <12% WATER) T S 3179-56-4 ACETYL CYCLOHEXANE SULFONYL PEROXIDE, <=32% T 3179-56-4 ACETYL CYCLOHEXANE SULFONYL PEROXIDE, <=82% T 674-82-8 ACETYL KETENE (POISON INHALATION HAZARD) D 110-22-5 ACETYL PEROXIDE, <=27% T 110-22-5 ACETYL PEROXIDE, SOLID, OR MORE THAN 27% IN SOLUTION T S 927-86-6 ACETYLCHOLINE PERCHLORATE O S 74-86-2 ACETYLENE D 74-86-2 ACETYLENE (LIQUID) D ACETYLENE SILVER NITRATE D 107-02-08 ACRALDEHYDE (POISON INHALATION HAZARD) D 79-10-7 ACROLEIC ACID D 107-02-08 ACROLEIN, INHIBITED (POISON INHALATION HAZARD) D 107-02-08 ACRYLALDEHYDE (POISON INHALATION HAZARD) D 79-10-7 ACRYLIC ACID D 141-32-2 ACRYLIC ACID BUTYL ESTER D 140-88-5 ACRYLIC ACID ETHYL ESTER D 96-33-3 ACRYLIC ACID METHYL ESTER D Stimulus - Stimuli is the thermal, physical or chemical input needed to induce a hazardous reaction. -
Hyponitrites ; Their Properties, and Their Pre- Paration by Sodium Or Potassium
View Article Online / Journal Homepage / Table of Contents for this issue DIVERS : HYPONITRfTES ; THEfR PROPERTfES, ETC. $5 XV.-Hyponitrites ; their Properties, and their Pre- paration by Sodium or Potassium. Published on 01 January 1899. Downloaded by Heinrich Heine University of Duesseldorf 12/11/2013 22:18:32. By EDWARDDIVERS, M.D.; D.Sc., F.R.8. THE hyponitrites have received the attention of many chemists besides myself since their discovery in 1871, and even this year new ways of forming them and the new working of an old method have been published, Yet much has been left to be put on record before a fairly correct and full history of these salts can be said to have been given, and the present paper is meant to be the necessary supplement to what has already been published. Way8 fmming Hyponitrites. No writer on hyponitrites in recent years has ahown himself acquainted with all the known ways of getting these salts, or even with the most productive. The following complete list is valuable, H2 View Article Online 96 DIVERS : HYPONITRITES ; THEIR PROPERTIES, AND THEIR therefore, and is of special interest as bringing togehr the various modes of formation of these salts. 1, Reduction of an alkali nitrite by the amalgam of its metal (Divers, 1871). 2. Reduction of an alkali nitrite by ferrous hydroxide (Zorn, 1882 ; Dunstap and Dymond). 3. Reduction of (hypo)nitrososulphates by sodium amalgam (Divers and Haga, 1885). 4. Reduction of nitric oxide by alkali stannite (Divers and Hagn, 1885). 5. Reduction of nitric oxide by ferrous hydroxide (Dunstan and Dymond, 1887). -
Nitroxyl (HNO): a Reduced Form of Nitric Oxide with Distinct Chemical, Pharmacological, and Therapeutic Properties
Hindawi Publishing Corporation Oxidative Medicine and Cellular Longevity Volume 2016, Article ID 4867124, 15 pages http://dx.doi.org/10.1155/2016/4867124 Review Article Nitroxyl (HNO): A Reduced Form of Nitric Oxide with Distinct Chemical, Pharmacological, and Therapeutic Properties Mai E. Shoman and Omar M. Aly Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt Correspondence should be addressed to Omar M. Aly; [email protected] Received 5 May 2015; Revised 14 August 2015; Accepted 1 September 2015 Academic Editor: Lezanne Ooi Copyright © 2016 M. E. Shoman and O. M. Aly. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Nitroxyl (HNO), the one-electron reduced form of nitric oxide (NO), shows a distinct chemical and biological profile from that of NO. HNO is currently being viewed as a vasodilator and positive inotropic agent that can be used as a potential treatment for heart failure. The ability of HNO to react with thiols and thiol containing proteins is largely used to explain the possible biological actions of HNO. Herein, we summarize different aspects related to HNO including HNO donors, chemistry, biology, and methods used for its detection. 1. Nitric Oxide (NO) cGMP in platelets, and this is thought to be the mechanism by which it inhibits platelet function [7]. In the vasculature, Biological activities associated with nitrogen oxide species are NO also prevents neutrophil/platelet adhesion to endothelial the subject of intense and current research interest. -
