The Variability of the Order Burkholderiales Representatives in the Healthcare Units
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Isolation and Characterization of Achromobacter Sp. CX2 From
Ann Microbiol (2015) 65:1699–1707 DOI 10.1007/s13213-014-1009-6 ORIGINAL ARTICLE Isolation and characterization of Achromobacter sp. CX2 from symbiotic Cytophagales, a non-cellulolytic bacterium showing synergism with cellulolytic microbes by producing β-glucosidase Xiaoyi Chen & Ying Wang & Fan Yang & Yinbo Qu & Xianzhen Li Received: 27 August 2014 /Accepted: 24 November 2014 /Published online: 10 December 2014 # Springer-Verlag Berlin Heidelberg and the University of Milan 2014 Abstract A Gram-negative, obligately aerobic, non- degradation by cellulase (Carpita and Gibeaut 1993). There- cellulolytic bacterium was isolated from the cellulolytic asso- fore, efficient degradation is the result of multiple activities ciation of Cytophagales. It exhibits biochemical properties working synergistically to efficiently solubilize crystalline cel- that are consistent with its classification in the genus lulose (Sánchez et al. 2004;Lietal.2009). Most known Achromobacter. Phylogenetic analysis together with the phe- cellulolytic organisms produce multiple cellulases that act syn- notypic characteristics suggest that the isolate could be a novel ergistically on native cellulose (Wilson 2008)aswellaspro- species of the genus Achromobacter and designated as CX2 (= duce some other proteins that enhance cellulose hydrolysis CGMCC 1.12675=CICC 23807). The strain CX2 is the sym- (Wang et al. 2011a, b). Synergistic cooperation of different biotic microbe of Cytophagales and produces β-glucosidase. enzymes is a prerequisite for the efficient degradation of cellu- The results showed that the non-cellulolytic Achromobacter lose (Jalak et al. 2012). Both Trichoderma reesi and Aspergillus sp. CX2 has synergistic activity with cellulolytic microbes by niger were co-cultured to increase the levels of different enzy- producing β-glucosidase. -
Crystal Structures of the Burkholderia Multivorans Hopanoid Transporter Hpnn
Crystal structures of the Burkholderia multivorans hopanoid transporter HpnN Nitin Kumara,1, Chih-Chia Sub,1, Tsung-Han Choub, Abhijith Radhakrishnana, Jared A. Delmarb, Kanagalaghatta R. Rajashankarc,d, and Edward W. Yua,b,2 aDepartment of Chemistry, Iowa State University, Ames, IA 50011; bDepartment of Physics and Astronomy, Iowa State University, IA 50011; cNortheastern Collaborative Access Team, Argonne National Laboratory, Argonne, IL 60439; and dDepartment of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850 Edited by Eric Gouaux, Oregon Health and Science University, Portland, OR, and approved May 15, 2017 (received for review November 30, 2016) Strains of the Burkholderia cepacia complex (Bcc) are Gram-negative critical line of defense against antimicrobial agents in Burkholderia opportunisitic bacteria that are capable of causing serious diseases, species is the permeability barrier of the outer membrane. Most of mainly in immunocompromised individuals. Bcc pathogens are in- these species contain a modified lipopolysaccharide, which results in trinsically resistant to multiple antibiotics, including β-lactams, ami- polymyxin resistance (13). In addition, the permeability of the major noglycosides, fluoroquinolones, and polymyxins. They are major outer membrane porin channel Omp38 appears to be low for an- pathogens in patients with cystic fibrosis (CF) and can cause severe tibiotics (14). The presence of a large number of multidrug efflux necrotizing pneumonia, which is often fatal. Hopanoid biosynthesis pumps, belonging to the resistance-nodulation-cell division (RND) is one of the major mechanisms involved in multiple antimicrobial superfamily, also plays a major role in the intrinsic resistance to a resistance of Bcc pathogens. The hpnN gene of B. -
Multilayered Horizontal Operon Transfers from Bacteria Reconstruct a Thiamine Salvage Pathway in Yeasts
