Environmental Technologies to Treat Sulfur Pollution: Principles and Engineering, 2Nd Edition, Piet N.L

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Technologies to Treat Sulfur Pollution: Principles and Engineering, 2Nd Edition, Piet N.L Part II The Sulfur Cycle Downloaded from http://iwaponline.com/ebooks/book/chapter-pdf/772252/9781789060966_0011.pdf by guest on 27 September 2021 Downloaded from http://iwaponline.com/ebooks/book/chapter-pdf/772252/9781789060966_0011.pdf by guest on 27 September 2021 Chapter 2 The chemical sulfur cycle Ralf Steudel 2.1 INTRODUCTION Sulfur is one of the most important elements for life as well as for the chemical and pharmaceutical industries. Even in extraterrestrial space, sulfur compounds are abundant albeit in low concentrations. Sulfur contributes to only 0.07 wt% of the crust of the Earth but elemental sulfur and numerous sulfur-containing minerals occur in substantial deposits. Important sulfidic minerals are, for example, pyrite FeS2, galena PbS, zinc-blende (sphalerite) ZnS, cinnabar HgS, chalcopyrite CuFeS2, and chalcocite Cu2S. Weathering and oxidation of the sulfides has resulted in large deposits of water-insoluble or poorly soluble sulfate minerals such as gypsum Ca[SO4]·2H2O, bassanite Ca[SO4] · 0.5H2O, anhydrite Ca[SO4] and baryte Ba[SO4]. Gypsum is, by volume, the most abundant sulfate mineral on Earth. Ocean water contains 2.7 g L−1 sulfate, river waters only ca. 0.01 g L−1. Sulfur compounds are constituents of all organisms and consequently of all biomass and materials which originated from these sources such as wood, peat, coal and crude oil as well as their derivatives. Combustion of such materials releases not only sulfur dioxide (SO2) but also traces of carbonyl sulfide (COS). The latter is assimilated by plants as part of their sulfur metabolism. Dimethyl sulfide (DMS) is released to the atmosphere in enormous quantities by phytoplankton in the oceans, and hydrogen sulfide (H2S) as well as SO2 and carbon dioxide (CO2) are emitted by volcanoes. Sulfate reduction by the © 2020 The Authors. This is an Open Access book chapter distributed under the terms of the Creative Commons Attribution Licence (CC BY-NC-ND 4.0), which permits copying and redistribution for noncommercial purposes with no derivatives, provided the original work is properly cited (https:// creativecommons.org/licenses/by-nc-nd/4.0/). This does not affect the rights licensed or assigned from any third party in this book. The chapter is from the book Environmental Technologies to Treat Sulfur Pollution: Principles and Engineering, 2nd Edition, Piet N.L. Lens (Ed.). DOI: 10.2166/9781789060966_0011 Downloaded from http://iwaponline.com/ebooks/book/chapter-pdf/772252/9781789060966_0011.pdf by guest on 27 September 2021 12 Environmental Technologies to Treat Sulfur Pollution ubiquitous sulfur bacteria in anoxic environments such as ponds, lakes, swamps and coastal waters also produces H2S. The human body contains 2 g S per kg, in other words 140 g S for a person of 70 kg. Large natural underground deposits of elemental sulfur exist in the USA, Mexico and Poland, but today elemental sulfur is mainly produced by the desulfurization of crude oil, of sour natural gas and of coal. Only on a very small scale is sulfur still mined in volcanic areas such as Indonesia. Historically, Southern Italy (Sicily) was the main origin of elemental sulfur during the industrialization of Western Europe in the early 19th century. In 1900, Sicily produced 500,000 t of elemental sulfur. Another important source of sulfur for production of sulfuric acid is pyrite with large deposits in many countries. The average atomic weight of sulfur is 32.066 representing the natural mixture of the isotopes 32S (95.0 mol%), 33S (0.76%), 34S (4.22%) and 36S (0.02%). The relative atomic weights of most elements, however, vary slightly owing to natural variations in the abundances of their isotopes. This variation is used to determine the origin of a particular sample (a mineral