Mihnea R. Mangalea Departm

Total Page:16

File Type:pdf, Size:1020Kb

Mihnea R. Mangalea Departm DISSERTATION BIOFILM DYNAMICS AND THE RESPONSE TO N-OXIDES IN Burkholderia pseudomallei Submitted by: Mihnea R. Mangalea Department of Microbiology, Immunology and Pathology In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Summer 2019 Doctoral Committee: Advisor: Bradley R. Borlee Richard A. Slayden Richard A. Bowen Mark D. Stenglein Amy O. Charkowski Copyright by Mihnea R. Mangalea 2019 All Rights Reserved ABSTRACT BIOFILM DYNAMICS AND THE RESPONSE TO N-OXIDES IN Burkholderia pseudomallei Burkholderia pseudomallei is a saprophytic bacterium inhabiting wet soils in tropical regions and is the causative agent of melioidosis, an emerging infectious disease of high mortality. Although the incidence of melioidosis is more prevalent in the monsoonal wet season in Southeast Asia and Northern Australia, gardens and farms also serve as a reservoir for B. pseudomallei infection in the dry season, due to anthropogenic disturbances including irrigation and application of nitrogen (N)-based fertilizer use. Melioidosis is historically associated with rice farming in rural regions of the tropics where rain-fed lowland environments predominate and planting fields are often managed by the addition of N-based fertilizers to keep up with the demand for global rice consumption. In these oxygen-limiting environments, B. pseudomallei is a facultative anaerobic organism capable of growth in anoxic conditions by substituting nitrate - (NO3 ) as a terminal electron acceptor. B. pseudomallei is capable of complete denitrification, a step-wise enzymatic reaction that is carried out by four individual enzyme complexes or - reductases, that reduce NO3 to N2. Denitrification among proteobacteria is regulated by sensing systems that depend on both the presence of substrate and hypoxic conditions, however little is known about this ecological and physiological phenomenon in B. pseudomallei. In hosts infected with B. pseudomallei, similar oxygen tensions are experienced by the organisms in abscesses, lesions, and during intracellular growth; however, little is known regarding the extent of anaerobic metabolism and defense from host-associated reactive nitrogen intermediates in B. pseudomallei. This study examines the predicted nitrate sensing and metabolism genes in a clinical isolate, B. pseudomallei 1026b, and specifically their role in regulating biofilm dynamics. We hypothesized that nitrate sensing and metabolism negatively regulate biofilm formation and aimed to describe the genetic and metabolic determinants of this phenotype in B. pseudomallei. ii In Aim I of this study, we characterized a dose-dependent biofilm inhibition model that responds to increasing concentrations of sodium nitrate and sodium nitrite, donors of the - - inorganic anions NO3 and NO2 , respectively. Based on in silico analyses of predicted nitrate sensing and metabolism loci, we screened transposon insertional mutants to identify candidates involved in the biofilm inhibitory response. We identified five mutants that no longer respond to nitrate-mediated biofilm inhibition in genes predicted to comprise key components of the denitrification pathway: the alpha and beta subunits of the dissimilatory nitrate reductase narGHJI-1, the narX-narL two-component regulatory system, and the nitrate/nitrite extrusion gene narK-1. Using LC-MS/MS, we quantified the intracellular concentration of the secondary metabolite cyclic-di-GMP, and observed a significant decrease of this key biofilm-associated molecule in response to sodium nitrate treatment. Furthermore, we evaluated the expression of cyclic-di-GMP regulatory enzymes to propose a mechanism for the nitrate-dependent biofilm inhibition phenotype in B. pseudomallei. In Aim II, we examined the functions of NarX and NarL in response to exogenous sodium nitrate and sodium nitrite and the biofilm inhibition model using separate in-frame deletion mutants. We characterized a disparity in biofilm inhibition that is dependent on nitrate but not nitrite in this two-component sensing system, before analyzing the global transcriptome of these mutants relative to the wild type in growth conditions supplemented with either N-oxide. Differential expression analysis of RNA sequencing reads revealed significant transcriptomic shifts in several gene clusters associated with biofilm formation, nitrate metabolism, general metabolism, antibiotic resistance, virulence, and secondary metabolite biosynthesis that - - responded similarly to both NO3 and NO2 supplementation. Additionally, we demonstrated that narX and narL mutants are deficient in intracellular survival in murine macrophages, providing a link between nitrate sensing and metabolism and B. pseudomallei host-pathogen interactions. These data suggest that denitrification is an important mechanism for biofilm dynamics and is also relevant