Characterization of the Poxab Operon Encoding a Class D Carbapenemase in Pseudomonas Aeruginosa, Diansy Zincke Florida International University, [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of the Poxab Operon Encoding a Class D Carbapenemase in Pseudomonas Aeruginosa, Diansy Zincke Florida International University, Dzinc001@Fiu.Edu Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 3-20-2015 Characterization of the poxAB Operon Encoding a Class D Carbapenemase in Pseudomonas aeruginosa, Diansy Zincke Florida International University, [email protected] DOI: 10.25148/etd.FI15050210 Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Bacteriology Commons, Biology Commons, and the Pathogenic Microbiology Commons Recommended Citation Zincke, Diansy, "Characterization of the poxAB Operon Encoding a Class D Carbapenemase in Pseudomonas aeruginosa," (2015). FIU Electronic Theses and Dissertations. 1794. https://digitalcommons.fiu.edu/etd/1794 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida CHARACTERIZATION OF THE POXAB OPERON ENCODING A CLASS D CARBAPENEMASE IN PSEUDOMONAS AERUGINOSA A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BIOLOGY by Diansy Zincke 2015 To: Dean Michael R. Heithaus College of Arts and Sciences This dissertation, written by Diansy Zincke, and entitled Characterization of the poxAB Operon Encoding a Class D Carbapenemase in Pseudomonas aeruginosa, having been approved in respect to style and intellectual content, is referred to you for judgment. We have read this dissertation and recommend that it be approved. _______________________________________ Alejandro Barbieri _______________________________________ Ruben L. Gonzalez _______________________________________ John Makemson _______________________________________ Lynn L. Silver _______________________________________ Kalai Mathee, Major Professor Date of Defense: March 20, 2015 The dissertation of Diansy Zincke is approved. _______________________________________ Dean Michael R. Heithaus College of Arts and Sciences _______________________________________ Dean Lakshmi N. Reddi University Graduate School Florida International University, 2015 ii DEDICATION This work is dedicated to my grandmother Marina Diaz Linares and to my parents Maria R. Quintero and Armando Zincke for their constant guidance, support and unconditional love. iii ACKNOWLEDGMENTS First and foremost, I would like to thank my PhD advisor Dr. Kalai Mathee for her continued guidance and support throughout my journey with her. I have learned a lot from her and I’m sure her influence and impact on my life will persist for a long time. I would also like to thank my committee members, Alejandro Barbieri, Ruben Gonzalez, John Makemson and Lynn Silver, for their insightful criticism and guidance throughout the years. I have met many wonderful people throughout my time in the Mathee lab and have derived a lot of support from these colleagues. The Mathee crew has become my family and I’m very grateful to have shared this journey with such a diverse and determined group of people. I’m also very grateful to the financial support provided by the FIU MBRS-RISE (NIH/NIGMS R25 GM61347), the FIU Biology TAship, the Student Summer Research Award (RISE Biomedical Research Initiative, 08/09) and the Cystic Fibrosis Foundation (ZINCKE08H0). Last but not least, I would like to thank my family and friends for being supportive and patient. iv ABSTRACT OF THE DISSERTATION CHARACTERIZATION OF THE POXAB OPERON ENCODING A CLASS D CARBAPENEMASE IN PSEUDOMONAS AERUGINOSA by Diansy Zincke Florida International University, 2015 Miami, Florida Professor Kalai Mathee, Major Professor Pseudomonas aeruginosa is a dreaded opportunistic pathogen that causes severe and often intractable infections in immunocompromised and critically ill patients. This bacterium is also the primary cause of fatal lung infections in patients with cystic fibrosis and a leading nosocomial pathogen responsible for nearly 10% of all hospital-acquired infections. P. aeruginosa is intrinsically recalcitrant to most classes of antibiotics and has the ability to acquire additional resistance during treatment. In particular, resistance to the widely used β-lactam antibiotics is frequently mediated by the expression of AmpC, a chromosomally encoded β-lactamase that is ubiquitously found in P. aeruginosa strains. This dissertation delved into the role of a recently reported chromosomal β-lactamase in P. aeruginosa called PoxB. To date, no detailed studies have addressed the regulation of poxB expression and its contribution to β-lactam resistance in P. aeruginosa. In an effort to better understand the role of this β-lactamase, poxB was deleted from the chromosome and expressed in trans from an IPTG-inducible promoter. The loss of poxB