Collation and Validation of Museum Collection Databases Related to the Distribution of Marine Sponges in Northern Australia

Total Page:16

File Type:pdf, Size:1020Kb

Collation and Validation of Museum Collection Databases Related to the Distribution of Marine Sponges in Northern Australia TechnicalTechnical ReportsReports ofof thethe QueenslandQueensland MuseumMuseum No. 002 Authors: John N.A. Hooper & Merrick Ekins Address: Queensland Museum, PO Box 3300, South Brisbane, Queensland, 4101, Australia ([email protected], [email protected]) Report written for: National Oceans Office C2004/020 (2004) COLLATION AND VALIDATION OF MUSEUM COLLECTION DATABASES RELATED TO THE DISTRIBUTION OF MARINE SPONGES IN NORTHERN AUSTRALIA PART 6 OF 8 This document may be cited as: Hooper, J.N.A. & Ekins, M. 2004 (published online 2009). Collation and validation of museum collection databases related to the distribution of marine sponges in northern Australia. Technical Reports of the Queensland Museum Number 002. pp 1-224. www.qm.qld.gov.au (ISBN 978-0-9805692-5-4) Copyright for this document is with the Queensland Museum and the National Oceans Office (now incorporated within the Marine Division of the Department of Environment, Water, Hertiage and the Arts [DEWHA]). Technical reports of the Queensland Museum are published online, in read-only format, and are individually catalogued by the National Library of Australia. These reports may include reproductions (or revisions) of documents that were originally compiled to advise industry, government or academia on specific scientific issues, and they are reproduced here to ensure that the scientific and technical data they contain are not lost within the vast unpublished scientific ‘grey literature’. For further information please contact: Managing Editor, Memoirs of the Queensland Museum Queensland Museum, PO Box 3300, South Brisbane 4101, Qld Australia Phone 61 7 3840 7555. Fax 61 7 3846 1226. www.qm.qld.gov.au Email [email protected] Report for the National Oceans Office C2004/020 Collation and validation of museum collection databases related to the distribution of marine sponges in northern Australia FIG. 123. Hymeniacidon (circles), Amorphinopsis (triangles) and Epipolasis spp (squares) (QM Biolink database) Spongosorites sp. #57 -northwest coast (NWP: 2 spp): Topsentia sp. #1438, Spongosorites sp. #349 -GulfP: Spongosorites sp. #1131 -BassP: Spongosorites sp. #1417 -CEP: Spongosorites sp. #1461 FIG. 124. Spongosorites (triangles) and Topsentia spp (circles) (QM Biolink database) 149 QM Technical Reports | 002 FIG. 125. Dactylia spp (QM Biolink database) the southern Gulf to Cape York (GulfP – NEB). Species with only single records are not differentiated on maps presented here. Peaks in diversity occur in the central and southern GBR (NEP: 15 spp), Order Haplosclerida Topsent, 1928 with species diversity diminishing to the north (NEB: 7 spp) Suborder Haplosclerina Topsent, 1928 and south (CEB: 4 spp, and CEP: 1 sp.). Few species are markers for particular Family Callyspongiidae bioregions, aside from those occurring de Laubenfels, 1936 on the central and southern GBR: 65. Dactylia spp (Fig. 125) -south GBR (NEP): Dactylia spp #1823, #1941, #2581, #2600, #2813, #2943 Bioregional trends: Predominantly -central south east coast found in the GBR region, with highest (CEP-CEB): D. radix diversity in the southern region, -southern Gulf (GulfP): D. annulata diminishing both north and south; one -Tasmania (TasP): Dactylia spp # widely distributed south and east coast 66. Arenosclera and Siphonochalina species, two ‘apparently endemic’ spp (Fig. 126) southern species. Bioregional trends: Predominantly Summary details: Dactylia (17 spp, east coast, tropical species most 4 named) is predominantly confined to diverse on the GBR and in south east the north and central east Australian Queensland, but with north and south coast, especially the GBR region, with GBR regions not clearly delineated. some species being highly prevalent Both genera are good markers for the and extending throughout the GBR GBR. (D. pseudoreticulata, Dactylia spp Summary details: Arenosclera (9 #1368, #1376, #1584). One species spp, 1 named) and Siphonochalina (Dactylia sp. #1846) widespread from 150 Report for the National Oceans Office C2004/020 Collation and validation of museum collection databases related to the distribution of marine sponges in northern Australia FIG. 126. Arenosclera (triangles) and and