or biological material). In the case of sulfur, the variation may be +0.01 units, while individual samples can be determined at an accuracy of +0.00015 (mainly by mass spectrometry). Due to the historic developments in analytical methods, the published atomic weights of the chemical elements have changed over the years. The artificial radioactive nuclide 35S is used for labeling experiments; it decomposes with a half-life of 87.2 d by β-emission to 35Cl. More than 200 years of scientific research on sulfur and its compounds has resulted in a vast body of literature which cannot easily be searched for reliable information. Moreover, this literature contains errors and contradictions since earlier workers, not having the methods available that are standard today, often made claims that have not always been subsequently confirmed. However, reliable reviews written by experts in the field are available, above all the many volumes of Gmelin Handbook of Inorganic Chemistry in which the chemical literature is critically and exhaustively evaluated. On sulfur and its compounds 22 volumes have appeared, dating from 1939 to 1996 and covering the literature up to 1991. Unfortunately, no further volumes have been produced. Other reliable reviews on inorganic and analytical sulfur chemistry have been published (in alphabetical order) by Devillanova (2006), Holleman-Wiberg (2017), Karchmer (1970), Müller and Krebs (1984), Nickless (1968), Schmidt and Siebert (1973), Steudel and Eckert (2003), Steudel (2003a, b, c, d and Steudel, 2020), Steudel and Chivers (2019) as well as Szekeres (1974). 2.1.1 Oxidation states and redox potentials The complexity of sulfur chemistry originates from the many oxidation states and coordination numbers sulfur atoms can assume, as well as from the tendency of Downloaded from http://iwaponline.com/ebooks/book/chapter-pdf/772252/9781789060966_0011.pdf by guest on 27 September 2021 The chemical sulfur cycle 13 sulfur in the oxidation state zero to catenate, forming chains and rings of an astonishing variety. Sulfur atoms and ions can adopt any coordination number between 1 (e.g. CS2) and 8 (e.g. in solid Na2S with antifluorite structure); sulfur oxidation states range from −2to+6(Table 2.1). In Table 2.1, the nine oxidation states of sulfur are illustrated by typical examples. Most of them play a role in aqueous systems in which redox reactions occur either as a result of microbiological activity or simply following the thermodynamics of the system in non-enzymatic reactions. However, chemical systems are not always composed according to the requirements of thermodynamics. High activation enthalpies may keep exergonic reactions from proceeding at ambient temperatures, resulting in a chemical composition far from equilibrium (Licht & Davis 1997). The equilibrium composition of an aqueous system containing just sulfur and oxygen is shown in the Pourbaix diagram in Figure 2.1. Depending on the redox potential, the pH value, the temperature and the overall concentration of sulfur, the relative stability areas of sulfide HS−, elemental sulfur (S), as well as sulfate 2− − [SO4] and hydrogen sulfate [HSO4] are shown (Garrels & Naeser, 1958; Williamson & Rimstidt, 1992). The different areas of this diagram indicate which species will predominate at a given potential and pH value. As the overall sulfur concentration decreases, the smaller the existence area of elemental sulfur becomes. Sulfite, thiosulfate and other sulfur oxoanions (e.g. polythionates) never predominate, regardless of pH and potential. In other words, these species exist in water only under non-equilibrium conditions or as minority species. The thiosulfate, polythionate and disulfite ions are typical examples of anions with mixed oxidation states of sulfur (see below). Table 2.1 The oxidation states of sulfur atoms in common compounds. Oxidation Examples State – 2− –2 dihydrogen sulfide H2S, hydrogen sulfide ion HS , sulfide ion S as in FeS 2− –1 disulfane H2S2, disulfide ion [S2] as in pyrite