Genomic and Proteomic Analysis of Lignin Degrading and Polyhydroxyalkanoate Accumulating Β‑Proteobacterium Pandoraea Sp
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comparative Genomics of Pandoraea, a Genus Enriched in Xenobiotic Biodegradation and Metabolism
fmicb-10-02556 November 4, 2019 Time: 15:40 # 1 ORIGINAL RESEARCH published: 06 November 2019 doi: 10.3389/fmicb.2019.02556 Comparative Genomics of Pandoraea, a Genus Enriched in Xenobiotic Biodegradation and Metabolism Charlotte Peeters1, Evelien De Canck1, Margo Cnockaert1, Evie De Brandt1, Cindy Snauwaert2, Bart Verheyde1, Eliza Depoorter1, Theodore Spilker3, John J. LiPuma3 and Peter Vandamme1,2* 1 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium, 2 BCCM/LMG Bacteria Collection, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent Edited by: University, Ghent, Belgium, 3 Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States Iain Sutcliffe, Northumbria University, United Kingdom Comparative analysis of partial gyrB, recA, and gltB gene sequences of 84 Pandoraea Reviewed by: reference strains and field isolates revealed several clusters that included no taxonomic Martin W. Hahn, reference strains. The gyrB, recA, and gltB phylogenetic trees were used to select 27 University of Innsbruck, Austria Stephanus Nicolaas Venter, strains for whole-genome sequence analysis and for a comparative genomics study that University of Pretoria, South Africa also included 41 publicly available Pandoraea genome sequences. The phylogenomic Aharon Oren, The Hebrew University of Jerusalem, analyses included a Genome BLAST Distance Phylogeny approach to calculate pairwise Israel digital DNA–DNA hybridization values and their -
Host–Symbiont Specificity Determined by Microbe–Microbe Competition in an Insect
Host–symbiont specificity determined by microbe– microbe competition in an insect gut Hideomi Itoha,1, Seonghan Jangb,1, Kazutaka Takeshitac, Tsubasa Ohbayashid, Naomi Ohnishie,2, Xian-Ying Mengf, Yasuo Mitania, and Yoshitomo Kikuchia,b,g,3 aBioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Hokkaido Center, 062-8517 Sapporo, Japan; bGraduate School of Agriculture, Hokkaido University, 060-8589 Sapporo, Japan; cFaculty of Bioresource Sciences, Akita Prefectural University, 010-0195 Akita, Japan; dInstitute for Integrative Biology of the Cell, UMR 9198, CNRS, Commissariat à l’Energie Atomique et aux Énergies Alternatives (CEA), Université Paris-Sud, 91198 Gif-sur-Yvette, France; eResearch Center for Zoonosis Control, Hokkaido University, 001-0020 Sapporo, Japan; fBioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba Center, 305-8566 Tsukuba, Japan; and gComputational Bio Big Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 062-8517 Sapporo, Japan Edited by Joan E. Strassmann, Washington University in St. Louis, St. Louis, MO, and approved September 30, 2019 (received for review July 18, 2019) Despite the omnipresence of specific host–symbiont associations microbe competition on the evolution and stabilization of host– with acquisition of the microbial symbiont from the environment, symbiont specificity is very scarce. little is known about how the specificity of the interaction evolved The bean bug Riptortus pedestris (Heteroptera: Alydidae) is and is maintained. The bean bug Riptortus pedestris acquires a associated with a Burkholderia symbiont that is confined in specific bacterial symbiont of the genus Burkholderia from environ- symbiosis-specific crypts located in the posterior midgut region Burkholderia mental soil and harbors it in midgut crypts. -
Pneumonia Due to Pandoraea Apista After Evacuation of Traumatic Intracranial Hematomas:A Case Report and Literature Review