Siphonochalina spp (circles) (QM Biolink database) Arenosclera sp. #193, #3426, Siphonochalina sp. #3561, #3562 -Darwin region (western part of NP): Siphonochalina sp. #363 67. Callyspongia ( C l a d o c h a l i n a , Toxochalina, Spinosella and Euplacella) spp (Fig. (21 spp, 1 named) have predominantly 127) tropical distributions, similar to those Bioregional trends: Predominantly seen in Dactylia spp, exclusively east tropical east coast distribution, coast and with only few species records particularly associated with the GBR, for temperate waters. Species with only without clear differentiation of northern single records are not differentiated on and southern GBR bioregions but maps presented here. Peaks in diversity with marginally higher diversity on the occur in the northern GBR (NEB: 7 central and southern GBR; one widely spp), central and southern GBR (NEP: distributed tropical species. 10 spp) and south east Queensland (11 spp), although delineation of northern Summary details: Callyspongia and southern GBR bioregions is not subgenera Cladochalina (4 named spp), Toxochalina (4 spp, 2 named), clear, with several widely distributed Spinosella (1 unnamed sp.) and species along the length of the GBR Euplacella (19 unnamed spp) are (Arenosclera sp. #1363, S. deficiens predominantly tropical, especially and Siphonochalina spp #1373), and associated with coral substrates on the only few unique species. A few species GBR, with marginally higher diversity on are markers for specific bioregions: the central and southern GBR (15 spp), -north GBR (NEB): Arenosclera sp. #3114 diminishing slightly northwards (northern -south GBR (NEP): A. arabica, GBR, NEB: 8 spp) and southwards Siphonochalina sp. #2816 (south east Queensland, CEB: 9 spp). -south east Queensland (CEB): Species with only single records are not Arenosclera spp #2773, #2775, Siphonochalina sp. #2778 differentiated on maps presented here. -Bass Strait and Tasmania (BassP-TasP): Northern and southern GBR bioregions 151 QM Technical Reports | 002 FIG. 127. Callyspongia (Cladochalina (squares), Toxochalina, Spinosella (triangles) and Euplacella spp (circles) (QM Biolink database) and especially on the GBR; highest diversity in the central-southern GBR, with northern and southern GBR bioregions d i f f e r e n t i a t e d on the basis of are not well differentiated by their species diversity species composition. One species (C. and species composition; poor diversity (Toxochalina) schulzei) occurs across in temperate waters. the tropics, from mid-north west coast to Summary details: Callyspongia the southern GBR (NWP-NEP), several (Callyspongia) is one of the most diverse species occur throughout the GBR (C. of all sponge subgenera, with database (Euplacella) spp #387, #2559, #2814, records containing 145 spp, only 11 C. (Toxochalina) sp. #553), with others so far named, distributed throughout restricted to one or two bioregions: Australian waters. Species with only -north GBR (NEB): C. (Cladochalina) single records are not differentiated subarmigera, C. (Euplacella) sp. #1527 on maps presented here. The highest -south GBR (NEP): C. (Euplacella) sp. diversity is in the tropics, particularly #1949, #2820, C. (Cladochalina) on the north east coast, with differential vaginalis, C. (Toxochalina) sp. #3504 peaks in diversity occurring in the -south east Queensland (CEB): C. northern GBR (NEB: 40 spp), central (Euplacella) spp #387, #1176 and southern GBR (NEP: 52 spp), -north coast (NP): C. south east Queensland (CEB: 19 spp), (Cladochalina) diffusa central south east coast (CEP: 6 spp), -south west coast (SWB): C. (Euplacella) sp. #715, C. (Spinosella) sp. #734 north coast (NP: 15 spp) and north west coast (NWP: 13 spp). In some regions 68. Callyspongia (Callyspongia) populations are highly abundant spp (Fig. 128-129) although not necessarily accompanied Bioregional trends: Highly diverse by high species diversity (e.g. Darwin subgenus, and very abundant in some and North West Shelf region). A habitats; predominant in the tropics few species have wide distributions 152 Report for the National Oceans Office C2004/020 Collation and validation of museum collection databases related to the distribution of marine sponges in northern Australia FIG. 128. Callyspongia (Callyspongia) spp – part 1 (QM Biolink database) #2695, #2798, #2935 -south east Queensland (CEB): C. (C.) spp #672, #916, #1116, #2498, $2976 -central south east coast (CEP): C. (C.) trichita, C. (C.) sp. #1452, #1898 -Tasmania (TasP): C. (C.) sp. #3296 -southern Gulf (GulfP): C. (C.) sp. #532 -north coast (NP): C. (C.) sp. #234, #1314, #2709 -north west coast (NWP): C. (C.) sp. #407, #553, #1819 -south west coast (SWB): C. (C.) sp. #755 Family Chalinidae Gray, 1867 throughout tropical Australasia (e.g. 69. Haliclona C. (C.) aerizusa, C. (C.) carens, C. (Gellius, Reniera, Rhizonera), (Callyspongia) sp. #108, #138, #3070), Chalinula and Cladocroce spp (Fig. or within broad bioregions such as the 130) GBR (NEB-NEP: C. (Callyspongia) spp Bioregional trends: Nearly #1369, #1946, #2022, #2025, #2879, exclusively tropical distribution, with #2998), or the north west and north highest diversity on the GBR and coasts (NWP-NP: C. (Callyspongia) south east Queensland regions; sp. #102, #233), whereas most species north and south GBR regions not well are restricted to single bioregions: differentiated,
Recommended publications
  • Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
    Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data.
    [Show full text]
  • A Genomic View of Trophic and Metabolic Diversity in Clade-Specific Lamellodysidea Sponge Microbiomes
    UC San Diego UC San Diego Previously Published Works Title A genomic view of trophic and metabolic diversity in clade-specific Lamellodysidea sponge microbiomes. Permalink https://escholarship.org/uc/item/6z2365ft Journal Microbiome, 8(1) ISSN 2049-2618 Authors Podell, Sheila Blanton, Jessica M Oliver, Aaron et al. Publication Date 2020-06-23 DOI 10.1186/s40168-020-00877-y Peer reviewed eScholarship.org Powered by the California Digital Library University of California Podell et al. Microbiome (2020) 8:97 https://doi.org/10.1186/s40168-020-00877-y RESEARCH Open Access A genomic view of trophic and metabolic diversity in clade-specific Lamellodysidea sponge microbiomes Sheila Podell1 , Jessica M. Blanton1, Aaron Oliver1, Michelle A. Schorn2, Vinayak Agarwal3, Jason S. Biggs4, Bradley S. Moore5,6,7 and Eric E. Allen1,5,7,8* Abstract Background: Marine sponges and their microbiomes contribute significantly to carbon and nutrient cycling in global reefs, processing and remineralizing dissolved and particulate organic matter. Lamellodysidea herbacea sponges obtain additional energy from abundant photosynthetic Hormoscilla cyanobacterial symbionts, which also produce polybrominated diphenyl ethers (PBDEs) chemically similar to anthropogenic pollutants of environmental concern. Potential contributions of non-Hormoscilla bacteria to Lamellodysidea microbiome metabolism and the synthesis and degradation of additional secondary metabolites are currently unknown. Results: This study has determined relative abundance, taxonomic novelty, metabolic
    [Show full text]
  • A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution
    marine drugs Review A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution Adrian Galitz 1 , Yoichi Nakao 2 , Peter J. Schupp 3,4 , Gert Wörheide 1,5,6 and Dirk Erpenbeck 1,5,* 1 Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany; [email protected] (A.G.); [email protected] (G.W.) 2 Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan; [email protected] 3 Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, 26111 Wilhelmshaven, Germany; [email protected] 4 Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg (HIFMB), 26129 Oldenburg, Germany 5 GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 Munich, Germany 6 SNSB-Bavarian State Collection of Palaeontology and Geology, 80333 Munich, Germany * Correspondence: [email protected] Abstract: Marine sponges are the most prolific marine sources for discovery of novel bioactive compounds. Sponge secondary metabolites are sought-after for their potential in pharmaceutical applications, and in the past, they were also used as taxonomic markers alongside the difficult and homoplasy-prone sponge morphology for species delineation (chemotaxonomy). The understanding Citation: Galitz, A.; Nakao, Y.; of phylogenetic distribution and distinctiveness of metabolites to sponge lineages is pivotal to reveal Schupp, P.J.; Wörheide, G.; pathways and evolution of compound production in sponges. This benefits the discovery rate and Erpenbeck, D. A Soft Spot for yield of bioprospecting for novel marine natural products by identifying lineages with high potential Chemistry–Current Taxonomic and Evolutionary Implications of Sponge of being new sources of valuable sponge compounds.