FeS2 0 elemental sulfur Sn, organic polysulfanes RZSnZR +1 dichlorodisulfane ClZSZSZCl 2− +2 sulfur dichloride SCl2, sulfoxylate ion [SO2] 2− +3 dithionite ion [S2O4] 2− +4 sulfur dioxide SO2, sulfite ion [SO3] 2− − +5 dithionate ion [S2O6] , organic sulfonates [RZSO3] 2− 2− +6 sulfur trioxide SO3, sulfate ion [SO4] , peroxosulfate ion [SO5] Downloaded from http://iwaponline.com/ebooks/book/chapter-pdf/772252/9781789060966_0011.pdf by guest on 27 September 2021 14 Environmental Technologies to Treat Sulfur Pollution Figure 2.1 Pourbaix diagram for the binary system sulfur/oxygen in water at 25°C and 1.013 bar with the sum of the activities of all sulfur-containing ions equal to 0.1 mM. 2.1.2 Catenation of sulfur atoms As in hydrogen sulfide H–S–H and dimethyl sulfide CH3–S–CH3, sulfur atoms can form two covalent bonds with other atoms or with itself to form chain-like units –S–S–S– of practically unlimited length (‘catenation’). These chains may be terminated by single atoms such as H or Cl, by groups like CH3 or SO3H, by ions such as S− or may ‘bite their own tail’ forming rings of various sizes. Corresponding examples are listed in Table 2.2. A special case are the 2− polysulfide anions [Sn] in which the chains are terminated by negatively charged sulfur atoms which are iso-electronic with Cl atoms. Therefore, 2− polysulfide anions [S–Sn–S] are iso-electronic with dichlorosulfanes Cl–Sn–Cl. Table 2.2 gives those values of n which have been determined in compounds isolated in pure form (column 2) or which have been detected in mixtures by high-performance liquid chromatography (HPLC), proton nuclear magnetic resonance (1H-NMR) spectroscopy or ion chromatography (column 3). From these data it is obvious that there is seemingly no limitation to the values of n. It is just that the preparation of the higher-molecular species becomes increasingly difficult since the solubility and thermal stability decrease with increasing values of n. Polymeric sulfur (Sμ) is insoluble in all solvents (excepting liquid sulfur) and therefore is considered to consist of very long chains and/or very large rings.
Recommended publications
  • IR-3 Elements and Groups of Elements (March 04)
    1 IR-3 Elements and Groups of Elements (March 04) CONTENTS IR-3.1 Names and symbols of atoms IR-3.1.1 Systematic nomenclature and symbols for new elements IR-3.2 Indication of mass, charge and atomic number using indexes (subscripts and superscripts) IR-3.3 Isotopes IR-3.3.1 Isotopes of an element IR-3.3.2 Isotopes of hydrogen IR-3.4 Elements (or elementary substances) IR-3.4.1 Name of an element of infinite or indefinite molecular formula or structure IR-3.4.2 Name of allotropes of definite molecular formula IR-3.5 Allotropic modifications IR-3.5.1 Allotropes IR-3.5.2 Allotropic modifications constituted of discrete molecules IR-3.5.3 Crystalline allotropic modifications of an element IR-3.5.4 Solid amorphous modifications and commonly recognized allotropes of indefinite structure IR-3.6 Groups of elements IR-3.6.1 Groups of elements in the Periodic Table and their subdivisions IR-3.6.2 Collective names of groups of like elements IR-3.7 References IR-3.1 NAMES AND SYMBOLS OF ATOMS The origins of the names of some chemical elements, for example antimony, are lost in antiquity. Other elements recognised (or discovered) during the past three centuries were named according to various associations of origin, physical or chemical properties, etc., and more recently to commemorate the names of eminent scientists. In the past, some elements were given two names because two groups claimed to have discovered them. To avoid such confusion it was decided in 1947 that after the existence of a new element had been proved beyond reasonable doubt, discoverers had the right to IUPACsuggest a nameProvisional to IUPAC, but that only Recommendations the Commission on Nomenclature of Inorganic Chemistry (CNIC) could make a recommendation to the IUPAC Council to make the final Page 1 of 9 DRAFT 2 April 2004 2 decision.
