Description of Key Species Groups in the East Marine Region

Total Page:16

File Type:pdf, Size:1020Kb

Description of Key Species Groups in the East Marine Region Australian Museum Description of Key Species Groups in the East Marine Region Final Report – September 2007 1 Table of Contents Acronyms........................................................................................................................................ 3 List of Images ................................................................................................................................. 4 Acknowledgements ....................................................................................................................... 5 1 Introduction............................................................................................................................ 6 2 Corals (Scleractinia)............................................................................................................ 12 3 Crustacea ............................................................................................................................. 24 4 Demersal Teleost Fish ........................................................................................................ 54 5 Echinodermata..................................................................................................................... 66 6 Marine Snakes ..................................................................................................................... 80 7 Marine Turtles...................................................................................................................... 95 8 Molluscs ............................................................................................................................. 121 9 Plankton ............................................................................................................................. 133 10 Seabirds ............................................................................................................................. 146 11 Seals/Dugong..................................................................................................................... 162 12 Sharks and Rays ............................................................................................................... 174 13 Sponges ............................................................................................................................. 189 14 Syngnathids....................................................................................................................... 220 15 Trawl Bycatch .................................................................................................................... 228 16 Summary of Impacts and Threats.................................................................................... 241 17 Summary of information gaps ......................................................................................... 246 Appendices................................................................................................................................. 255 Editors: Vicky Tzioumis & Stephen Keable 2 Acronyms Acronym Definition ABIF Australian Biodiversity Information Facility ABRS Australian Biological Resources Study ACAP Agreement for the Conservation of Albatrosses and Petrels AM Australian Museum BRD Bycatch Reduction Device CAAB Codes for Australian Aquatic Biota CAMBA Chinese and Australian Migratory Bird Agreement CITES Convention for International Trade in Endangered Species CMS Convention for the Conservation of Migratory Species of Wild Animals (Bonn Convention) DEW Department of the Environment and Water Resources DFFF Deepwater Fin Fish Fishery DPI Department of Primary Industries DPI&F Department of Primary Industries and Fisheries DPIW Department of Primary Industries and Water EAC East Australian Current ECDTS East Coast Deepwater Trawl Sector ECTF East Coast Trawl Fishery EEZ Exclusive Economic Zone EIS Environmental Impact Statement EMR East Marine Region EPBC Act Environment Protection and Biodiversity Conservation Act 1999 FTF Finfish Trawl Fishery GIS Geographic Information System IUCN International Union for the Conservation of Nature and Natural Resources JAMBA Japanese and Australian Migratory Bird Agreement MPA Marine Protected Area NSW New South Wales OPT Offshore Prawn Trawl OTF Otter Trawl Fishery OTLF Ocean Trap and Line Fishery OZCAM Online Zoological Collections of Australian Museums Qld Queensland QM Queensland Museum RRFFF Rocky Reef Fin Fish Fishery SESSF Southern and Eastern Scalefish and Shark Fishery 3 List of Images Corals: See text for image details; Photography and © to P. Muir and M. Kitahara. Crustacea: Copyright and photography as indicated on the image or figure caption in text. Demersal Fish: First row (from left to right): Blue-eye trevalla (Hyperoglyphe antarctica); Gemfish (Rexea solandri); Second row (from left to right): Ocean perch (Helicolenus barathri) ; Eastern school whiting (Sillago flindersi); Third row (from left to right): Mirror dory (Zenopsis nebulosus); Orange roughy (Hoplostethus atlanticus)—Photography and © K. Graham. Echinodermata: First row (from left to right): Blue starfish (Linckia laevigata); Black teatfish (Holothuria whitmaei); Robust feather star (Himerometra robustipinna)—Photography and © A. Hoggett; Second row (from left to right): Brittlestar (Ophiarthrum elegans); Crown-of-thorns starfish (Acanthaster planci)— Photography and © J. Keesing; Longspine sea urchin (Centrostephanus rodgersii)— Photography and © T. Lynch. Photography and © M. Byrne unless otherwise stated. Marine Snakes: See text for image details; Photography and © H. Cogger. Marine Turtles: First row (from left to right): Flatback turtle (Natator depressus); Flatback hatchlings; Green