to survival and pathogenicity in animal hosts during B. pseudomallei infection. iii ACKNOWLEDGEMENTS The work presented here would not have been possible without support, guidance, and inspiration from several people. First and foremost, I would like to thank Dr. Brad Borlee for his mentorship and for presenting me with challenging opportunities to do exciting research. Joining the Borlee Lab was a great experience and I consider myself a much better scientist today because of Brad’s training and direction through this entire process. I am thankful for his efforts to challenge me to think independently, take initiative with project collaborations, learn new techniques, improve my writing, and keep me focused. I have appreciated our almost weekly meetings and discussions of research progress, career options, conferences and seminars to attend, networking opportunities, and so much more. I am grateful for his encouragement and motivation to broaden my scope and expand my research capabilities. There are many other current and former members of the Borlee Lab to thank for putting me in a position to succeed. I would like to thank Dr. Grace Borlee for tremendous support in refining my ideas, goals, presentations, and manuscripts. I am thankful for our discussions on science, life, and everything in between. I have enjoyed working alongside Grace in the lab and on several publications and I appreciate her mentorship, friendship, and motivation to seek out opportunities that advance my career. In addition, I want to thank Brooke Plumley and Kevin Martin for being the best lab-mates, friends, and co-workers I could have asked for. Thank you for always actively listening to my presentations and offering helpful suggestions to improve my research and refine my experiments. Thank you for being my barrier buddies and keeping me sane after long hours in the confines of the BSL-3. Thank you to Ian McMillan, honorary member of the Borlee Lab from the University of Hawaii at Manoa, for all the support and thoughtful discussions on B. pseudomallei biology. Also, thank you to all the members of the Borlee Lab with whom I have interacted with during my time at CSU: Lily Filipowska, Maria Brock, Jordanne Lesher, Michelle Khale, Nick Bartolillo, Molly Newton, Reed Woyda, and Sam iv Golon. Each of you has helped make my time in the lab more enjoyable and I appreciate your friendship, support, and willingness to listen to my research updates. Thank you to my committee members for taking great interest in my research, offering your time and support to meet with me, and generally improving the quality of my work. I owe a great deal of gratitude to Drs. Ric Slayden, Dick Bowen, Mark Stenglein, and Amy Charkowski. Thank you all for challenging me to become a better scientist and answer difficult questions, and keeping me on course for a career in research. Thank you to Drs. Brendan Podell and Mark Zabel for allowing me to rotate in their labs at the beginning of my graduate studies and teaching me techniques in immunology that were fundamental to my development as a microbiologist. Thank you to all the following professors in MIP that have been a part of my education and professional development: Drs. Carol Wilusz, Brian Geiss, Jeff Wilusz, Gregg Dean, Zaid Abdo, Bob Ellis, among many others. Thank you to Heidi Runge for facilitating all the logistics of navigating the MIP graduate program. Thank you to all members of the GAUSSI program at CSU that considered me worthy of a year-long fellowship and the worthwhile training in computational biology. Being part of the GAUSSI program offered great learning opportunities to think outside the box of my specific research niche and to see bacteriology and infectious disease through the eyes of a programmer as well as a biologist. There are many more colleagues, friends, past advisors and mentors, that I should thank for helping me get to this monumental step in my career, and I appreciate everyone that has guided me along my research and academic path, from the University of North Carolina to Colorado State University. To the global melioidosis research community that seeks to mitigate the public health threat from B. pseudomallei infections, I am forever inspired and motivated by the impactful work being done worldwide and am grateful to consider myself part of this diverse research community. And to my love, Dr. Rachel West, thank you for the tremendous support that has kept me going through everything; I look forward to celebrating all future achievements, scientific or otherwise, with you. v DEDICATION To my mother, Smaranda, who sacrificed much to offer me
Recommended publications
  • Developing a Genetic Manipulation System for the Antarctic Archaeon, Halorubrum Lacusprofundi: Investigating Acetamidase Gene Function