    [Show full text]
  • Comparison of Sulfur to Oxygen*
    OpenStax-CNX module: m34977 1 Comparison of Sulfur to Oxygen* Andrew R. Barron This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 1 Size Table 1 summarizes the comparative sizes of oxygen and sulfur. Element Atomic radius Covalent radius Ionic radius (Å) van der Waal ra- (Å) (Å) dius (Å) Oxygen 0.48 0.66 1.40 1.52 Sulfur 0.88 1.05 1.84 1.80 Table 1: Comparison of physical characteristics for oxygen and sulfur. 2 Electronegativity Sulfur is less electronegative than oxygen (2.4 and 3.5, respectively) and as a consequence bonds to sulfur are less polar than the corresponding bonds to oxygen. One signicant result in that with a less polar S-H bond the subsequent hydrogen bonding is weaker than observed with O-H analogs. A further consequence of the lower electronegativity is that the S-O bond is polar. 3 Bonds formed Sulfur forms a range of bonding types. As with oxygen the -2 oxidation state prevalent. For example, sulfur forms analogs of ethers, i.e., thioethers R-S-R. However, unlike oxygen, sulfur can form more than two covalent (non-dative) bonds, i.e., in compounds such as SF4 and SF6. Such hypervalent compounds were originally thought be due to the inclusion of low energy d orbitals 3 2 in hybrids (e.g., sp d for SF6); however, a better picture involves a combination of s and p ortbitals in bonding (Figure 1). Any involvement of the d orbitals is limited to the polarization of the p orbitals rather than direct hydridization.
    [Show full text]
  • SULFUR TRIOXIDE -- Chemical Fact Sheet
    OLEUM/SULFUR TRIOXIDE -- Chemical Fact Sheet 1 What is it? Oleum is a cloudy, gray, fuming, oily, corrosive liquid with a sharp, penetrating odor. When Oleum comes into contact with air following a spill, it releases Sulfur Trioxide. Sulfur Trioxide is a white gas having the appearance of fog. It also has a sharp, penetrating odor that is detectable at low concentrations. Because of the tendency to liberate Sulfur Trioxide on contact with air, Oleum is also known as “fuming Sulfuric Acid”. Where does it Oleum is made by dissolving Sulfur Trioxide into Sulfuric Acid. Sulfur come from? Trioxide is made from Sulfur Dioxide in the presence of a catalyst. What are the It is used in the oil refining process to make crude oil distillates into higher quality materials. common uses for it? Manufacture of soap Manufacture of high purity Sulfuric Acid for the electronic industry Manufacture of catalyst used in production of Sulfuric Acid. How is it Oleum is shipped by truck and pipeline. transported in CCC? How is it stored Oleum is stored in covered tanks. in CCC? Health Hazards from Exposure Exposure Route Symptoms First Aid Inhalation Irritates nose, throat and Remove to fresh air. Seek (low concentrations) lungs medical attention if Burning Sensation symptoms persist. Sneezing, coughing Inhalation Burning sensation Remove to fresh air, get (high concentrations & prolonged exposure) Coughing, gagging medical attention including Chest tightness and pain, oxygen administration. Fluid in lungs Initiate CPR if breathing has Suffocation, death stopped. Eyes Severely irritates eyes Rinse eyes with water for at Burning/discomfort least 5 minutes.
    [Show full text]
  • Industry Compliance Programme
    Global Chemical Industry Compliance Programme GC-ICP Chemical Weapons Convention December 2006 Version 1.0 GLOBAL CHEMICAL INDUSTRY COMPLIANCE PROGRAMME FOR IMPLEMENTING THE CHEMICAL WEAPONS CONVENTION The purpose of the handbook is to provide guidance to chemical facilities, traders and trading companies in developing a Global Chemical Industry Compliance Programme (GC-ICP) to comply with the Chemical Weapons Convention (CWC). The GC-ICP focuses first on determining if there is a reporting requirement to your National Authority and second on collecting the relevant support data used to complete the required reports. The GC-ICP is designed to provide a methodology to comply with the CWC and establish systems that facilitate and demonstrate such compliance. Each facility/company should also ensure that it follows its country’s CWC specific laws, regulations and reporting requirements. • Sections 2, 3, and 4 guide you through the process of determining if chemicals at your facility/ company should be reported to your National Authority for compliance with the CWC. • Section 5 provides recommended guidance on information that you may use to determine your reporting requirements under the CWC and administrative tools that your facility/company may use to ensure compliance with the CWC. • Section 6 provides a glossary of terms and associated acronyms. • Section 7 provides a listing of all National Authorities by country. CWC Global Chemical Industry Compliance Programme 1 TABLE OF CONTENTS Section 1 Overview What is the Chemical Weapons Convention?