did not affect susceptibility. However, expression in trans in the absence of ampC rendered strains v more resistant to the carbapenem β-lactams. The carbapenem-hydrolyzing phenotype was enhanced, reaching intermediate and resistant clinical breakpoints, in the absence of the carbapenem-specific outer membrane porin OprD. As observed for most class D β- lactamases, PoxB was only weakly inhibited by the currently available β-lactamase inhibitors. Moreover, poxB was shown to form an operon with the upstream located poxA, whose expression in trans decreased pox promoter (Ppox) activity suggesting autoregulation. The transcriptional regulator AmpR negatively controlled Ppox activity, however no direct interaction could be demonstrated. A mariner transposon library identified genes involved in the transport of polyamines as potential regulators of pox expression. Unexpectedly, polyamines themselves were able induce resistance to carbapenems. In summary, P. aeruginosa carries a chromosomal-encoded β-lactamase PoxB that can provide resistance against the clinically relevant carbapenems despite its narrow spectrum of hydrolysis and whose activity in vivo may be regulated by polyamines. vi TABLE OF CONTENTS CHAPTER PAGE Chapter 1 ............................................................................................................................. 1 Introduction ..................................................................................................................... 1 1.1 Preface .................................................................................................................. 2 1. 2 Pseudomonas aeruginosa ..................................................................................... 2 1.2.1 Habitat ........................................................................................................... 5 1.2.2 P. aeruginosa infections in healthy individuals ............................................ 6 1.2.3 P. aeruginosa in nosocomial or healthcare-associated infections ................ 7 1.2.4 P. aeruginosa in immunocompromised patients .......................................... 8 1.2.5 P. aeruginosa and cystic fibrosis ................................................................ 10 1.2.6 Treatment .................................................................................................... 17 1.3 Mechanisms of intrinsic antibiotic resistance .................................................... 20 1.3.1 Extrapermeability barrier ............................................................................ 21 1.3.1.1 LPS as a barrier and lipid-mediated uptake ............................................. 23 1.3.1.2 Porin-mediated transport .......................................................................... 25 1.3.2 Efflux pumps ............................................................................................... 27 1.3.3 Alteration and modification of penicillin-binding proteins ........................ 32 1.3.4 Expression of β-lactamases ......................................................................... 35 1.4 β-lactams ............................................................................................................ 36 1.4.1 Mechanism of action of β-lactams .............................................................. 44 1.5 β-lactamases ....................................................................................................... 45 1.5.1 Mechanism of action ................................................................................... 46 1.5.2 Classification............................................................................................... 47 1.5.2.1 Molecular class A .................................................................................... 48 1.5.2.2 Molecular class B ..................................................................................... 52 1.5.2.3 Molecular class C ..................................................................................... 57 1.5.2.4 Molecular class D .................................................................................... 60 1.5.3 Genetics of inducible class C β-lactamases ................................................ 64 1.5.4 Genetics of class D β-lactamases ................................................................ 66 1.5.5 The pox operon ........................................................................................... 67 Chapter 2 ........................................................................................................................... 70 Characterization of a carbapenem-hydrolyzing enzyme,
Recommended publications
  • Developing a Genetic Manipulation System for the Antarctic Archaeon, Halorubrum Lacusprofundi: Investigating Acetamidase Gene Function