    www.nature.com/scientificreports OPEN Developing a genetic manipulation system for the Antarctic archaeon, Halorubrum lacusprofundi: Received: 27 May 2016 Accepted: 16 September 2016 investigating acetamidase gene Published: 06 October 2016 function Y. Liao1, T. J. Williams1, J. C. Walsh2,3, M. Ji1, A. Poljak4, P. M. G. Curmi2, I. G. Duggin3 & R. Cavicchioli1 No systems have been reported for genetic manipulation of cold-adapted Archaea. Halorubrum lacusprofundi is an important member of Deep Lake, Antarctica (~10% of the population), and is amendable to laboratory cultivation. Here we report the development of a shuttle-vector and targeted gene-knockout system for this species. To investigate the function of acetamidase/formamidase genes, a class of genes not experimentally studied in Archaea, the acetamidase gene, amd3, was disrupted. The wild-type grew on acetamide as a sole source of carbon and nitrogen, but the mutant did not. Acetamidase/formamidase genes were found to form three distinct clades within a broad distribution of Archaea and Bacteria. Genes were present within lineages characterized by aerobic growth in low nutrient environments (e.g. haloarchaea, Starkeya) but absent from lineages containing anaerobes or facultative anaerobes (e.g. methanogens, Epsilonproteobacteria) or parasites of animals and plants (e.g. Chlamydiae). While acetamide is not a well characterized natural substrate, the build-up of plastic pollutants in the environment provides a potential source of introduced acetamide. In view of the extent and pattern of distribution of acetamidase/formamidase sequences within Archaea and Bacteria, we speculate that acetamide from plastics may promote the selection of amd/fmd genes in an increasing number of environmental microorganisms.
    [Show full text]
  • Comparative Genomics of Pandoraea, a Genus Enriched in Xenobiotic Biodegradation and Metabolism
    fmicb-10-02556 November 4, 2019 Time: 15:40 # 1 ORIGINAL RESEARCH published: 06 November 2019 doi: 10.3389/fmicb.2019.02556 Comparative Genomics of Pandoraea, a Genus Enriched in Xenobiotic Biodegradation and Metabolism Charlotte Peeters1, Evelien De Canck1, Margo Cnockaert1, Evie De Brandt1, Cindy Snauwaert2, Bart Verheyde1, Eliza Depoorter1, Theodore Spilker3, John J. LiPuma3 and Peter Vandamme1,2* 1 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium, 2 BCCM/LMG Bacteria Collection, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent Edited by: University, Ghent, Belgium, 3 Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States Iain Sutcliffe, Northumbria University, United Kingdom Comparative analysis of partial gyrB, recA, and gltB gene sequences of 84 Pandoraea Reviewed by: reference strains and field isolates revealed several clusters that included no taxonomic Martin W. Hahn, reference strains. The gyrB, recA, and gltB phylogenetic trees were used to select 27 University of Innsbruck, Austria Stephanus Nicolaas Venter, strains for whole-genome sequence analysis and for a comparative genomics study that University of Pretoria, South Africa also included 41 publicly available Pandoraea genome sequences. The phylogenomic Aharon Oren, The Hebrew University of Jerusalem, analyses included a Genome BLAST Distance Phylogeny approach to calculate pairwise Israel digital DNA–DNA hybridization values and their
    [Show full text]
  • Genomic and Proteomic Analysis of Lignin Degrading and Polyhydroxyalkanoate Accumulating Β‑Proteobacterium Pandoraea Sp
    Kumar et al. Biotechnol Biofuels (2018) 11:154 https://doi.org/10.1186/s13068-018-1148-2 Biotechnology for Biofuels RESEARCH Open Access Genomic and proteomic analysis of lignin degrading and polyhydroxyalkanoate accumulating β‑proteobacterium Pandoraea sp. ISTKB Madan Kumar1, Sandhya Verma2, Rajesh Kumar Gazara2, Manish Kumar1, Ashok Pandey3, Praveen Kumar Verma2* and Indu Shekhar Thakur1* Abstract Background: Lignin is a major component of plant biomass and is recalcitrant to degradation due to its complex and heterogeneous aromatic structure. The biomass-based research mainly focuses on polysaccharides component of biomass and lignin is discarded as waste with very limited usage. The sustainability and success of plant polysac- charide-based biorefnery can be possible if lignin is utilized in improved ways and with minimal waste generation. Discovering new microbial strains and understanding their enzyme system for lignin degradation are necessary for its conversion into fuel and chemicals. The Pandoraea sp. ISTKB was previously characterized for lignin degradation and successfully applied for pretreatment of sugarcane bagasse and polyhydroxyalkanoate (PHA) production. In this study, genomic analysis and proteomics on aromatic polymer kraft lignin and vanillic acid are performed to fnd the impor- tant enzymes for polymer utilization. Results: Genomic analysis of Pandoraea sp. ISTKB revealed the presence of strong lignin degradation machinery and identifed various candidate genes responsible for lignin degradation and PHA production.