Multilayered horizontal operon transfers from bacteria reconstruct a thiamine salvage pathway in yeasts Carla Gonçalvesa and Paula Gonçalvesa,1 aApplied Molecular Biosciences Unit-UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal Edited by Edward F. DeLong, University of Hawaii at Manoa, Honolulu, HI, and approved September 22, 2019 (received for review June 14, 2019) Horizontal acquisition of bacterial genes is presently recognized as nisms presumed to have facilitated a transition from bacterial an important contribution to the adaptation and evolution of operon transcription to eukaryotic-style gene expression were eukaryotic genomes. However, the mechanisms underlying ex- proposed, such as gene fusion giving rise to multifunctional pro- pression and consequent selection and fixation of the prokaryotic teins (6, 23, 24), increase in intergenic distances between genes to genes in the new eukaryotic setting are largely unknown. Here we generate room for eukaryotic promoters, and independent tran- show that genes composing the pathway for the synthesis of the scription producing mRNAs with poly(A) tails have been dem- essential vitamin B1 (thiamine) were lost in an ancestor of a yeast onstrated (22). In the best documented study, which concerns a lineage, the Wickerhamiella/Starmerella (W/S) clade, known to bacterial siderophore biosynthesis operon acquired by yeasts be- harbor an unusually large number of genes of alien origin. The longing to the Wickerhamiella/Starmerella (W/S) clade, the bacte- thiamine pathway was subsequently reassembled, at least twice, rial genes acquired as an operon were shown to be functional (22). by multiple HGT events from different bacterial donors involving Thiamine, commonly known as vitamin B1, is essential for all both single genes and entire operons. -
Response of Heterotrophic Stream Biofilm Communities to a Gradient of Resources
The following supplement accompanies the article Response of heterotrophic stream biofilm communities to a gradient of resources D. J. Van Horn1,*, R. L. Sinsabaugh1, C. D. Takacs-Vesbach1, K. R. Mitchell1,2, C. N. Dahm1 1Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA 2Present address: Department of Microbiology & Immunology, University of British Columbia Life Sciences Centre, Vancouver BC V6T 1Z3, Canada *Email: [email protected] Aquatic Microbial Ecology 64:149–161 (2011) Table S1. Representative sequences for each OTU, associated GenBank accession numbers, and taxonomic classifications with bootstrap values (in parentheses), generated in mothur using 14956 reference sequences from the SILVA data base Treatment Accession Sequence name SILVA taxonomy classification number Control JF695047 BF8FCONT18Fa04.b1 Bacteria(100);Proteobacteria(100);Gammaproteobacteria(100);Pseudomonadales(100);Pseudomonadaceae(100);Cellvibrio(100);unclassified; Control JF695049 BF8FCONT18Fa12.b1 Bacteria(100);Proteobacteria(100);Alphaproteobacteria(100);Rhizobiales(100);Methylocystaceae(100);uncultured(100);unclassified; Control JF695054 BF8FCONT18Fc01.b1 Bacteria(100);Planctomycetes(100);Planctomycetacia(100);Planctomycetales(100);Planctomycetaceae(100);Isosphaera(50);unclassified; Control JF695056 BF8FCONT18Fc04.b1 Bacteria(100);Proteobacteria(100);Gammaproteobacteria(100);Xanthomonadales(100);Xanthomonadaceae(100);uncultured(64);unclassified; Control JF695057 BF8FCONT18Fc06.b1 Bacteria(100);Proteobacteria(100);Betaproteobacteria(100);Burkholderiales(100);Comamonadaceae(100);Ideonella(54);unclassified; -
Ancient Metaproteomics: a Novel Approach for Understanding Disease And
Ancient metaproteomics: a novel approach for understanding disease and diet in the archaeological record Jessica Hendy PhD University of York Archaeology August, 2015 ii Abstract Proteomics is increasingly being applied to archaeological samples following technological developments in mass spectrometry. This thesis explores how these developments may contribute to the characterisation of disease and diet in the archaeological record. This thesis has a three-fold aim; a) to evaluate the potential of shotgun proteomics as a method for characterising ancient disease, b) to develop the metaproteomic analysis of dental calculus as a tool for understanding both ancient oral health and patterns of individual food consumption and c) to apply these methodological developments to understanding individual lifeways of people enslaved during the 19th century transatlantic slave trade. This thesis demonstrates that ancient metaproteomics can be a powerful tool for identifying microorganisms in the archaeological record, characterising the functional profile of ancient proteomes and accessing individual patterns of food consumption with high taxonomic specificity. In particular, analysis