    www.nature.com/scientificreports OPEN Developing a genetic manipulation system for the Antarctic archaeon, Halorubrum lacusprofundi: Received: 27 May 2016 Accepted: 16 September 2016 investigating acetamidase gene Published: 06 October 2016 function Y. Liao1, T. J. Williams1, J. C. Walsh2,3, M. Ji1, A. Poljak4, P. M. G. Curmi2, I. G. Duggin3 & R. Cavicchioli1 No systems have been reported for genetic manipulation of cold-adapted Archaea. Halorubrum lacusprofundi is an important member of Deep Lake, Antarctica (~10% of the population), and is amendable to laboratory cultivation. Here we report the development of a shuttle-vector and targeted gene-knockout system for this species. To investigate the function of acetamidase/formamidase genes, a class of genes not experimentally studied in Archaea, the acetamidase gene, amd3, was disrupted. The wild-type grew on acetamide as a sole source of carbon and nitrogen, but the mutant did not. Acetamidase/formamidase genes were found to form three distinct clades within a broad distribution of Archaea and Bacteria. Genes were present within lineages characterized by aerobic growth in low nutrient environments (e.g. haloarchaea, Starkeya) but absent from lineages containing anaerobes or facultative anaerobes (e.g. methanogens, Epsilonproteobacteria) or parasites of animals and plants (e.g. Chlamydiae). While acetamide is not a well characterized natural substrate, the build-up of plastic pollutants in the environment provides a potential source of introduced acetamide. In view of the extent and pattern of distribution of acetamidase/formamidase sequences within Archaea and Bacteria, we speculate that acetamide from plastics may promote the selection of amd/fmd genes in an increasing number of environmental microorganisms.
    [Show full text]
  • Comparative Genomics of Pandoraea, a Genus Enriched in Xenobiotic Biodegradation and Metabolism
    fmicb-10-02556 November 4, 2019 Time: 15:40 # 1 ORIGINAL RESEARCH published: 06 November 2019 doi: 10.3389/fmicb.2019.02556 Comparative Genomics of Pandoraea, a Genus Enriched in Xenobiotic Biodegradation and Metabolism Charlotte Peeters1, Evelien De Canck1, Margo Cnockaert1, Evie De Brandt1, Cindy Snauwaert2, Bart Verheyde1, Eliza Depoorter1, Theodore Spilker3, John J. LiPuma3 and Peter Vandamme1,2* 1 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium, 2 BCCM/LMG Bacteria Collection, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent Edited by: University, Ghent, Belgium, 3 Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States Iain Sutcliffe, Northumbria University, United Kingdom Comparative analysis of partial gyrB, recA, and gltB gene sequences of 84 Pandoraea Reviewed by: reference strains and field isolates revealed several clusters that included no taxonomic Martin W. Hahn, reference strains. The gyrB, recA, and gltB phylogenetic trees were used to select 27 University of Innsbruck, Austria Stephanus Nicolaas Venter, strains for whole-genome sequence analysis and for a comparative genomics study that University of Pretoria, South Africa also included 41 publicly available Pandoraea genome sequences. The phylogenomic Aharon Oren, The Hebrew University of Jerusalem, analyses included a Genome BLAST Distance Phylogeny approach to calculate pairwise Israel digital DNA–DNA hybridization values and their
    [Show full text]
  • Downloaded from the JGI’S Genome Portal
    bioRxiv preprint doi: https://doi.org/10.1101/427211; this version posted October 3, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Title: Community structure of phototrophic co-cultures from extreme environments 2 Charles Brooke1, Morgan P. Connolly2, Javier A. Garcia3, Miranda Harmon-Smith4, 3 Nicole Shapiro4, Erik Hawley5, Michael Barton4, Susannah G. Tringe4, Tijana Glavina del 4 Rio4, David E. Culley6, Richard Castenholz7 and *Matthias Hess1, 4 5 6 1Systems Microbiology & Natural Products Laboratory, University of California, Davis, CA 7 2Microbiology Graduate Group, University of California, Davis, CA 8 3Biochemistry, Molecular, Cellular, and Developmental Biology Graduate Group, University of 9 California, Davis, CA 10 4DOE Joint Genome Institute, Walnut Creek, CA 11 5Bayer, Pittsburg, PA 12 6LifeMine, Cambridge, MA 13 7University of Oregon, Eugene, OR 14 15 16 *Corresponding author: Matthias Hess 17 University of California, Davis 18 1 Shields Ave 19 Davis, CA 95616, USA 20 P (530) 530-752-8809 21 F (530) 752-0175 22 [email protected] 23 24 1 bioRxiv preprint doi: https://doi.org/10.1101/427211; this version posted October 3, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 25 ABSTRACT 26 Cyanobacteria are found in most illuminated environments and are key players in global 27 carbon and nitrogen cycling.