    [Show full text]
  • <I>MICROCYSTIS</I> BLOOMS
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2018 MOLECULAR CHARACTERIZATION OF FACTORS CONSTRAINING THE SUCCESS AND TOXICITY OF MICROCYSTIS BLOOMS Lauren Elisabeth Krausfeldt University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Krausfeldt, Lauren Elisabeth, "MOLECULAR CHARACTERIZATION OF FACTORS CONSTRAINING THE SUCCESS AND TOXICITY OF MICROCYSTIS BLOOMS. " PhD diss., University of Tennessee, 2018. https://trace.tennessee.edu/utk_graddiss/5030 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Lauren Elisabeth Krausfeldt entitled "MOLECULAR CHARACTERIZATION OF FACTORS CONSTRAINING THE SUCCESS AND TOXICITY OF MICROCYSTIS BLOOMS." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Microbiology. Steven W. Wilhelm, Major Professor We have read this dissertation and recommend its acceptance: Alison Buchan, Shawn R. Campagna, Karen G. Lloyd Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) MOLECULAR CHARACTERIZATION OF FACTORS CONSTRAINING THE SUCCESS AND TOXICITY OF MICROCYSTIS BLOOMS A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Lauren Elisabeth Krausfeldt August 2018 Copyright © 2018 by Lauren E.
    [Show full text]
  • P1761 Paper Poster Session Microbial Pathogenesis and Virulence
    P1761 Paper Poster Session Microbial pathogenesis and virulence The Burkholderia contaminans operon participates in switching on the biofilm formation Olga Voronina1, Marina Kunda*1, Natalia Ruzhova1, Andrey Semenov1, Yulia Romanova1 1N.F. Gamaleya Research Center for Epidemiology and Microbiology, Ministry of Health of Russia, Moscow, Russian Federation Background: Burkholderia cepacia complex (Bcc) bacteria - opportunistic pathogens causing nosocomial infections, are especially dangerous for cystic fibrosis patients. Biofilm formation (BF) helps Bcc to escape the antimicrobial agents’ effect and complicates the Bcc eradication. The two component signal (TCS) transduction systems are in charge of the BF. The purpose of our investigation was the most important TCS determination. Material/methods: High biofilm producer (HBP) clinical strain B. contaminans GIMC4509:Bct370 and lacking biofilm production (LBP) B. contaminans strain GIMC4587:Bct370-19 were used. Last one was obtained Romanova et al. by insertion modification of clinical strain with plasposon pTnMod-RKm. The strains were analyzed by Whole-genome sequencing and Liquid Chromatography Mass Spectrometry (LC-MC). 454 Sequencing System Software V 2.7 (Roche), RAST, BioCyc Database Collection, InterPro, MaxQuant were used for genome assembling, annotation, operons prediction, proteins’ domains detection and proteins after MC identification. Operons sequences were deposited in GenBank under the accession numbers KP288491, KP288492. Results: There are 37 two component transcriptional regulators (TCTR) genes in B. contaminans or B. lata genomes. Most of them are located with sensor signal transduction histidine kinase genes in operon one after the other. We found out four components operon, in which gene of peptidoglycan binding protein with FecR domain was embedded between the TCTR and kinase genes.