Lin et al. BMC Infectious Diseases (2019) 19:869 https://doi.org/10.1186/s12879-019-4420-6 CASE REPORT Open Access Pneumonia due to Pandoraea Apista after evacuation of traumatic intracranial hematomas:a case report and literature review Chuanzhong Lin1,2, Ning Luo1, Qiang Xu2, Jianjun Zhang3, Mengting Cai4, Guanhao Zheng5 and Ping Yang2* Abstract Background: Pandoraea species is a newly described genus, which is multidrug resistant and difficult to identify. Clinical isolates are mostly cultured from cystic fibrosis (CF) patients. CF is a rare disease in China, which makes Pandoraea a total stranger to Chinese physicians. Pandoraea genus is reported as an emerging pathogen in CF patients in most cases. However, there are few pieces of evidence that confirm Pandoraea can be more virulent in non-CF patients. The pathogenicity of Pandoraea genus is poorly understood, as well as its treatment. The incidence of Pandoraea induced infection in non-CF patients may be underestimated and it’s important to identify and understand these organisms. Case presentation: We report a 44-years-old man who suffered from pneumonia and died eventually. Before his condition deteriorated, a Gram-negative bacilli was cultured from his sputum and identified as Pandoraea Apista by matrix-assisted laser desorption ionization–time-of-flight mass spectrometry (MALDI-TOF MS). Conclusion: Pandoraea spp. is an emerging opportunistic pathogen. The incidences of Pandoraea related infection in non-CF patients may be underestimated due to the difficulty of identification. All strains of Pandoraea show multi-drug resistance and highly variable susceptibility. To better treatment, species-level identification and antibiotic susceptibility test are necessary. -
P1761 Paper Poster Session Microbial Pathogenesis and Virulence
P1761 Paper Poster Session Microbial pathogenesis and virulence The Burkholderia contaminans operon participates in switching on the biofilm formation Olga Voronina1, Marina Kunda*1, Natalia Ruzhova1, Andrey Semenov1, Yulia Romanova1 1N.F. Gamaleya Research Center for Epidemiology and Microbiology, Ministry of Health of Russia, Moscow, Russian Federation Background: Burkholderia cepacia complex (Bcc) bacteria - opportunistic pathogens causing nosocomial infections, are especially dangerous for cystic fibrosis patients. Biofilm formation (BF) helps Bcc to escape the antimicrobial agents’ effect and complicates the Bcc eradication. The two component signal (TCS) transduction systems are in charge of the BF. The purpose of our investigation was the most important TCS determination. Material/methods: High biofilm producer (HBP) clinical strain B. contaminans GIMC4509:Bct370 and lacking biofilm production (LBP) B. contaminans strain GIMC4587:Bct370-19 were used. Last one was obtained Romanova et al. by insertion modification of clinical strain with plasposon pTnMod-RKm. The strains were analyzed by Whole-genome sequencing and Liquid Chromatography Mass Spectrometry (LC-MC). 454 Sequencing System Software V 2.7 (Roche), RAST, BioCyc Database Collection, InterPro, MaxQuant were used for genome assembling, annotation, operons prediction, proteins’ domains detection and proteins after MC identification. Operons sequences were deposited in GenBank under the accession numbers KP288491, KP288492. Results: There are 37 two component transcriptional regulators (TCTR) genes in B. contaminans or B. lata genomes. Most of them are located with sensor signal transduction histidine kinase genes in operon one after the other. We found out four components operon, in which gene of peptidoglycan binding protein with FecR domain was embedded between the TCTR and kinase genes. -
Quorum Sensing Activity in Pandoraea Pnomenusa RB38
Sensors 2014, 14, 10177-10186; doi:10.3390/s140610177 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Article Quorum Sensing Activity in Pandoraea pnomenusa RB38 Robson Ee, Yan-Lue Lim, Lin-Xin Kin, Wai-Fong Yin and Kok-Gan Chan * Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: [email protected] (R.E.); [email protected] (Y.-L.L.); [email protected] (L.-X.K.); [email protected] (W.-F.Y.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +60-37967-5162; Fax: +60-37967-4509. Received: 5 March 2014; in revised form: 25 May 2014 / Accepted: 28 May 2014 / Published: 10 June 2014 Abstract: Strain RB38 was recovered from a former dumping area in Malaysia. MALDI-TOF mass spectrometry and genomic analysis identified strain RB-38 as Pandoraea pnomenusa. Various biosensors confirmed its quorum sensing properties. High resolution triple quadrupole liquid chromatography–mass spectrometry analysis was subsequently used to characterize the N-acyl homoserine lactone production profile of P. pnomenusa strain RB38, which validated that this isolate produced N-octanoyl homoserine lactone as a quorum sensing molecule. This is the first report of the production of N-octanoyl homoserine lactone by P. pnomenusa strain RB38. Keywords: matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF); mass spectrometry (MS); cell-to cell communication; triple quodruopole liquid chromatography mass spectrometry (LC-MS/MS); N-octanoyl homoserine lactone (C8-HSL) 1. Introduction Pandoraea is a Gram-negative rod shape proteobacteria of the Burkholderiaceae family that is often isolated from sputa of cystic fibrosis patients and soil [1]. -