    [Show full text]
  • <I>MICROCYSTIS</I> BLOOMS
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2018 MOLECULAR CHARACTERIZATION OF FACTORS CONSTRAINING THE SUCCESS AND TOXICITY OF MICROCYSTIS BLOOMS Lauren Elisabeth Krausfeldt University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Krausfeldt, Lauren Elisabeth, "MOLECULAR CHARACTERIZATION OF FACTORS CONSTRAINING THE SUCCESS AND TOXICITY OF MICROCYSTIS BLOOMS. " PhD diss., University of Tennessee, 2018. https://trace.tennessee.edu/utk_graddiss/5030 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Lauren Elisabeth Krausfeldt entitled "MOLECULAR CHARACTERIZATION OF FACTORS CONSTRAINING THE SUCCESS AND TOXICITY OF MICROCYSTIS BLOOMS." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Microbiology. Steven W. Wilhelm, Major Professor We have read this dissertation and recommend its acceptance: Alison Buchan, Shawn R. Campagna, Karen G. Lloyd Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) MOLECULAR CHARACTERIZATION OF FACTORS CONSTRAINING THE SUCCESS AND TOXICITY OF MICROCYSTIS BLOOMS A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Lauren Elisabeth Krausfeldt August 2018 Copyright © 2018 by Lauren E.
    [Show full text]
  • P1761 Paper Poster Session Microbial Pathogenesis and Virulence
    P1761 Paper Poster Session Microbial pathogenesis and virulence The Burkholderia contaminans operon participates in switching on the biofilm formation Olga Voronina1, Marina Kunda*1, Natalia Ruzhova1, Andrey Semenov1, Yulia Romanova1 1N.F. Gamaleya Research Center for Epidemiology and Microbiology, Ministry of Health of Russia, Moscow, Russian Federation Background: Burkholderia cepacia complex (Bcc) bacteria - opportunistic pathogens causing nosocomial infections, are especially dangerous for cystic fibrosis patients. Biofilm formation (BF) helps Bcc to escape the antimicrobial agents’ effect and complicates the Bcc eradication. The two component signal (TCS) transduction systems are in charge of the BF. The purpose of our investigation was the most important TCS determination. Material/methods: High biofilm producer (HBP) clinical strain B. contaminans GIMC4509:Bct370 and lacking biofilm production (LBP) B. contaminans strain GIMC4587:Bct370-19 were used. Last one was obtained Romanova et al. by insertion modification of clinical strain with plasposon pTnMod-RKm. The strains were analyzed by Whole-genome sequencing and Liquid Chromatography Mass Spectrometry (LC-MC). 454 Sequencing System Software V 2.7 (Roche), RAST, BioCyc Database Collection, InterPro, MaxQuant were used for genome assembling, annotation, operons prediction, proteins’ domains detection and proteins after MC identification. Operons sequences were deposited in GenBank under the accession numbers KP288491, KP288492. Results: There are 37 two component transcriptional regulators (TCTR) genes in B. contaminans or B. lata genomes. Most of them are located with sensor signal transduction histidine kinase genes in operon one after the other. We found out four components operon, in which gene of peptidoglycan binding protein with FecR domain was embedded between the TCTR and kinase genes.