    [Show full text]
  • Characterization of Antimicrobial-Producing Beneficial Bacteria Isolated from Huanglongbing Escape Citrus Trees
    fmicb-08-02415 December 5, 2017 Time: 16:45 # 1 ORIGINAL RESEARCH published: 07 December 2017 doi: 10.3389/fmicb.2017.02415 Characterization of Antimicrobial-Producing Beneficial Bacteria Isolated from Huanglongbing Escape Citrus Trees Nadia Riera1, Utpal Handique1, Yunzeng Zhang1, Megan M. Dewdney2 and Nian Wang1* 1 Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States, 2 Citrus Research and Education Center, Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, United States The microbiome associated with crop plants has a strong impact on their health and productivity. Candidatus Liberibacter asiaticus (Las), the bacterial pathogen responsible for Huanglongbing (HLB) disease, lives inside the phloem of citrus plants Edited by: Hua Lu, including the root system. It has been suggested that Las negatively affects citrus University of Maryland, Baltimore, microbiome. On the other hand, members of citrus microbiome also influence the United States interaction between Las and citrus. Here, we report the isolation and characterization Reviewed by: Huang Lili, of multiple putative beneficial bacteria from healthy citrus rhizosphere. Firstly, six Northwest A&F University, China bacterial strains showing antibacterial activity against two bacteria closely related to Zhengqing Fu, Las: Agrobacterium tumefaciens and Sinorhizobium meliloti were selected. Among University of South Carolina, United States them, Burkholderia metallica strain A53 and Burkholderia territorii strain A63 are *Correspondence: within the b-proteobacteria class, whereas Pseudomonas granadensis strain 100 and Nian Wang Pseudomonas geniculata strain 95 are within the g-proteobacteria class.
    [Show full text]
  • Quorum Sensing Activity in Pandoraea Pnomenusa RB38
    Sensors 2014, 14, 10177-10186; doi:10.3390/s140610177 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Article Quorum Sensing Activity in Pandoraea pnomenusa RB38 Robson Ee, Yan-Lue Lim, Lin-Xin Kin, Wai-Fong Yin and Kok-Gan Chan * Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: [email protected] (R.E.); [email protected] (Y.-L.L.); [email protected] (L.-X.K.); [email protected] (W.-F.Y.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +60-37967-5162; Fax: +60-37967-4509. Received: 5 March 2014; in revised form: 25 May 2014 / Accepted: 28 May 2014 / Published: 10 June 2014 Abstract: Strain RB38 was recovered from a former dumping area in Malaysia. MALDI-TOF mass spectrometry and genomic analysis identified strain RB-38 as Pandoraea pnomenusa. Various biosensors confirmed its quorum sensing properties. High resolution triple quadrupole liquid chromatography–mass spectrometry analysis was subsequently used to characterize the N-acyl homoserine lactone production profile of P. pnomenusa strain RB38, which validated that this isolate produced N-octanoyl homoserine lactone as a quorum sensing molecule. This is the first report of the production of N-octanoyl homoserine lactone by P. pnomenusa strain RB38. Keywords: matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF); mass spectrometry (MS); cell-to cell communication; triple quodruopole liquid chromatography mass spectrometry (LC-MS/MS); N-octanoyl homoserine lactone (C8-HSL) 1. Introduction Pandoraea is a Gram-negative rod shape proteobacteria of the Burkholderiaceae family that is often isolated from sputa of cystic fibrosis patients and soil [1].