turtle (Chelonia mydas); Second row: Loggerhead turtle (Caretta caretta)—Photography and © C. Limpus. Molluscs: First row (from left to right): Southern octopus (Octopus australis); Southern calamari squid (Sepioteuthis australis); Maori octopus (Octopus maorum); Second row (from left to right): Chambered nautilus (Nautilus pompilius)—Photography and © M. Norman for all cephalopod images; Ballot’s saucer scallop (Amusium japonicum balloti); Magnificent volute (Cymbiolena magnifica)—Photography and © K. Graham. Plankton: From left to right: Mixed plankton—Photography P. Parks, © Imagequest.com; Mixed zooplankton—Photography and © I. Suthers. Seabirds: © Australian Museum; First row (from left to right): Black-browed Albatross (Thalassarche melanophrys)—Photography J. Fields; Masked Booby (Sula dactylatra)—Photography B. King; Flesh- footed Shearwater (Puffinus carneipes)— Photography G. Hoye; Second row (from left to right): Red-tailed Tropicbird (Phaethon rubricauda)—Photography B. King; White Tern (Gygis alba);—Photography N. Chaffer. Seals/dugongs: From left to right: Australian fur seal (Arctocephalus pusillus doriferus); New Zealand fur seal (Arctocephalus forsteri)—Photography and © P. Shaughnessy. Sharks and Rays: First row (from left to right): Hammerhead shark (Sphyrna zygaena); Thresher shark (Alopias superciliosus); Sydney skate (Dipturus australis); Second row (from left to right): Harrisson’s 4 dogfish (Centrophorus harrissoni); White-spotted guitarfish (Rhynchobatus australiae); Ogilby’s ghostshark (Hydrolagus ogilbyi)—Photography and © K. Graham. Sponges: From left to right: Clathria craspedia; Thrachycladus laevispirula; Cliona montiformis— Photography and © J. Hooper. Syngnathids: First row (from left to right): Pot-bellied seahorse (Hippocampus abdominalis); Weedy seadragon (Phyllopteryx taeniolatus)—Photography and © S. Schulz; Sad seahorse (Hippocampus tristis); Second row (from left to right): Duncker’s pipehorse (Solegnathus dunckeri); Spiny pipehorse (Solegnathus spinosissimus)—Photography and © K. Graham unless otherwise stated. Trawl Bycatch: First row (from left to right): Toothed whiptail (Lepidorhynhcus denticulatus); Longspine flathead (Platycephalus longispinis); Common bellowfish (Macroramphosus scolopax); Second row (from left to right): Roundsnout gurnard (Lepidotrigla mulhalli); Bycatch (on deck); Threespine cardinalfish (Apogonops anomalus); Third row (from left to right): Antlered crab (Dagnaudus petterdi); Swimmer crab (Ovalipes molleri)—Photography H. McLennan, © Australian Museum; Mantis shrimp (Lysiosquilla colemani); Fourth row (from left to right): An ancillid olive (Ancillista velesiana); Deepwater dumpling squid (Austrorossia australis); Southern white-spot octopus (Octopus cf. bunurong)—Photography and © K. Graham unless otherwise stated. Acknowledgements We would like to thank the following colleagues for their assistance in the preparation of this report. From the Australian Museum: Paul Flemmons and Michael Elliot for assistance with the mapping of point data; Pat Hutchings and Penny Berents for their constructive comments on an early draft of the report; Mark McGrouther for his constructive comments on early drafts of the chapters on fish and for collating point data for fish; Jeff Leis for his advice in the preparation of the original tender bid and in directing us to sources of information relevant to the chapters on fish; Alison Miller for her assistance in collating point data and providing references and images for the chapter on molluscs; Brendan Atkins for assistance with layout and editorial issues; Roger Springthorpe for editing and preparation of images; Sandy Ingleby for providing information on seals; Leone Lemmer for assistance with library searches; and library staff for chasing up references and assisting in the printing of
Recommended publications
  • Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
    Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data.
    [Show full text]
  • Seasonal Changes in Benthic Fish Population Influenced by Salinity and Sediment Morphology in a Tropical Bay
    Examines in Marine CRIMSON PUBLISHERS C Wings to the Research Biology and Oceanography: Open Access ISSN 2578-031X Research Article Seasonal Changes in Benthic Fish Population Influenced by Salinity and Sediment Morphology in a Tropical Bay Srinivasa MR, Vijaya Bhanu C and Annapurna C* Department of Zoology, Andhra University, India *Corresponding author: Annapurna C, Department of Zoology, Andhra University, Visakhapatnam-530 003, India Submission: November 13, 2017; Published: February 23, 2018 Abstract Coastal Bays are productive habitats used by a variety of fishes and other benthic organisms but little information is available on the ecology and population dynamics of benthic fishes of coastal bays in the tropical zones. This paper deals with the biodiversity, faunal assemblages, seasonal variations successivein the benthic post fish monsoons population and of pre a shallow monsoons tropical during Bay 2006 named to 2008.Nizampatnam Water and Bay, sediment located insamples southern were province collected of Bayfrom of 20 Bengal, stations East covering coast of 10, India. 20 Theand standing stock of benthic fishes and associated environmental factors of the study area were also reported in this paper. Sampling was done in two 6 orders and 1 class were recorded in this study dominated by Cociella crocodilus and Pisodonophis boro. The mean of Shannon Wiener diversity index 30 m zones. Altogether, 128 biological samples were collected with a Naturalist’s dredge. Thirty benthic fish species belonging to 21 genera, 12 families, H’ was recorded 1.3±0.4 during post-monsoon and 1.2±0.2 at pre-monsoonCociella crocodilus, suggesting Cynoglossus that the benthic lida, Cynoglossus fish diversity punticeps of this andBay wasAstroscopus poor.