    [Show full text]
  • Quorum Sensing Activity in Pandoraea Pnomenusa RB38
    Sensors 2014, 14, 10177-10186; doi:10.3390/s140610177 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Article Quorum Sensing Activity in Pandoraea pnomenusa RB38 Robson Ee, Yan-Lue Lim, Lin-Xin Kin, Wai-Fong Yin and Kok-Gan Chan * Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: [email protected] (R.E.); [email protected] (Y.-L.L.); [email protected] (L.-X.K.); [email protected] (W.-F.Y.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +60-37967-5162; Fax: +60-37967-4509. Received: 5 March 2014; in revised form: 25 May 2014 / Accepted: 28 May 2014 / Published: 10 June 2014 Abstract: Strain RB38 was recovered from a former dumping area in Malaysia. MALDI-TOF mass spectrometry and genomic analysis identified strain RB-38 as Pandoraea pnomenusa. Various biosensors confirmed its quorum sensing properties. High resolution triple quadrupole liquid chromatography–mass spectrometry analysis was subsequently used to characterize the N-acyl homoserine lactone production profile of P. pnomenusa strain RB38, which validated that this isolate produced N-octanoyl homoserine lactone as a quorum sensing molecule. This is the first report of the production of N-octanoyl homoserine lactone by P. pnomenusa strain RB38. Keywords: matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF); mass spectrometry (MS); cell-to cell communication; triple quodruopole liquid chromatography mass spectrometry (LC-MS/MS); N-octanoyl homoserine lactone (C8-HSL) 1. Introduction Pandoraea is a Gram-negative rod shape proteobacteria of the Burkholderiaceae family that is often isolated from sputa of cystic fibrosis patients and soil [1].
    [Show full text]
  • Genome of Ca. Pandoraea Novymonadis, an Endosymbiotic Bacterium of the Trypanosomatid Novymonas Esmeraldas
    fmicb-08-01940 September 30, 2017 Time: 16:0 # 1 ORIGINAL RESEARCH published: 04 October 2017 doi: 10.3389/fmicb.2017.01940 Genome of Ca. Pandoraea novymonadis, an Endosymbiotic Bacterium of the Trypanosomatid Novymonas esmeraldas Alexei Y. Kostygov1,2†, Anzhelika Butenko1,3†, Anna Nenarokova3,4, Daria Tashyreva3, Pavel Flegontov1,3,5, Julius Lukeš3,4 and Vyacheslav Yurchenko1,3,6* 1 Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia, 2 Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia, 3 Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceskéˇ Budejovice,ˇ Czechia, 4 Faculty of Sciences, University of South Bohemia, Ceskéˇ Budejovice,ˇ Czechia, 5 Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia, 6 Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czechia We have sequenced, annotated, and analyzed the genome of Ca. Pandoraea novymonadis, a recently described bacterial endosymbiont of the trypanosomatid Novymonas esmeraldas. When compared with genomes of its free-living relatives, it Edited by: has all the hallmarks of the endosymbionts’ genomes, such as significantly reduced João Marcelo Pereira Alves, University of São Paulo, Brazil size, extensive gene loss, low GC content, numerous gene rearrangements, and Reviewed by: low codon usage bias. In addition, Ca. P. novymonadis lacks mobile elements, Zhao-Rong Lun, has a strikingly low number of pseudogenes, and almost all genes are single Sun Yat-sen University, China Vera Tai, copied. This suggests that it already passed the intensive period of host adaptation, University of Western Ontario, Canada which still can be observed in the genome of Polynucleobacter necessarius, a *Correspondence: certainly recent endosymbiont.