Virulence of an Emerging Respiratory Pathogen, Genus Pandoraea, in Vivo and Its Interactions with Lung Epithelial Cells
Technological University Dublin ARROW@TU Dublin Articles School of Science and Computing 2010-11 Virulence of an Emerging Respiratory Pathogen, Genus Pandoraea, In Vivo and its Interactions with Lung Epithelial Cells Gillian Herbert Institute of Technology Tallaght Anne Costello Technological University Dublin, [email protected] Lydia Fabunmi Technological University Dublin, [email protected] See next page for additional authors Follow this and additional works at: https://arrow.tudublin.ie/ittsciart Part of the Biochemistry Commons, Cell Biology Commons, Microbiology Commons, and the Molecular Biology Commons Recommended Citation Herbert, G., Costello, A., Fabunmi, L., Schaffer, K., Caraher, E., Callaghan, M. and McClean, M. Virulence of an emerging respiratory pathogen, genus Pandoraea, in vivo and its interactions with lung epithelial cells. Letters in Applied Microbiology 02/2010; 50(5):500- DOI 10.1099/jmm.0.022657-0 This Article is brought to you for free and open access by the School of Science and Computing at ARROW@TU Dublin. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU Dublin. For more information, please contact [email protected], [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License Funder: PRTLI Cycle 4 & PRDSP1 Authors Gillian Herbert, Anne Costello, Lydia Fabunmi, Kirsten Schaffer, Kevin Kavanagh, Emma M. Caraher, Máire Callaghan, and Siobhan McClean This article is available at ARROW@TU Dublin: https://arrow.tudublin.ie/ittsciart/26 1 Pathogenicity and Virulence 2 Virulence of emerging respiratory pathogen, genus Pandoraea, in vivo 3 and its interactions with lung epithelial cells. -
Genome of Ca. Pandoraea Novymonadis, an Endosymbiotic Bacterium of the Trypanosomatid Novymonas Esmeraldas
fmicb-08-01940 September 30, 2017 Time: 16:0 # 1 ORIGINAL RESEARCH published: 04 October 2017 doi: 10.3389/fmicb.2017.01940 Genome of Ca. Pandoraea novymonadis, an Endosymbiotic Bacterium of the Trypanosomatid Novymonas esmeraldas Alexei Y. Kostygov1,2†, Anzhelika Butenko1,3†, Anna Nenarokova3,4, Daria Tashyreva3, Pavel Flegontov1,3,5, Julius Lukeš3,4 and Vyacheslav Yurchenko1,3,6* 1 Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia, 2 Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia, 3 Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceskéˇ Budejovice,ˇ Czechia, 4 Faculty of Sciences, University of South Bohemia, Ceskéˇ Budejovice,ˇ Czechia, 5 Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia, 6 Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czechia We have sequenced, annotated, and analyzed the genome of Ca. Pandoraea novymonadis, a recently described bacterial endosymbiont of the trypanosomatid Novymonas esmeraldas. When compared with genomes of its free-living relatives, it Edited by: has all the hallmarks of the endosymbionts’ genomes, such as significantly reduced João Marcelo Pereira Alves, University of São Paulo, Brazil size, extensive gene loss, low GC content, numerous gene rearrangements, and Reviewed by: low codon usage bias. In addition, Ca. P. novymonadis lacks mobile elements, Zhao-Rong Lun, has a strikingly low number of pseudogenes, and almost all genes are single Sun Yat-sen University, China Vera Tai, copied. This suggests that it already passed the intensive period of host adaptation, University of Western Ontario, Canada which still can be observed in the genome of Polynucleobacter necessarius, a *Correspondence: certainly recent endosymbiont. -
Pandoraea Apista Bacteremia in a COVID-Positive Man: a Rare Coinfection Case Report from North India