    [Show full text]
  • Porifera) in Singapore and Description of a New Species of Forcepia (Poecilosclerida: Coelosphaeridae)
    Contributions to Zoology, 81 (1) 55-71 (2012) Biodiversity of shallow-water sponges (Porifera) in Singapore and description of a new species of Forcepia (Poecilosclerida: Coelosphaeridae) Swee-Cheng Lim1, 3, Nicole J. de Voogd2, Koh-Siang Tan1 1 Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore 2 Netherlands Centre for Biodiversity, Naturalis, PO Box 9517, 2300 RA Leiden, The Netherlands 3 E-mail: [email protected] Key words: intertidal, Southeast Asia, sponge assemblage, subtidal, tropical Abstract gia) patera (Hardwicke, 1822) was the first sponge de- scribed from Singapore in the 19th century. This was A surprisingly high number of shallow water sponge species followed by Leucosolenia flexilis (Haeckel, 1872), (197) were recorded from extensive sampling of natural inter- Coelocarteria singaporensis (Carter, 1883) (as Phloeo­ tidal and subtidal habitats in Singapore (Southeast Asia) from May 2003 to June 2010. This is in spite of a highly modified dictyon), and Callyspongia (Cladochalina) diffusa coastline that encompasses one of the world’s largest container Ridley (1884). Subsequently, Dragnewitsch (1906) re- ports as well as extensive oil refining and bunkering industries. corded 24 sponge species from Tanjong Pagar and Pu- A total of 99 intertidal species was recorded in this study. Of lau Brani in the Singapore Strait. A further six species these, 53 species were recorded exclusively from the intertidal of sponge were reported from Singapore in the 1900s, zone and only 45 species were found on both intertidal and subtidal habitats, suggesting that tropical intertidal and subtidal although two species, namely Cinachyrella globulosa sponge assemblages are different and distinct.
    [Show full text]
  • Two New Species of the Genus Callyspongia (Haplosclerida:Callyspongiidae) from Korea
    Journal of Asia-Pacific Biodiversity xxx (2017) 1e5 Contents lists available at ScienceDirect Journal of Asia-Pacific Biodiversity journal homepage: http://www.elsevier.com/locate/japb Original Article Two new species of the genus Callyspongia (Haplosclerida:Callyspongiidae) from Korea Kim Hyung June, Kang Dong Won* National Marine Biodiversity Institute of Korea, Seocheon 33662, South Korea article info abstract Article history: In this study, two new species of the genus Callyspongia Duchassaing & Michelotti, 1864: Callyspognia Received 11 July 2017 pyeongdaensis sp. nov. and Callyspongia maraensis sp. nov. from Korea are described as new to science. All Received in revised form of the available information is presented in this study including the localities from which the species 5 September 2017 were collected and illustrations of spicule and skeleton. Accepted 22 September 2017 Ó 2017 National Science Museum of Korea (NSMK) and Korea National Arboretum (KNA), Publishing Available online xxx Services by Elsevier. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/). Keywords: Callyspongiidae Callyspongia Korea New species Sponge Introduction surveyed Jeju Island, South Korea, where marine life has not been studied and is affected by Kuroshio Current. As a result, here, we The family Callyspongiidae was found in 1936 by de Laubenfels describe one new species of Callyspongia. This new species was and consists of haplosclerid sponges which have a two- compared with the Korea and Japan Callyspongia species with a dimensional ectosomal skeleton of primary, secondary, and some- similar morphology. times tertiary fibers (De Voogd 2004; Desqueyroux-Faundeze and Valentine 2002).