    [Show full text]
  • Chemical Hygiene Plan Manual
    CHEMICAL HYGIENE PLAN AND HAZARDOUS MATERIALS SAFETY MANUAL FOR LABORATORIES This is the Chemical Hygiene Plan specific to the following areas: Laboratory name or room number(s): ___________________________________ Building: __________________________________________________________ Supervisor: _______________________________________________________ Department: _______________________________________________________ Telephone numbers 911 for Emergency and urgent consultation 48221 Police business line 46919 Fire Dept business line 46371 Radiological and Environmental Management Revisied on: Enter a revision date here. All laboratory chemical use areas must maintain a work-area specific Chemical Hygiene Plan which conforms to the requirements of the OSHA Laboraotry Standard 29 CFR 19190.1450. Purdue University laboratories may use this document as a starting point for creating their work area specific CHP. Minimally this cover page is to be edited for work area specificity (non-West Lafayette laboratories are to place their own emergency, fire, and police telephone numbers in the space above) AND appendix K must be completed. This instruction and information box should remain. This model CHP is version 2010A; updates are to be found at www.purdue.edu/rem This page intentionally blank. PURDUE CHEMICAL HYGIENE PLAN AWARENESS CERTIFICATION For CHP of: ______________________________ Professor, building, rooms The Occupational Safety and Health Administration (OSHA) requires that laboratory employees be made aware of the Chemical Hygiene Plan at their place of employment (29 CFR 1910.1450). The Purdue University Chemical Hygiene Plan and Hazardous Materials Safety Manual serves as the written Chemical Hygiene Plan (CHP) for laboratories using chemicals at Purdue University. The CHP is a regular, continuing effort, not a standby or short term activity. Departments, divisions, sections, or other work units engaged in laboratory work whose hazards are not sufficiently covered in this written manual must customize it by adding their own sections as appropriate (e.g.
    [Show full text]
  • 540.14Pri.Pdf
    Index Element names, parent hydride names and systematic names derived using any of the nomenclature systems described in this book are, with very few exceptions, not included explicitly in this index. If a name or term is referred to in several places in the book, the most informative references appear in bold type, and some of the less informative places are not cited in the index. Endings and suffixes are represented using a hyphen in the usual fashion, e.g. -01, and are indexed at the place where they would appear ignoring the hyphen. Names of compounds or groups not included in the index may be found in Tables P7 (p. 205), P9 (p. 232) and PIO (p. 234). ~, 3,87 acac, 93 *, 95 -acene, 66 \ +, 7,106 acetals, 160-161 - (minus), 7, 106 acetate, 45 - (en dash), 124-126 acetic acid, 45, 78 - (em dash), 41, 91, 107, 115-116, 188 acetic anhydride, 83 --+, 161,169-170 acetoacetic acid, 73 ct, 139, 159, 162, 164, 167-168 acetone, 78 ~, 159, 164, 167-168 acetonitrile, 79 y, 164 acetyl, III, 160, 163 11, 105, 110, 114-115, 117, 119-128, 185 acetyl chloride, 83, 183 K, 98,104-106,117,120,124-125, 185 acetylene, 78 A, 59, 130 acetylide, 41 11, 89-90,98, 104, 107, 113-116, 125-126, 146-147, acid anhydrides, see anhydrides 154, 185 acid halides, 75,83, 182-183 TC, 119 acid hydrogen, 16 cr, 119 acids ~, 167 amino acids, 25, 162-163 00, 139 carboxylic acids, 19,72-73,75--80, 165 fatty acids, 165 A sulfonic acids, 75 ct, 139,159,162,164,167-168 see also at single compounds A, 33-34 acrylic acid, 73, 78 A Guide to IUPAC Nomenclature of Organic actinide, 231 Compounds, 4, 36, 195 actinoids (vs.