    [Show full text]
  • Phylogeny and Polyphasic Taxonomy of Caulobacter Species. Proposal of Maricaulis Gen
    International Journal of Systematic Bacteriology (1 999), 49, 1053-1 073 Printed in Great Britain Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundirnonas and Caulobacter Wolf-Rainer Abraham,' Carsten StrOmpl,l Holger Meyer, Sabine Lindholst,l Edward R. B. Moore,' Ruprecht Christ,' Marc Vancanneyt,' B. J. Tindali,3 Antonio Bennasar,' John Smit4 and Michael Tesar' Author for correspondence: Wolf-Rainer Abraham. Tel: +49 531 6181 419. Fax: +49 531 6181 41 1. e-mail : [email protected] Gesellschaft fur The genus Caulobacter is composed of prosthecate bacteria often specialized Biotechnologische for oligotrophic environments. The taxonomy of Caulobacter has relied Forschung mbH, primarily upon morphological criteria: a strain that visually appeared to be a Mascheroder Weg 1, D- 38124 Braunschweig, member of the Caulobacter has generally been called one without Germany challenge. A polyphasic approach, comprising 165 rDNA sequencing, profiling Laboratorium voor restriction fragments of 165-235 rDNA interspacer regions, lipid analysis, Microbiologie, Universiteit immunological profiling and salt tolerance characterizations, was used Gent, Gent, Belgium to clarify the taxonomy of 76 strains of the genera Caulobacter, Deutsche Sammlung von Brevundimonas, Hyphomonas and Mycoplana. The described species of the Mikroorganismen und genus Caulobacter formed a paraphyletic group with Caulobacter henricii, Zellkulturen, Caulobacter fusiformis, Caulobacter vibrioides and Mycoplana segnis Braunschweig, Germany (Caulobacter segnis comb. nov.) belonging to Caulobacter sensu stricto. Dept of Microbiology and Caulobacter bacteroides (Brevundimonas bacteroides comb. nov.), C. henricii Immunology, University of subsp. aurantiacus (Brevundimonas aurantiaca comb. nov.), Caulobacter British Columbia, intermedius (Brevundimonas intermedia comb.
    [Show full text]
  • Morphological and Molecular Approaches to Characterise Modifications Relating to Mammalian Hairs in Archaeological, Paleontological and Forensic Contexts
    MORPHOLOGICAL AND MOLECULAR APPROACHES TO CHARACTERISE MODIFICATIONS RELATING TO MAMMALIAN HAIRS IN ARCHAEOLOGICAL, PALEONTOLOGICAL AND FORENSIC CONTEXTS Silvana Rose Tridico BSc (Hons) in Applied Biology (University of Hertford, UK) THIS THESIS IS PRESENTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN BIOLOGICAL SCIENCES MURDOCH UNIVERSITY School of Veterinary and Life Sciences 2015 DECLARATION I declare that this is my own account of my research and contains, as its main content, work that has not previously been submitted for a degree at any tertiary education institution. Silvana R. Tridico ii ABSTRACT Mammalian hair is readily shed and transferred to persons or objects during contact; this property renders hair as one of the most ubiquitous and prevalent evidence type encountered in forensic investigations and at ancient burial sites. The durability and stability of hair ensures their survival for millennia; their status as a privileged repository of viable genetic material consolidates their value as a biological substrate. The aims of this thesis are to showcase the wealth, and breadth, of information that may be gleaned from these unique structures and address the current problem regarding the mis-identification of animal hairs. Despite the similar appearance of human and animal hairs, the expertise required to accurately interpret their respective structures requires significantly different skill sets. Chapter Two in this thesis discusses the consequences of mis-identification of hair structures due to lack of competency or adequate training in regards to hair examiners and discusses some of the myths and misconceptions associated with microscopy of hairs. Hairs are resilient structures capable of surviving for millennia as exemplified by extinct megafauna hairs; however, they are not totally immune to deleterious effects of environmental insults or biodegradation.