Published online: 2021-06-28 THIEME 192 Case Pandoraea Report apistain a COVID Patient Singh et al. Pandoraea apista Bacteremia in a COVID-Positive Man: A Rare Coinfection Case Report from North India Sweta Singh1 Chinmoy Sahu1 , Sangram Singh Patel1 Atul Garg1 Ujjala Ghoshal1 1Department of Microbiology, Sanjay Gandhi Post Graduate Address for correspondence Chinmoy Sahu, MD (Microbiology) Institute of Medical Sciences, Lucknow, Uttar Pradesh, India Department of Microbiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh 226014, India (e-mail: [email protected]). J Lab Physicians 2021;13:192–194. Abstract Pandoraea apista is a novel gram-negative bacillus usually isolated from respiratory specimens of cystic fibrosis patients. Few cases of bacteremia have also been reported due to this rare pathogen. Emergence of multidrug-resistant isolates of this bacillus is of grave concern. Here, we report a very interesting and unusual case of Pandoraea Keywords apista bacteremia in a coronavirus disease (COVID)–positive elderly diabetic man suf- ► Pandoraea apista fering from pneumonia. Prompt isolation and antibiotic sensitivity testing guided the ► bacillus patient’s treatment and yielded favorable outcome. The need of automated methods ► cystic fibrosis for identification and sensitivity testing limits the reporting of this rare but important ► bacteremia pathogen in hospital settings. Detailed research work and studies are needed in this ► COVID direction to better understand this pathogen and its clinical manifestations for better ► pneumonia patient outcome. Introduction report a case of bacteremia caused by Pandoraea apista in a COVID-positive elderly man suffering from pneumonia. Pandoraea species is a newly emerging multidrug-resistant pathogen usually isolated from cystic fibrosis (CF) patients. -
CGM-18-001 Perseus Report Update Bacterial Taxonomy Final Errata
report Update of the bacterial taxonomy in the classification lists of COGEM July 2018 COGEM Report CGM 2018-04 Patrick L.J. RÜDELSHEIM & Pascale VAN ROOIJ PERSEUS BVBA Ordering information COGEM report No CGM 2018-04 E-mail: [email protected] Phone: +31-30-274 2777 Postal address: Netherlands Commission on Genetic Modification (COGEM), P.O. Box 578, 3720 AN Bilthoven, The Netherlands Internet Download as pdf-file: http://www.cogem.net → publications → research reports When ordering this report (free of charge), please mention title and number. Advisory Committee The authors gratefully acknowledge the members of the Advisory Committee for the valuable discussions and patience. Chair: Prof. dr. J.P.M. van Putten (Chair of the Medical Veterinary subcommittee of COGEM, Utrecht University) Members: Prof. dr. J.E. Degener (Member of the Medical Veterinary subcommittee of COGEM, University Medical Centre Groningen) Prof. dr. ir. J.D. van Elsas (Member of the Agriculture subcommittee of COGEM, University of Groningen) Dr. Lisette van der Knaap (COGEM-secretariat) Astrid Schulting (COGEM-secretariat) Disclaimer This report was commissioned by COGEM. The contents of this publication are the sole responsibility of the authors and may in no way be taken to represent the views of COGEM. Dit rapport is samengesteld in opdracht van de COGEM. De meningen die in het rapport worden weergegeven, zijn die van de auteurs en weerspiegelen niet noodzakelijkerwijs de mening van de COGEM. 2 | 24 Foreword COGEM advises the Dutch government on classifications of bacteria, and publishes listings of pathogenic and non-pathogenic bacteria that are updated regularly. These lists of bacteria originate from 2011, when COGEM petitioned a research project to evaluate the classifications of bacteria in the former GMO regulation and to supplement this list with bacteria that have been classified by other governmental organizations. -
Epidemic Spread of Pandoraea Pulmonicola in a Cystic Fibrosis Center
Degand et al. BMC Infectious Diseases (2015) 15:583 DOI 10.1186/s12879-015-1327-8 RESEARCH ARTICLE Open Access Epidemic spread of Pandoraea pulmonicola in a cystic fibrosis center Nicolas Degand1†, Romain Lotte1,2,3*†, Célia Decondé Le Butor1, Christine Segonds4, Michelle Thouverez5, Agnès Ferroni6, Christine Vallier7, Laurent Mély7 and Jacqueline Carrère8 Abstract Background: Pandoraea spp. are recently discovered bacteria, mainly recovered from cystic fibrosis (CF) patients, but their epidemiology and clinical significance are not well known. We describe an epidemic spread of Pandoraea pulmonicola from 2009 in our CF center, involving 6 out of 243 CF patients. Methods: Bacterial identification used amplified ribosomal DNA restriction analysis (ARDRA), MALDI-TOF mass spectrometry (MALDI-TOF MS) and 16S rDNA gene sequencing. The clonal link between strains was assessed with pulsed field gel electrophoresis (PFGE) using XbaI. Clinical data were gathered for all patients. Results: The index case was chronically colonized since 2000. The main hypothesis for this bacterial spread was a droplet cross-transmission, due to preventive measures not being strictly followed. Antibiotic susceptibility testing revealed resistance to beta-lactams, ciprofloxacin and colistin. However, there was susceptibility to trimethoprim-sulfamethoxazole. All patients were chronically colonized with Pseudomonas aeruginosa, and the acquisition of P. pulmonicola resulted in chronic colonization in all patients. Three patients died, and two patients remained clinically stable, whereas one patient had a decline in lung function. Conclusions: This study, which is the first to describe an epidemic spread of P. pulmonicola, notes the potential transmissibility of this bacterial species and the need for infection control measures. Keywords: Pandoraea pulmonicola, Epidemic, Cystic fibrosis Background soil, sea, and drinking water [5, 6]. -
Identification of Pseudomonas Species and Other Non-Glucose Fermenters
UK Standards for Microbiology Investigations Identification of Pseudomonas species and other Non- Glucose Fermenters Issued by the Standards Unit, Microbiology Services, PHE Bacteriology – Identification | ID 17 | Issue no: 3 | Issue date: 13.04.15 | Page: 1 of 41 © Crown copyright 2015 Identification of Pseudomonas species and other Non-Glucose Fermenters Acknowledgments UK Standards for Microbiology Investigations (SMIs) are developed under the auspices of Public Health England (PHE) working in partnership with the National Health Service (NHS), Public Health Wales and with the professional organisations whose logos are displayed below and listed on the website https://www.gov.uk/uk- standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical- laboratories. SMIs are developed, reviewed and revised by various working groups which are overseen by a steering committee (see https://www.gov.uk/government/groups/standards-for-microbiology-investigations- steering-committee). The contributions of many individuals in clinical, specialist and reference laboratories who have provided information and comments during the development of this document are acknowledged. We are grateful to the Medical Editors for editing the medical content. For further information please contact us at: Standards Unit Microbiology Services Public Health England 61 Colindale Avenue London NW9 5EQ E-mail: [email protected] Website: https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality- and-consistency-in-clinical-laboratories -
A Comparative Genomics Study of the Genes Involved in the Catabolic Pathways of Naphthalene”
Título del Trabajo Final “Bacterial degradation of petroleum hydrocarbons; a comparative genomics study of the genes involved in the catabolic pathways of naphthalene” Nombre Estudiante: Athanasía Varsaki Plan de Estudios del Estudiante: Bioinformática Área del trabajo final: Microbiología, biotecnología y biología molecular Nombre Consultor/a: Paloma Pizarro Tobías Nombre Profesor/a responsable de la asignatura: Paloma Pizarro Tobías Fecha Entrega: 02/01/2018 Esta obra está sujeta a una licencia de Reconocimiento-NoComercial- SinObraDerivada 3.0 España de Creative Commons Licencias alternativas (elegir alguna de las siguientes y sustituir la de la página anterior) A) Creative Commons: Esta obra está sujeta a una licencia de Reconocimiento-NoComercial- SinObraDerivada 3.0 España de Creative Commons Esta obra está sujeta a una licencia de Reconocimiento-NoComercial-CompartirIgual 3.0 España de Creative Commons Esta obra está sujeta a una licencia de Reconocimiento-NoComercial 3.0 España de Creative Commons Esta obra está sujeta a una licencia de Reconocimiento-SinObraDerivada 3.0 España de Creative Commons Esta obra está sujeta a una licencia de Reconocimiento-CompartirIgual 3.0 España de Creative Commons Esta obra está sujeta a una licencia de Reconocimiento 3.0 España de Creative Commons B) GNU Free Documentation License (GNU FDL) Copyright © AÑO TU-NOMBRE. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back- Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".