    [Show full text]
  • Genome of Ca. Pandoraea Novymonadis, an Endosymbiotic Bacterium of the Trypanosomatid Novymonas Esmeraldas
    fmicb-08-01940 September 30, 2017 Time: 16:0 # 1 ORIGINAL RESEARCH published: 04 October 2017 doi: 10.3389/fmicb.2017.01940 Genome of Ca. Pandoraea novymonadis, an Endosymbiotic Bacterium of the Trypanosomatid Novymonas esmeraldas Alexei Y. Kostygov1,2†, Anzhelika Butenko1,3†, Anna Nenarokova3,4, Daria Tashyreva3, Pavel Flegontov1,3,5, Julius Lukeš3,4 and Vyacheslav Yurchenko1,3,6* 1 Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia, 2 Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia, 3 Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceskéˇ Budejovice,ˇ Czechia, 4 Faculty of Sciences, University of South Bohemia, Ceskéˇ Budejovice,ˇ Czechia, 5 Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia, 6 Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czechia We have sequenced, annotated, and analyzed the genome of Ca. Pandoraea novymonadis, a recently described bacterial endosymbiont of the trypanosomatid Novymonas esmeraldas. When compared with genomes of its free-living relatives, it Edited by: has all the hallmarks of the endosymbionts’ genomes, such as significantly reduced João Marcelo Pereira Alves, University of São Paulo, Brazil size, extensive gene loss, low GC content, numerous gene rearrangements, and Reviewed by: low codon usage bias. In addition, Ca. P. novymonadis lacks mobile elements, Zhao-Rong Lun, has a strikingly low number of pseudogenes, and almost all genes are single Sun Yat-sen University, China Vera Tai, copied. This suggests that it already passed the intensive period of host adaptation, University of Western Ontario, Canada which still can be observed in the genome of Polynucleobacter necessarius, a *Correspondence: certainly recent endosymbiont.
    [Show full text]
  • Pandoraea Apista Bacteremia in a COVID-Positive Man: a Rare Coinfection Case Report from North India
    Published online: 2021-06-28 THIEME 192 Case Pandoraea Report apistain a COVID Patient Singh et al. Pandoraea apista Bacteremia in a COVID-Positive Man: A Rare Coinfection Case Report from North India Sweta Singh1 Chinmoy Sahu1 , Sangram Singh Patel1 Atul Garg1 Ujjala Ghoshal1 1Department of Microbiology, Sanjay Gandhi Post Graduate Address for correspondence Chinmoy Sahu, MD (Microbiology) Institute of Medical Sciences, Lucknow, Uttar Pradesh, India Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh 226014, India (e-mail: [email protected]). J Lab Physicians 2021;13:192–194. Abstract Pandoraea apista is a novel gram-negative bacillus usually isolated from respiratory specimens of cystic fibrosis patients. Few cases of bacteremia have also been reported due to this rare pathogen. Emergence of multidrug-resistant isolates of this bacillus is of grave concern. Here, we report a very interesting and unusual case of Pandoraea Keywords apista bacteremia in a coronavirus disease (COVID)–positive elderly diabetic man suf- ► Pandoraea apista fering from pneumonia. Prompt isolation and antibiotic sensitivity testing guided the ► bacillus patient’s treatment and yielded favorable outcome. The need of automated methods ► cystic fibrosis for identification and sensitivity testing limits the reporting of this rare but important ► bacteremia pathogen in hospital settings. Detailed research work and studies are needed in this ► COVID direction to better understand this pathogen and its clinical manifestations for better ► pneumonia patient outcome. Introduction report a case of bacteremia caused by Pandoraea apista in a COVID-positive elderly man suffering from pneumonia. Pandoraea species is a newly emerging multidrug-resistant pathogen usually isolated from cystic fibrosis (CF) patients.
    [Show full text]
  • Molecular Study of the Burkholderia Cenocepacia Division Cell Wall Operon and Ftsz Interactome As Targets for New Drugs
    Università degli Studi di Pavia Dipartimento di Biologia e Biotecnologie “L. Spallanzani” Molecular study of the Burkholderia cenocepacia division cell wall operon and FtsZ interactome as targets for new drugs Gabriele Trespidi Dottorato di Ricerca in Genetica, Biologia Molecolare e Cellulare XXXIII Ciclo – A.A. 2017-2020 Università degli Studi di Pavia Dipartimento di Biologia e Biotecnologie “L. Spallanzani” Molecular study of the Burkholderia cenocepacia division cell wall operon and FtsZ interactome as targets for new drugs Gabriele Trespidi Supervised by Prof. Edda De Rossi Dottorato di Ricerca in Genetica, Biologia Molecolare e Cellulare XXXIII Ciclo – A.A. 2017-2020 Cover image: representation of the Escherichia coli division machinery. Created by Ornella Trespidi A tutta la mia famiglia e in particolare a Diletta Table of contents Abstract ..................................................................................................... 1 Abbreviations ............................................................................................ 3 1. Introduction ........................................................................................... 5 1.1 Cystic fibrosis 5 1.1.1 CFTR defects in CF 5 1.1.2 Pathophysiology of CF 7 1.1.3 CFTR modulator therapies 11 1.2 CF-associated lung infections 12 1.2.1 Pseudomonas aeruginosa 13 1.2.2 Staphylococcus aureus 14 1.2.3 Stenotrophomonas maltophilia 15 1.2.4 Achromobacter xylosoxidans 16 1.2.5 Non-tuberculous mycobacteria 17 1.3 The genus Burkholderia 18 1.3.1 Burkholderia cepacia complex 20 1.3.2 Bcc species as CF pathogens 22 1.4 Burkholderia cenocepacia 23 1.4.1 B. cenocepacia epidemiology 23 1.4.2 B. cenocepacia genome 25 1.4.3 B. cenocepacia pathogenicity and virulence factors 26 1.4.3.1 Quorum sensing 29 1.4.3.2 Biofilm 32 1.4.4 B.