    [Show full text]
  • The Marine Fauna of New Zealand: Porifera, Demospongiae, Part 3 (Haplosclerida and Nepheliospongida)
    ISSN 0083-7903, 87 (Print) ISSN 2538-1016; 87 (Online) The Marine Fauna of New Zealand: Porifera, Demospongiae, Part 3 (Haplosclerida and Nepheliospongida) by P. R. BERGQUIST and K. P. WARNE . �· New Zealand Oceanographic Institute Memoir 87 1980 NEW ZEALAND DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH The Marine Fauna of New Zealand: Porifera, I;)emospongiae, Part 3 (Haplosclerida and Nepheliospongida) by P. R. BERGQUIST and K. P. WARNE Department of Zoology, University of Auckland, Private Bag, Auckland, New Zealand New Zealand Oceanographic Institute Memoir 87 1980 This workSig is licensed 1 under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ ISSN 0083-7903 Received for publication: May 1979 © Crown Copyright I 980 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ CONTENTS Page LIST OF FIGURES 4 LIST OF TABLES 4 ABSTRACT 5 INTRODUCTION 5 Acknowledgments 8 COLLECTIONS EXAMINED 8 LIST OF SPECIES DESCRIBED 11 SYSTEMATICS ... 12 Order Haplosclerida Topsent 12 Family Haliclonidae de Laubenfels 12 Haliclona Grant, 1835 12 Family Adociidae de Laubenfels 19 Adocia Gray, 1867 20 Orina Gray, 1867 21 Sigmadocia de Laubenfels, 1936 22 Toxadocia de Laubenfels, 1936 ... 24 Family Callyspongiidae de Laubenfels 24 Callyspongia Duchassaing & Michelotti, 1864 ... 24 Chalinopsil/a Lendenfeld, 1888 ... 33 Dactylia Carter, 1885 34 Order Nepheliospongida Bergquist 34 Family Nepheliospongiidae Clark ... 35 Petrosia Vosmaer, 1887 ... 35 Xestospongia de Laubenfels, 1932 36 Family Oceanapiidae Van Soest 37 Oceanapia Norman, 1869 37 Vagocia de Laubenfels, 1936 38 REFERENCES 39 INDEX 41 PLATES ..
    [Show full text]
  • Spongivory by Nudibranchs on the Coast of Rio De Janeiro State, Southeastern Brazil
    ©Zoologische Staatssammlung München/Verlag Friedrich Pfeil; download www.pfeil-verlag.de SPIXIANA 38 2 187-195 München, Dezember 2015 ISSN 0341-8391 Spongivory by nudibranchs on the coast of Rio de Janeiro state, southeastern Brazil (Mollusca, Gastropoda) Thalita Belmonte, Juliana Alvim, Vinicius Padula & Guilherme Muricy Belmonte, T., Alvim, J., Padula, V. & Muricy, G. 2015. Spongivory by nudibranchs on the coast of Rio de Janeiro state, southeastern Brazil (Mollusca, Gastropoda). Spixiana 38 (2): 187-195. Nudibranch gastropods are carnivores and most dorid nudibranchs are spongi- vores, preying on a single or a few species of sponges. The feeding biology has important biological, ecological and evolutionary implications, and many charac- teristics of nudibranchs likely arose from co-evolution with diet organisms. Data on spongivory by dorid nudibranchs are available for many species from the Indo- Pacific, eastern Pacific and the Mediterranean Sea, but such information is scarce for the southwestern Atlantic. In this study we provide qualitative data on spongi- vory by dorid nudibranchs along the coast of Rio de Janeiro State, southeastern Brazil, including the identification of the species involved. A total of 94 spongi- vory events were observed between 12 nudibranch and 13 sponge species, greatly expanding our knowledge of predator-prey interactions. Among the sponges preyed upon, one species belongs to the class Homoscleromorpha (Plakina sp.) and 12 species to the class Demospongiae. Our observations show that spongivorous nudibranchs have a more diverse diet than previously thought. Additional observa- tions on a higher number of species from different biogeographic regions are needed for a better understanding of the feeding preferences of the diverse and ecologically important spongivorous dorid nudibranchs.