Ep 2385054 B1
(19) TZZ ¥Z_T (11) EP 2 385 054 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07D 501/22 (2006.01) A61K 31/546 (2006.01) 02.10.2013 Bulletin 2013/40 A61P 31/04 (2006.01) (21) Application number: 09836052.2 (86) International application number: PCT/CN2009/076164 (22) Date of filing: 29.12.2009 (87) International publication number: WO 2010/075765 (08.07.2010 Gazette 2010/27) (54) CEFDINIR ACID DOUBLE SALT AND ITS PREPARATION CEFDINIRSÄURE-DOPPELSALZ UND SEINE ZUBEREITUNG DOUBLE SEL D’ACIDE DE CEFDINIR ET SA PRÉPARATION (84) Designated Contracting States: • YU, Baochun AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Zhejiang 310011 (CN) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL • YE, Tianjian PT RO SE SI SK SM TR Zhejiang 310011 (CN) • YU, Meiping (30) Priority: 31.12.2008 CN 200810164211 Zhejiang 310011 (CN) (43) Date of publication of application: (74) Representative: Hryszkiewicz, Danuta 09.11.2011 Bulletin 2011/45 Kancelaria Patentowa Matthias Scholl, Inc. (73) Proprietor: Zhejiang Adamerck Biopharmlabs Inc. Ul. Jana z Kolna 38 Zhejiang 310011 (CN) 75-204 Koszalin (PL) (72) Inventors: (56) References cited: • QI, Youmao EP-A2- 0 304 019 WO-A1-02/098884 Zhejiang 310011 (CN) WO-A1-2004/056835 CN-A- 1 251 590 • YE, Fengqi CN-A- 1 415 615 CN-A- 101 481 383 Zhejiang 310011 (CN) US-A- 4 559 334 •JIE,Qing Zhejiang 310011 (CN) Remarks: • QI, Yingbei Thefile contains technical information submitted after Zhejiang 310011 (CN) the application was filed and not included in this • ZHANG, Fengmin specification Zhejiang 310011 (CN) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. -
United States Patent Office Patented Nov
2,913,481 United States Patent Office Patented Nov. 17, 1959 arimanoramitroverwar 2 the solvent at low temperature or by crystallisation at 2,913,481 low temperature. The pure hyponitrous esters are how ever dangerous detonating explosives and isolation is ESTERS OF HYPONTROUSACD usually avoided. Hyponitries can be prepared from un John Wooley Batty, Arthur Lambert, and Gerald Scott, 5 stable halides which can be generated in situ. Blackley, Manchester, and Leslie Seed, Northwich, Eng The yield of the new hyponitrites is greater than the land, assignors to Imperial Chemical Industries Lim: yield of alkyl hyponitrites described in the prior art when ited, Milburne, London, England, a corporation of prepared by the same general reaction. Thus, for ex Great Britain ample, whereas the yield of isobutyl hyponitrite by inter No Drawing. Application April 29, 1957 0 action between silver hyponitrite and isobutyl iodide is Serial No. 655,478 about 10%, the yield of methoxymethylhyponitrite from chloromethyl ether under similar conditions is about 95%. Claims priority, application Great Britain May 2, 1956 Other hyponitrites included within the general class 8 Claims. (CI. 260-466) provided by this invention include esters (which may be 5 polymeric) of the general structure This invention relates to esters and more particularly to hyponitrous esters especially useful as catalysts for X-O-CHY-O-N-N-O-CHY-O-X the polymerisation of ethylenically unsaturated com wherein X may be alkyl, alkoxyalkyl, cycloalkyl or aryl pounds. and Y may be hydrogen, alkyl, cycloalkyl, aryl, alkoxy, This application is a continuation-in-part of our appli 20 alkoxyalkyl or may form part of a ring with X. -