    [Show full text]
  • Sulfur (IV) Isotopic Exchange Reaction in Aqueous and Concentrated Acid
    THE KINETICS OF THE SULFtJR(IV) - suLFuR(vI) ISOTOPIC EXCHANGE REACTION IN AQUEOUS AND CONCTRATED ACID )LUTIONS by RAY LOCKE McDONALD A THESIS submitted to OHEGON STATE COLLEGE In parti1 fulfillment of the requirements for the degree of DOCTOR 0F PHW)SOPHY June 196]. flIiY1i$IT Redacted for Privacy Professor of Chemistry In Charge of Major Red acted f or P rivacy Chairman of Department of Cnemistry Redacted for Privacy Chairman of School Graduate Committee Redacted for Privacy Dean of Graduate School nate thesis is presented Typed by LeAnna kiarris tffi*ffimffi Fcar rdsrmo ad mflss. dte rU egestr d lilt rretc Mlr1 tb lutEm'rprm [ilr;r* dffi tldr te EufUe ?. E. I*1ill. TABLE OF CONTENTS Page I. INTRODUCTION ...................... i II. E(PERIMENTAL ...................... 7 A. General Procedure ................. 7 B. Radioactivity Analysis ............... 9 C. Chemical Analysis ................ il D, Preparation of Materials and Reactant Solutions 13 1. General ................. 13 2. Sulfur Dioxide ................ 1.3 3. Labeled Aqueous Sulfuric Acid ......... i1 )4. Labeled Concentrated Sulfuric cid ....... 15 ;. Labeled 100% Sulfuric Acid ........... 16 6. Labeled Fuming Sulfuric Acid .......... 16 7. Labeled Aqueous Sodium Bisulfate ........ 16 8. Lat.ed Sodium Bisulfate in Aqueous Sulfuric Acid .................. 17 9. Labeled Sodium Bisulfate in Concentrated . Sulfuric Acid .................. 17 10. Labeled Sodium Sulfate ............. 17 li. Labeled Sodium Sulfate in Aqueous Sodium Bisulfate ................ 18 12. Labeled Elemental Sulfur ............ 18 III. RUN PROCEDURE AND DATA ................ 19 A. Sulfur(IV) - Sulfur(VI) Exchange in Basic Media . 19 B, - Sulfur(IV) Sulfur(VI) Exchange in Acidic Media . .23 1. Radiosulfur Ecchsuge Experiments Between Sulfur Dioxìe and Aqueous Sulfuric Acid of High Specific Activity ...........
    [Show full text]
  • 1 the Volumetric Determination of Hydroxylamine
    VOLUMETRIC DETERMINATION OF HYDROXYLAMINE. I363 [CONTRIBUTION FROM THE CHEMICAL LABORATORYOF THE UNIVERSITY OF CALIFORNIA.1 THE VOLUMETRIC DETERMINATION OF HYDROXYLAMINE. BY WILLIAMC. BRAY,MIBUM E. SIMPSONAND ANNA A. MACKENZIE. Received July 17, 1919 In the present investigation 3 volumetric methods of determining hydroxylamine in aqueous solution have been studied : The titanous salt method,' in which the hydroxylamine is reduced by excess titanous salt in acid solution with exclusion of air, and the excess titrated with permanganate. 2NH20H + Ti2(S04)3 = (NH4)2S04 + 4TiOS04 + HzS04. (I) The ferric salt method,2 in which the hydroxylamine is oxidized in an acid solution by excess of a ferric salt, the mixture is boiled and the fer- rous salt formed titrated with permanganate. 2NH20H + 2Fe@04)3 = N2O + 4FeS04 + 2H2S04 + H20. (2) The iodine method,3 in which the hydroxylamine is oxidized by iodine in a neutral solution, e. g., in the presence of disodium phosphate. 2NH20H + 212 = N2O + 4HI + H2O (3) or 2NH20H + 213- = N20 + 61- + 4H+ + HzO. Our first experiments, with the iodine method, yielded irregular results which could not be interpreted until the concentration of the hydroxyl- amine solution was accurately determined. An examination of the literature showed a rather unsatisfactory state of affairs. The advocates of the ferric sulfate method furnish evidence that it is perfectly reliable, but Leuba4 gives detailed experimental data to prove the contrary, and Adams5 states that he could not obtain reproducible results with it. The investigators who have used the iodine method consider it to be fairly satisfactory, but some of them state that it is not very accurate, and Rupp and Maeder6 have recently concluded that correct results are obtained only by a compensation of errors.