of dental calculus may be an extremely valuable tool for understanding the aetiology of past oral diseases. Results of this study highlight the value of revisiting previous studies with more recent methodological approaches and demonstrate that biomolecular preservation can have a significant impact on the effectiveness of ancient proteins as an archaeological tool for this characterisation. Using the approaches developed in this study we have the opportunity to increase the visibility of past diseases and their aetiology, as well as develop a richer understanding of individual lifeways through the production of molecular life histories. iii iv List of Contents Abstract ............................................................................................................................... -
Developing a Genetic Manipulation System for the Antarctic Archaeon, Halorubrum Lacusprofundi: Investigating Acetamidase Gene Function
www.nature.com/scientificreports OPEN Developing a genetic manipulation system for the Antarctic archaeon, Halorubrum lacusprofundi: Received: 27 May 2016 Accepted: 16 September 2016 investigating acetamidase gene Published: 06 October 2016 function Y. Liao1, T. J. Williams1, J. C. Walsh2,3, M. Ji1, A. Poljak4, P. M. G. Curmi2, I. G. Duggin3 & R. Cavicchioli1 No systems have been reported for genetic manipulation of cold-adapted Archaea. Halorubrum lacusprofundi is an important member of Deep Lake, Antarctica (~10% of the population), and is amendable to laboratory cultivation. Here we report the development of a shuttle-vector and targeted gene-knockout system for this species. To investigate the function of acetamidase/formamidase genes, a class of genes not experimentally studied in Archaea, the acetamidase gene, amd3, was disrupted. The wild-type grew on acetamide as a sole source of carbon and nitrogen, but the mutant did not. Acetamidase/formamidase genes were found to form three distinct clades within a broad distribution of Archaea and Bacteria. Genes were present within lineages characterized by aerobic growth in low nutrient environments (e.g. haloarchaea, Starkeya) but absent from lineages containing anaerobes or facultative anaerobes (e.g. methanogens, Epsilonproteobacteria) or parasites of animals and plants (e.g. Chlamydiae). While acetamide is not a well characterized natural substrate, the build-up of plastic pollutants in the environment provides a potential source of introduced acetamide. In view of the extent and pattern of distribution of acetamidase/formamidase sequences within Archaea and Bacteria, we speculate that acetamide from plastics may promote the selection of amd/fmd genes in an increasing number of environmental microorganisms. -
Differentiating Two Closely Related Alexandrium Species Using Comparative Quantitative Proteomics
toxins Article Differentiating Two Closely Related Alexandrium Species Using Comparative Quantitative Proteomics Bryan John J. Subong 1,2,* , Arturo O. Lluisma 1, Rhodora V. Azanza 1 and Lilibeth A. Salvador-Reyes 1,* 1 Marine Science Institute, University of the Philippines- Diliman, Velasquez Street, Quezon City 1101, Philippines; [email protected] (A.O.L.); [email protected] (R.V.A.) 2 Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo City, Tokyo 113-8654, Japan * Correspondence: [email protected] (B.J.J.S.); [email protected] (L.A.S.-R.) Abstract: Alexandrium minutum and Alexandrium tamutum are two closely related harmful algal bloom (HAB)-causing species with different toxicity. Using isobaric tags for relative and absolute quantita- tion (iTRAQ)-based quantitative proteomics and two-dimensional differential gel electrophoresis (2D-DIGE), a comprehensive characterization of the proteomes of A. minutum and A. tamutum was performed to identify the cellular and molecular underpinnings for the dissimilarity between these two species. A total of 1436 proteins and 420 protein spots were identified using iTRAQ-based proteomics and 2D-DIGE, respectively. Both methods revealed little difference (10–12%) between the proteomes of A. minutum and A. tamutum, highlighting that these organisms follow similar cellular and biological processes at the exponential stage. Toxin biosynthetic enzymes were present in both organisms. However, the gonyautoxin-producing A. minutum showed higher levels of osmotic growth proteins, Zn-dependent alcohol dehydrogenase and type-I polyketide synthase compared to the non-toxic A. tamutum. Further, A. tamutum had increased S-adenosylmethionine transferase that may potentially have a negative feedback mechanism to toxin biosynthesis. -