    [Show full text]
  • Bioactive Brominated Oxindole Alkaloids from the Red Sea Sponge
    UWS Academic Portal Bioactive brominated oxindole alkaloids from the Red Sea sponge Callyspongia siphonella El-Hawary, Seham S.; Sayed, Ahmed M.; Mohammed, Rabab; Hassan, Hossam M.; Rateb, Mostafa E.; Amin, Elham; Mohammed, Tarek A.; El-Mesery, Mohamed; Bin Muhsinah, Abdullatif; Alsayari, Abdulrhman; Wajant, Harald; Anany, Mohamed A.; Abdelmohsen, Usama Ramadan Published in: Marine Drugs DOI: 10.3390/md17080465 Published: 09/08/2019 Document Version Publisher's PDF, also known as Version of record Link to publication on the UWS Academic Portal Citation for published version (APA): El-Hawary, S. S., Sayed, A. M., Mohammed, R., Hassan, H. M., Rateb, M. E., Amin, E., Mohammed, T. A., El- Mesery, M., Bin Muhsinah, A., Alsayari, A., Wajant, H., Anany, M. A., & Abdelmohsen, U. R. (2019). Bioactive brominated oxindole alkaloids from the Red Sea sponge Callyspongia siphonella. Marine Drugs, 17(8), [465]. https://doi.org/10.3390/md17080465 General rights Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 03 Oct 2021 marine drugs Communication Bioactive Brominated Oxindole Alkaloids from the Red Sea Sponge Callyspongia siphonella Seham S. El-Hawary 1, Ahmed M. Sayed 2 , Rabab Mohammed 3, Hossam M. Hassan 3 , Mostafa E.
    [Show full text]
  • Mesophotic Sponges of the Genus Callyspongia (Demospongiae, Haplosclerida) from Cuba, with the Description of Two New Species
    Zootaxa 4466 (1): 078–094 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4466.1.9 http://zoobank.org/urn:lsid:zoobank.org:pub:90E00F08-4096-4926-8034-4B8A93048EF3 Mesophotic sponges of the genus Callyspongia (Demospongiae, Haplosclerida) from Cuba, with the description of two new species LINNET BUSUTIL1, MARÍA R. GARCÍA-HERNÁNDEZ2, M. CRISTINA DÍAZ3 & SHIRLEY A. POMPONI3 1Instituto de Ciencias del Mar, Playa, Havana, Cuba. E-mail: [email protected] 2Centro Nacional de Áreas Protegidas, Playa, Havana, Cuba. 3Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, FL 34946, USA. Abstract This study presents the description of two Callyspongia species new to science, and the distribution of all Callyspongia species recorded during the first joint Cuba–U.S. expedition to characterize Cuban mesophotic coral ecosystems (May– June 2017). Additionally, we propose a key to identify thin branching species of the genus in the Greater Caribbean. The observations here presented are the result of underwater explorations with the Mohawk Remotely Operated Vehicle dives at 35 sites around the island, at depths of 25–188 m, recording images and videos, and collecting specimens. The depth range of five species of Callyspongia, reported before in Cuba, has been extended to deeper waters. Two specimens of branching Callyspongia were collected and described: Callyspongia (Callyspongia) pedroi sp. nov. and Callyspongia (Cladochalina) alcoladoi sp. nov. Morphometric comparisons of external and skeletal traits show clear differences with the other Callyspongia species from the Central West Atlantic with a similar thin branching habit.
    [Show full text]
  • Cytotoxic Compounds Derived from Marine Sponges. a Review (2010–2012)
    molecules Review Cytotoxic Compounds Derived from Marine Sponges. A Review (2010–2012) Roberto Mioso 1,*, Francisco J. Toledo Marante 2, Ranilson de Souza Bezerra 1, Flávio Valadares Pereira Borges 3, Bárbara V. de Oliveira Santos 4,* and Irma Herrera Bravo de Laguna 5,* 1 Laboratory of Enzymology – LABENZ, Department of Biochemistry, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil; [email protected] 2 Department of Chemistry, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria 35017, Spain; [email protected] 3 Post-Graduation Program in Natural Products and Synthetic Bioactives, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil; fl[email protected] 4 Post-Graduation Program in Development and Technological Innovation in Medicines, Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Paraíba, Brazil 5 Department of Biology, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria 35017, Spain * Correspondence: [email protected] (R.M.); [email protected] (B.V.O.S.); [email protected] (I.H.B.L.); Tel./Fax: +55-83-3216-7364 (B.V.O.S.) Academic Editor: Derek J. McPhee Received: 27 September 2016; Accepted: 17 January 2017; Published: 28 January 2017 Abstract: This extensive review covers research published between 2010 and 2012 regarding new compounds derived from marine sponges, including 62 species from 60 genera belonging to 33 families and 13 orders of the Demospongia class (Porifera). The emphasis is on the cytotoxic activity that bioactive metabolites from sponges may have on cancer cell lines. At least 197 novel chemical structures from 337 compounds isolated have been found to support this work.