    [Show full text]
  • A Preliminary Assessment of the Montréal Process Indicators of Air Pollution for the United States
    A PRELIMINARY ASSESSMENT OF THE MONTRÉAL PROCESS INDICATORS OF AIR POLLUTION FOR THE UNITED STATES JOHN W. COULSTON1∗, KURT H. RIITTERS2 and GRETCHEN C. SMITH3 1 Department of Forestry, North Carolina State University, Southern Research Station, U.S. Forest Service, Research Triangle Park, North Carolina; 2 U.S. Forest Service, Southern Research Station, Research Triangle Park, North Carolina; 3 Department of Natural Resources Conservation, University of Massachusetts, Amherst, Massachusetts ∗ ( author for correspondence, e-mail: [email protected]) (Received 11 October 2002; accepted 9 May 2003) Abstract. Air pollutants pose a risk to forest health and vitality in the United States. Here we present the major findings from a national scale air pollution assessment that is part of the United States’ 2003 Report on Sustainable Forests. We examine trends and the percent forest subjected to specific levels of ozone and wet deposition of sulfate, nitrate, and ammonium. Results are reported by Resource Planning Act (RPA) reporting region and integrated by forest type using multivariate clustering. Estimates of sulfate deposition for forested areas had decreasing trends (1994–2000) across RPA regions that were statistically significant for North and South RPA regions. Nitrate deposition rates were relatively constant for the 1994 to 2000 period, but the South RPA region had a statistically decreasing trend. The North and South RPA regions experienced the highest ammonium deposition rates and showed slightly decreasing trends. Ozone concentrations were highest in portions of the Pacific Coast RPA region and relatively high across much of the South RPA region. Both the South and Rocky Mountain RPA regions had an increasing trend in ozone exposure.
    [Show full text]
  • Safety Data Sheet Flammable Storage Code Red
    SDS No.: DD0032 SAFETY DATA SHEET FLAMMABLE STORAGE CODE RED Section 1 Identifi cation Page E1 of E2 CHEMTREC 24 Hour Emergency ® Phone Number (800) 424-9300 Innovating Science by Aldon Corporation 221 Rochester Street For laboratory and industrial use only. Avon, NY 14414-9409 Not for drug, food or household use. “cutting edge science for the classroom” (585) 226-6177 Product 1,2-DICHLOROETHANE Synonyms Ethylene Dichloride ; Ethylene Chloride ; EDC ; Dichloroethane Section 2 Hazards identifi cation Signal word: DANGER Precautionary statement: Pictograms: GHS02 / GHS07 / GHS08 P201: Obtain special instructions before use. Target organs: Liver, Kidneys P202: Do not handle until all safety precautions have been read and understood. P210: Keep away from heat/sparks/open fl ames/hot surfaces. No smoking. P233: Keep container tightly closed. P240: Ground/bond container and receiving equipment. P241: Use explosion-proof electrical/ventilating/lighting equipment. P242: Use only non-sparking tools. GHS Classifi cation: P243: Take precautionary measures against static discharge. Flammable liquid (Category 2) P261: Avoid breathing mist/vapours/spray. Acute toxicity, oral (Category 4) P264: Wash hands thoroughly after handling. Skin irritation (Category 2) P270: Do not eat, drink or smoke when using this product. Eye irritation (Category 2A) P271: Use only outdoors or in a well-ventilated area. STOT-SE (Category 3) P280: Wear protective gloves/protective clothing/eye protection/face protection. Carcinogenicity (Category 1B) P301+P330+P312: IF SWALLOWED: Rinse mouth. Call a POISON CENTER or doctor if you feel unwell. GHS Label information: Hazard statement: P302+P352: IF ON SKIN: Wash with plenty of water and soap. H225: Highly fl ammable liquid and vapour.