Product Information Sheet for NR-705
Product Information Sheet for NR-705 Burkholderia multivorans, Strain LMG stored at -60°C or colder immediately upon arrival. For ® long-term storage, the vapor phase of a liquid nitrogen 13010 (ATCC BAA-247) freezer is recommended. Freeze-thaw cycles should be avoided. Catalog No. NR-705 (Derived from ATCC® BAA-247) Growth Conditions: Media: Tryptic Soy broth or equivalent For research only. Not for human use. Tryptic Soy agar or equivalent Incubation: Contributor: ® Temperature: 30°C ATCC Atmosphere: Aerobic Propagation: Manufacturer: 1. Keep vial frozen until ready for use; then thaw. BEI Resources 2. Transfer the entire thawed aliquot into a single tube of broth. Product Description: 3. Use several drops of the suspension to inoculate an Bacteria Classification: Burkholderiaceae, Burkholderia agar slant and/or plate. Species: Burkholderia multivorans (formerly Burkholderia 4. Incubate the tube, slant and/or plate for 24 to 48 hours. cepacia genomovar II)1 ® Strain: Type strain, LMG 13010 (ATCC BAA-247, CCUG Citation: 34080, Lauwers Cepa 002, CIP 105495, DSM 13243, Acknowledgment for publications should read “The following NCTC 13007) reagent was obtained through BEI Resources, NIAID, NIH: Original Source: Burkholderia multivorans (B. multivorans), Burkholderia multivorans, Strain LMG 13010 (ATCC® BAA- strain LMG 13010 was isolated in 1992 from the sputum of 1 247), NR-705.” a cystic fibrosis patient in Belgium. Comments: B. multivorans, strain LMG 13010 was deposited ® Biosafety Level: 2 at the ATCC in 2001 by Dr. D. Janssens from Appropriate safety procedures should always be used with BCCM/LMG Bacteria Collection, Ghent University, Ghent, this material. Laboratory safety is discussed in the following Belgium. -
Comparative Genomics of Pandoraea, a Genus Enriched in Xenobiotic Biodegradation and Metabolism
fmicb-10-02556 November 4, 2019 Time: 15:40 # 1 ORIGINAL RESEARCH published: 06 November 2019 doi: 10.3389/fmicb.2019.02556 Comparative Genomics of Pandoraea, a Genus Enriched in Xenobiotic Biodegradation and Metabolism Charlotte Peeters1, Evelien De Canck1, Margo Cnockaert1, Evie De Brandt1, Cindy Snauwaert2, Bart Verheyde1, Eliza Depoorter1, Theodore Spilker3, John J. LiPuma3 and Peter Vandamme1,2* 1 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium, 2 BCCM/LMG Bacteria Collection, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent Edited by: University, Ghent, Belgium, 3 Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States Iain Sutcliffe, Northumbria University, United Kingdom Comparative analysis of partial gyrB, recA, and gltB gene sequences of 84 Pandoraea Reviewed by: reference strains and field isolates revealed several clusters that included no taxonomic Martin W. Hahn, reference strains. The gyrB, recA, and gltB phylogenetic trees were used to select 27 University of Innsbruck, Austria Stephanus Nicolaas Venter, strains for whole-genome sequence analysis and for a comparative genomics study that University of Pretoria, South Africa also included 41 publicly available Pandoraea genome sequences. The phylogenomic Aharon Oren, The Hebrew University of Jerusalem, analyses included a Genome BLAST Distance Phylogeny approach to calculate pairwise Israel digital DNA–DNA hybridization values and their -
Microbial Community Response to Heavy and Light Crude Oil in the Great Lakes
Microbial Community Response to Heavy and Light Crude Oil in the Great Lakes Stephen Techtmann 10/24/19 Microbial Sensors Techtmann Lab @ MTU Investigating the applications of environmental microbial communities Hydraulic Fracturing Related Antibiotic Resistance Oil Bioremediation Techtmann Lab @ MTU Overview • Background on oil biodegradation • Microbial response to light and heavy crude oil in the Great Lakes • Machine learning for prediction of contamination in the Great Lakes. Oil Spills Deepwater Horizon Enbridge Line 6B Deepwater Horizon Oil Spill • 4,1000,000 bbl of oil released • Light Sweet Crude oil released • April 20, 2010 • 1101.7 miles of shoreline oiled Atlas and Hazen 2011 Enbridge Line 6B Spill – Marshall MI • 20,082 bbl of oil released • Diluted Bitumen • July 26, 2010 • 70 miles of shoreline oiled https://www.mlive.com/news/kalamazoo/2010/07/state_of_emergency_declared_as.html Oil Transmissions Pipelines in the Great Lakes Region Line 5: • 645 miles from Superior WI to Sarnia Ontario • 540,000 barrels per day • Light crude and natural gas liquids (NGLs) Crude oil Oil types and API Gravity Microbes and Biotechnology (Bioremediation) Low cost input Microbe High value output Decreased Cost Contaminant Increased Efficiency Carbon dioxide or non- toxic daughter products Carbon dioxide Microbial Biomass Petroleum Microbe Daughter Products Water Microbial Ecology and Biotechnology Low cost input Microbe High value output Decreased Cost/Increased Efficiency Complex input Input A Microbe Microbe Output A Input B Microbe Output -
Genomic and Proteomic Analysis of Lignin Degrading and Polyhydroxyalkanoate Accumulating Β‑Proteobacterium Pandoraea Sp
Kumar et al. Biotechnol Biofuels (2018) 11:154 https://doi.org/10.1186/s13068-018-1148-2 Biotechnology for Biofuels RESEARCH Open Access Genomic and proteomic analysis of lignin degrading and polyhydroxyalkanoate accumulating β‑proteobacterium Pandoraea sp. ISTKB Madan Kumar1, Sandhya Verma2, Rajesh Kumar Gazara2, Manish Kumar1, Ashok Pandey3, Praveen Kumar Verma2* and Indu Shekhar Thakur1* Abstract Background: Lignin is a major component of plant biomass and is recalcitrant to degradation due to its complex and heterogeneous aromatic structure. The biomass-based research mainly focuses on polysaccharides component of biomass and lignin is discarded as waste with very limited usage. The sustainability and success of plant polysac- charide-based biorefnery can be possible if lignin is utilized in improved ways and with minimal waste generation. Discovering new microbial strains and understanding their enzyme system for lignin degradation are necessary for its conversion into fuel and chemicals. The Pandoraea sp. ISTKB was previously characterized for lignin degradation and successfully applied for pretreatment of sugarcane bagasse and polyhydroxyalkanoate (PHA) production. In this study, genomic analysis and proteomics on aromatic polymer kraft lignin and vanillic acid are performed to fnd the impor- tant enzymes for polymer utilization. Results: Genomic analysis of Pandoraea sp. ISTKB revealed the presence of strong lignin degradation machinery and identifed various candidate genes responsible for lignin degradation and PHA production. -
Achromobacter Buckle Infection Diagnosed by a 16S Rdna Clone
Hotta et al. BMC Ophthalmology 2014, 14:142 http://www.biomedcentral.com/1471-2415/14/142 CASE REPORT Open Access Achromobacter buckle infection diagnosed by a 16S rDNA clone library analysis: a case report Fumika Hotta1†, Hiroshi Eguchi1*, Takeshi Naito1†, Yoshinori Mitamura1†, Kohei Kusujima2† and Tomomi Kuwahara3† Abstract Background: In clinical settings, bacterial infections are usually diagnosed by isolation of colonies after laboratory cultivation followed by species identification with biochemical tests. However, biochemical tests result in misidentification due to similar phenotypes of closely related species. In such cases, 16S rDNA sequence analysis is useful. Herein, we report the first case of an Achromobacter-associated buckle infection that was diagnosed by 16S rDNA sequence analysis. This report highlights the significance of Achromobacter spp. in device-related ophthalmic infections. Case presentation: A 56-year-old woman, who had received buckling surgery using a silicone solid tire for retinal detachment eighteen years prior to this study, presented purulent eye discharge and conjunctival hyperemia in her right eye. Buckle infection was suspected and the buckle material was removed. Isolates from cultures of preoperative discharge and from deposits on the operatively removed buckle material were initially identified as Alcaligenes and Corynebacterium species. However, sequence analysis of a 16S rDNA clone library using the DNA extracted from the deposits on the buckle material demonstrated that all of the 16S rDNA sequences most closely matched those of Achromobacter spp. We concluded that the initial misdiagnosis of this case as an Alcaligenes buckle infection was due to the unreliability of the biochemical test in discriminating Achromobacter and Alcaligenes species due to their close taxonomic positions and similar phenotypes.