    [Show full text]
  • Two New Species of the Genus Callyspongia (Haplosclerida:Callyspongiidae) from Korea
    Journal of Asia-Pacific Biodiversity 10 (2017) 448e452 Contents lists available at ScienceDirect Journal of Asia-Pacific Biodiversity journal homepage: http://www.elsevier.com/locate/japb Original Article Two new species of the genus Callyspongia (Haplosclerida:Callyspongiidae) from Korea Kim Hyung June, Kang Dong Won* National Marine Biodiversity Institute of Korea, Seocheon 33662, South Korea article info abstract Article history: In this study, two new species of the genus Callyspongia Duchassaing & Michelotti, 1864: Callyspognia Received 11 July 2017 pyeongdaensis sp. nov. and Callyspongia maraensis sp. nov. from Korea are described as new to science. All Received in revised form of the available information is presented in this study including the localities from which the species 5 September 2017 were collected and illustrations of spicule and skeleton. Accepted 22 September 2017 Ó 2017 National Science Museum of Korea (NSMK) and Korea National Arboretum (KNA), Publishing Available online 17 October 2017 Services by Elsevier. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/). Keywords: Callyspongiidae Callyspongia Korea New species Sponge Introduction surveyed Jeju Island, South Korea, where marine life has not been studied and is affected by Kuroshio Current. As a result, here, we The family Callyspongiidae was found in 1936 by de Laubenfels describe one new species of Callyspongia. This new species was and consists of haplosclerid sponges which have a two- compared with the Korea and Japan Callyspongia species with a dimensional ectosomal skeleton of primary, secondary, and some- similar morphology. times tertiary fibers (De Voogd 2004; Desqueyroux-Faundeze and Valentine 2002).
    [Show full text]
  • Novel Extracts from Callyspongia Siphonella and Negombata Magnifica Sponges from the Red Sea, Induced Antiproliferative and Proa
    Egyptian Journal of Aquatic Biology & Fisheries Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt. ISSN 1110 – 6131 Vol. 24(7): 319 – 347 (2020) www.ejabf.journals.ekb.eg Novel extracts from Callyspongia siphonella and Negombata magnifica sponges from the Red Sea, induced antiproliferative and proapoptotic activity in HepG-2, MCF-7, and Caco-2 cancer cell lines Islam Rady1,2*, Mansour A.E. Bashar1 1. Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt. 2. Masonic Cancer Center, University of Minnesota, Minnesota, Minnesota, USA. * Corresponding Author: [email protected] _______________________________________________________________________________ ARTICLE INFO ABSTRACT Article History: Marine organisms derived extracts have been shown to exert multiple anti- Received: Sept. 21, 2020 cancer activities. Two marine sponge species; finger-sponge ―Negombata Accepted: Oct. 24, 2020 magnifica (Nm)‖ and tube-sponge ―Callyspongia siphonella (Cs)‖ were Online: Nov. 1, 2020 collected during summer 2020 from the Gulf of Aqaba (Red Sea, Egypt). Each _______________ sponge macerated with methylene chloride (CH2Cl2), ethyl acetate (C4H8O2), acetone (C H O), and chloroform (CHCl₃) separately into four different crude Keywords: 3 6 extracts for each sponge species and eight extracts as a total for both marine Sponges; species, where each extract was in vitro assessed for its antiproliferative and Callyspongia siphonella; proapoptotic activity in HepG-2, MCF7, and Caco-2 cancer cell lines. Cs- Negombata magnifica; CH Cl , Cs-C H O , Cs-C H O, Cs-CHCl , Nm-CH Cl , Nm-C H O , Nm- Red Sea; 2 2 4 8 2 3 6 3 2 2 4 8 2 C H O, and Nm-CHCl , each in a dose-dependent manner inhibited the growth Anticancer; 3 6 3 of HepG2 cancer cells within IC values 17.53, 11.18, 9.97, 19.21, 9.14, 10.94, Antiproliferation; 50 8.78, and 7.23 μg/ml, respectively, MCF-7 cancer cells within IC values of Apoptosis.
    [Show full text]