Potassium Hydroxide Pellets
SAFETY DATA SHEET Preparation Date: 3/13/2015 Revision Date: 3/13/2015 Revision Number: G1 Product identifier Product code: P1315 Product Name: POTASSIUM HYDROXIDE, PELLETS, REAGENT, ACS Other means of identification Synonyms: Caustic Potash CAS #: 1310-58-3 RTECS # TT2100000 CI#: Not available Recommended use of the chemical and restrictions on use Recommended use: Electroplating; photoengraving & lithography; printing inks; in analytical chemistry & in organic synthesis; manfufacturing of liquid soap; pharmaceutical aid (as alkalizing agent); mordant for woods; absorbing carbon dioxide; mercerizing cotton; paint & varnish removers. Principle uses of KOH include chemicals, particularly the production of potassium carbonate and potassium permaganate; pesticides, fertilizers, and other agricultural products; soaps and detergents; scrubbing and cleaning operations, e.g., industrial gases; dyes and colorants; and rubber chemicals. Uses advised against No information available Supplier: Spectrum Chemicals and Laboratory Products, Inc. 14422 South San Pedro St. Gardena, CA 90248 (310) 516-8000 Order Online At: https://www.spectrumchemical.com Emergency telephone number Chemtrec 1-800-424-9300 Contact Person: Martin LaBenz (West Coast) Contact Person: Ibad Tirmiz (East Coast) 2. HAZARDS IDENTIFICATION Classification This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200) Acute toxicity - Oral Category 3 Skin corrosion/irritation Category 1 Serious eye damage/eye irritation Category 1 Corrosive -
Sds) (1272/2008/Ce)
SAFETY DATA SHEET (SDS) (1272/2008/CE) Trade Name: Edition: June 28, 2018 CALCIUM PROPIONATE Version: 7/en 1. IDENTIFICATION OF THE SUBSTANCE / PREPARATION AND COMPANY / UNDERTAKING Trade name Calcium Propionate Synonyms Calcium propanoate; calcium propianate; propionic acid, calcium salt; propanoic acid, calcium salt Recommended use Use as a preservative in food, feed and pharmaceutical applications. Use according to local and restriction on use regulations. Company Macco Organiques Inc., 100 McArthur, Suite 112, Salaberry-de-Valleyfield, Qc, Canada, J6S 4M5 Responsable service Tel: (450) 371-1066 Fax: (450) 371-5519 [email protected] http://www.macco.ca Emergency phone CANUTEC CHEMTREC, U.S. International numbers (613) 996-6666 (800) 424-9300 (703) 527-3887 2. HAZARDS IDENTIFICATION The substance is not classified as dangerous according to European Union (EU) directives 1272/2008, in replacement for 67/548/EEC including amendments and 1999/45/EC. Classification Not classified. Labeling type This product does not require any labeling according to EU directives and regulations of the instruction concerned country. Other hazards Combustible dust. May form explosive mixture with air. 3. COMPOSITION / INFORMATION ON INGREDIENTS Chemical name Calcium propionate 100% Synonyms Propionic acid, calcium salt; Calcium propanoate; calcium propianate; propanoic acid, calcium salt. Chemical formula Ca(C3H5O2)2 CAS no. 4075-81-4 EEC (CE) no. E 282 EINECS no. 223-795-8 4. FIRST-AID MEASURES DESCRIPTION OF FIRST AID EMERGENCIES General advices In case of accident or illness, immediately get medical attention (show the label if possible). Show this safety data sheet to the physician. Remove and wash contaminated clothing before reusing.