    [Show full text]
  • CGM-18-001 Perseus Report Update Bacterial Taxonomy Final Errata
    report Update of the bacterial taxonomy in the classification lists of COGEM July 2018 COGEM Report CGM 2018-04 Patrick L.J. RÜDELSHEIM & Pascale VAN ROOIJ PERSEUS BVBA Ordering information COGEM report No CGM 2018-04 E-mail: [email protected] Phone: +31-30-274 2777 Postal address: Netherlands Commission on Genetic Modification (COGEM), P.O. Box 578, 3720 AN Bilthoven, The Netherlands Internet Download as pdf-file: http://www.cogem.net → publications → research reports When ordering this report (free of charge), please mention title and number. Advisory Committee The authors gratefully acknowledge the members of the Advisory Committee for the valuable discussions and patience. Chair: Prof. dr. J.P.M. van Putten (Chair of the Medical Veterinary subcommittee of COGEM, Utrecht University) Members: Prof. dr. J.E. Degener (Member of the Medical Veterinary subcommittee of COGEM, University Medical Centre Groningen) Prof. dr. ir. J.D. van Elsas (Member of the Agriculture subcommittee of COGEM, University of Groningen) Dr. Lisette van der Knaap (COGEM-secretariat) Astrid Schulting (COGEM-secretariat) Disclaimer This report was commissioned by COGEM. The contents of this publication are the sole responsibility of the authors and may in no way be taken to represent the views of COGEM. Dit rapport is samengesteld in opdracht van de COGEM. De meningen die in het rapport worden weergegeven, zijn die van de auteurs en weerspiegelen niet noodzakelijkerwijs de mening van de COGEM. 2 | 24 Foreword COGEM advises the Dutch government on classifications of bacteria, and publishes listings of pathogenic and non-pathogenic bacteria that are updated regularly. These lists of bacteria originate from 2011, when COGEM petitioned a research project to evaluate the classifications of bacteria in the former GMO regulation and to supplement this list with bacteria that have been classified by other governmental organizations.
    [Show full text]
  • Identification of Pseudomonas Species and Other Non-Glucose Fermenters
    UK Standards for Microbiology Investigations Identification of Pseudomonas species and other Non- Glucose Fermenters Issued by the Standards Unit, Microbiology Services, PHE Bacteriology – Identification | ID 17 | Issue no: 3 | Issue date: 13.04.15 | Page: 1 of 41 © Crown copyright 2015 Identification of Pseudomonas species and other Non-Glucose Fermenters Acknowledgments UK Standards for Microbiology Investigations (SMIs) are developed under the auspices of Public Health England (PHE) working in partnership with the National Health Service (NHS), Public Health Wales and with the professional organisations whose logos are displayed below and listed on the website https://www.gov.uk/uk- standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical- laboratories. SMIs are developed, reviewed and revised by various working groups which are overseen by a steering committee (see https://www.gov.uk/government/groups/standards-for-microbiology-investigations- steering-committee). The contributions of many individuals in clinical, specialist and reference laboratories who have provided information and comments during the development of this document are acknowledged. We are grateful to the Medical Editors for editing the medical content. For further information please contact us at: Standards Unit Microbiology Services Public Health England 61 Colindale Avenue London NW9 5EQ E-mail: [email protected] Website: https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality- and-consistency-in-clinical-laboratories
    [Show full text]