    [Show full text]
  • A Fundamental Evaluation of the Atmospheric Pre-Leaching Section of the Nickel-Copper Matte Treatment Process
    A FUNDAMENTAL EVALUATION OF THE ATMOSPHERIC PRE-LEACHING SECTION OF THE NICKEL-COPPER MATTE TREATMENT PROCESS by RODRICK MULENGA LAMYA Dissertation presented for the Degree of DOCTOR OF PHILOSOPHY (Extractive Metallurgical Engineering) in the Department of Process Engineering at the University of Stellenbosch, South Africa Promoter Prof. L. Lorenzen STELLENBOSCH March 2007 DECLARATION I the undersigned, hereby declare that the work contained in this dissertation is my own original work and that I have not previously in its entirety or in part submitted it at any university for a degree. Signature: ............................................... Date: ....................................................... Copyright © 2007 Stellenbosch University All rights reserved i SYNOPSIS Nickel-Copper sulphide ores are the most important Platinum Group Metal bearing ores. The South African deposits are exceptionally rich in the platinum group metals (PGMs) and production of the PGMs is the primary purpose of treating these ores. The methods used in the recovery of the PGMs from the nickel-copper ores generally consists of ore concentration by physical techniques, pyrometallurgical concentration and hydrometallurgical extraction of the base metals followed by the PGMs. Pyrometallurgical concentration produces Ni-Cu matte, which is treated by hydrometallurgical processes to recover the nickel, copper, cobalt and the precious metals. In this study, the leaching behaviour of a Ni–Cu matte in CuSO4–H2SO4 solution during the repulping (pre-leach) stage at Impala Platinum Refineries was studied. The repulping stage is basically a non–oxidative atmospheric leach stage, in which nickel, iron and cobalt are partially dissolved, while the copper is precipitated. To understand the nature of the leaching process during this stage of the base metal refining operation, the effects of variations in the key process variables such as temperature, stirring rate, particle size, pulp density, residence time, initial copper and acid concentrations were investigated.
    [Show full text]
  • Anaerobic Degradation of Methanethiol in a Process for Liquefied Petroleum Gas (LPG) Biodesulfurization
    Anaerobic degradation of methanethiol in a process for Liquefied Petroleum Gas (LPG) biodesulfurization Promotoren Prof. dr. ir. A.J.H. Janssen Hoogleraar in de Biologische Gas- en waterreiniging Prof. dr. ir. A.J.M. Stams Persoonlijk hoogleraar bij het laboratorium voor Microbiologie Copromotor Prof. dr. ir. P.N.L. Lens Hoogleraar in de Milieubiotechnologie UNESCO-IHE, Delft Samenstelling promotiecommissie Prof. dr. ir. R.H. Wijffels Wageningen Universiteit, Nederland Dr. ir. G. Muyzer TU Delft, Nederland Dr. H.J.M. op den Camp Radboud Universiteit, Nijmegen, Nederland Prof. dr. ir. H. van Langenhove Universiteit Gent, België Dit onderzoek is uitgevoerd binnen de onderzoeksschool SENSE (Socio-Economic and Natural Sciences of the Environment) Anaerobic degradation of methanethiol in a process for Liquefied Petroleum Gas (LPG) biodesulfurization R.C. van Leerdam Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit Prof. dr. M.J. Kropff in het openbaar te verdedigen op maandag 19 november 2007 des namiddags te vier uur in de Aula Van Leerdam, R.C., 2007. Anaerobic degradation of methanethiol in a process for Liquefied Petroleum Gas (LPG) biodesulfurization. PhD-thesis Wageningen University, Wageningen, The Netherlands – with references – with summaries in English and Dutch ISBN: 978-90-8504-787-2 Abstract Due to increasingly stringent environmental legislation car fuels have to be desulfurized to levels below 10 ppm in order to minimize negative effects on the environment as sulfur-containing emissions contribute to acid deposition (‘acid rain’) and to reduce the amount of particulates formed during the burning of the fuel. Moreover, low sulfur specifications are also needed to lengthen the lifetime of car exhaust catalysts.
    [Show full text]