    [Show full text]
  • Understanding Physiological Adaptations, Metabolic Potential And
    UNDERSTANDING PHYSIOLOGICAL ADAPTATIONS, METABOLIC POTENTIAL AND ECOLOGY IN A NOVEL PHOTOAUTOTROPHIC ALGA FOR BIOFUEL PRODUCTION by Luisa Fernanda Corredor Arias A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Microbiology MONTANA STATE UNIVERSITY Bozeman, Montana November 2019 ©COPYRIGHT by Luisa Fernanda Corredor Arias 2019 All Rights Reserved ii DEDICATION To Ben, the love of my life, partner in crime and my happy place. Your love, support, devotion and kindness are beyond measure. To our little sunshine Lily. You turned my world into a wonderful rollercoaster of love and filled my life with joy and purpose. Para mi mamá Magda, por el inmenso amor, la dedicación y la ternura que siempre me brinda. Para mi papá Germán, quién despertó en mi la pasión por la ciencia y el conocimiento. iii ACKNOWLEDGEMENTS I would like to thank the Fulbright Scholarship Program for opening my mind to the world and its endless possibilities. It truly changed my life in the most positive ways. I would like to thank my advisor, Dr. Matthew Fields, for giving me the chance to be part of his lab, the opportunities he provided for my professional development and for his support and advice for the last seven years of my life. I am very grateful to my committee members, Drs. Robin Gerlach, Mensur Dlakic and Abigail Richards for their support and always taking the time to help me, teach me and guide me through grad school and science. A special thank you to former and current members of the Fields lab for their support and friendship, coming to work was always great fun.
    [Show full text]
  • Identification of Pseudomonas Species and Other Non-Glucose Fermenters
    UK Standards for Microbiology Investigations Identification of Pseudomonas species and other Non- Glucose Fermenters Issued by the Standards Unit, Microbiology Services, PHE Bacteriology – Identification | ID 17 | Issue no: 3 | Issue date: 13.04.15 | Page: 1 of 41 © Crown copyright 2015 Identification of Pseudomonas species and other Non-Glucose Fermenters Acknowledgments UK Standards for Microbiology Investigations (SMIs) are developed under the auspices of Public Health England (PHE) working in partnership with the National Health Service (NHS), Public Health Wales and with the professional organisations whose logos are displayed below and listed on the website https://www.gov.uk/uk- standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical- laboratories. SMIs are developed, reviewed and revised by various working groups which are overseen by a steering committee (see https://www.gov.uk/government/groups/standards-for-microbiology-investigations- steering-committee). The contributions of many individuals in clinical, specialist and reference laboratories who have provided information and comments during the development of this document are acknowledged. We are grateful to the Medical Editors for editing the medical content. For further information please contact us at: Standards Unit Microbiology Services Public Health England 61 Colindale Avenue London NW9 5EQ E-mail: [email protected] Website: https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality- and-consistency-in-clinical-laboratories
    [Show full text]
  • Antimicrobially Active Microorganisms Associated with Marine Bryozoans
    Antimicrobially active microorganisms associated with marine bryozoans Wirkstoffproduzierende Mikroorganismen assoziiert mit marinen Bryozoen Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Herwig Heindl Kiel, 2011 Referent/in: Prof. Dr. Johannes F. Imhoff Koreferent/in: Prof. Dr. Peter Schönheit Tag der mündlichen Prüfung: 13.05.2011 Zum Druck genehmigt: Kiel, 13.05.2011 gez. Prof. Dr. Lutz Kipp, Dekan II In Erinnerung an meine Oma “I love deadlines. I like the whooshing sound they make as they fly by.” Douglas Adams (1952 – 2001) III Table of contents Summary .................................................................................................................................... 1 Zusammenfassung...................................................................................................................... 2 General introduction................................................................................................................... 4 Bryozoans............................................................................................................................... 4 Bryozoan-natural products ..................................................................................................... 8 Bryozoan-microbe associations............................................................................................ 11 The role of natural products in drug discovery - a focus on anti-infectives........................
    [Show full text]