    [Show full text]
  • Checklist of Fish and Invertebrates Listed in the CITES Appendices
    JOINTS NATURE \=^ CONSERVATION COMMITTEE Checklist of fish and mvertebrates Usted in the CITES appendices JNCC REPORT (SSN0963-«OStl JOINT NATURE CONSERVATION COMMITTEE Report distribution Report Number: No. 238 Contract Number/JNCC project number: F7 1-12-332 Date received: 9 June 1995 Report tide: Checklist of fish and invertebrates listed in the CITES appendices Contract tide: Revised Checklists of CITES species database Contractor: World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge, CB3 ODL Comments: A further fish and invertebrate edition in the Checklist series begun by NCC in 1979, revised and brought up to date with current CITES listings Restrictions: Distribution: JNCC report collection 2 copies Nature Conservancy Council for England, HQ, Library 1 copy Scottish Natural Heritage, HQ, Library 1 copy Countryside Council for Wales, HQ, Library 1 copy A T Smail, Copyright Libraries Agent, 100 Euston Road, London, NWl 2HQ 5 copies British Library, Legal Deposit Office, Boston Spa, Wetherby, West Yorkshire, LS23 7BQ 1 copy Chadwick-Healey Ltd, Cambridge Place, Cambridge, CB2 INR 1 copy BIOSIS UK, Garforth House, 54 Michlegate, York, YOl ILF 1 copy CITES Management and Scientific Authorities of EC Member States total 30 copies CITES Authorities, UK Dependencies total 13 copies CITES Secretariat 5 copies CITES Animals Committee chairman 1 copy European Commission DG Xl/D/2 1 copy World Conservation Monitoring Centre 20 copies TRAFFIC International 5 copies Animal Quarantine Station, Heathrow 1 copy Department of the Environment (GWD) 5 copies Foreign & Commonwealth Office (ESED) 1 copy HM Customs & Excise 3 copies M Bradley Taylor (ACPO) 1 copy ^\(\\ Joint Nature Conservation Committee Report No.
    [Show full text]
  • Taxonomic Checklist of CITES Listed Coral Species Part II
    CoP16 Doc. 43.1 (Rev. 1) Annex 5.2 (English only / Únicamente en inglés / Seulement en anglais) Taxonomic Checklist of CITES listed Coral Species Part II CORAL SPECIES AND SYNONYMS CURRENTLY RECOGNIZED IN THE UNEP‐WCMC DATABASE 1. Scleractinia families Family Name Accepted Name Species Author Nomenclature Reference Synonyms ACROPORIDAE Acropora abrolhosensis Veron, 1985 Veron (2000) Madrepora crassa Milne Edwards & Haime, 1860; ACROPORIDAE Acropora abrotanoides (Lamarck, 1816) Veron (2000) Madrepora abrotanoides Lamarck, 1816; Acropora mangarevensis Vaughan, 1906 ACROPORIDAE Acropora aculeus (Dana, 1846) Veron (2000) Madrepora aculeus Dana, 1846 Madrepora acuminata Verrill, 1864; Madrepora diffusa ACROPORIDAE Acropora acuminata (Verrill, 1864) Veron (2000) Verrill, 1864; Acropora diffusa (Verrill, 1864); Madrepora nigra Brook, 1892 ACROPORIDAE Acropora akajimensis Veron, 1990 Veron (2000) Madrepora coronata Brook, 1892; Madrepora ACROPORIDAE Acropora anthocercis (Brook, 1893) Veron (2000) anthocercis Brook, 1893 ACROPORIDAE Acropora arabensis Hodgson & Carpenter, 1995 Veron (2000) Madrepora aspera Dana, 1846; Acropora cribripora (Dana, 1846); Madrepora cribripora Dana, 1846; Acropora manni (Quelch, 1886); Madrepora manni ACROPORIDAE Acropora aspera (Dana, 1846) Veron (2000) Quelch, 1886; Acropora hebes (Dana, 1846); Madrepora hebes Dana, 1846; Acropora yaeyamaensis Eguchi & Shirai, 1977 ACROPORIDAE Acropora austera (Dana, 1846) Veron (2000) Madrepora austera Dana, 1846 ACROPORIDAE Acropora awi Wallace & Wolstenholme, 1998 Veron (2000) ACROPORIDAE Acropora azurea Veron & Wallace, 1984 Veron (2000) ACROPORIDAE Acropora batunai Wallace, 1997 Veron (2000) ACROPORIDAE Acropora bifurcata Nemenzo, 1971 Veron (2000) ACROPORIDAE Acropora branchi Riegl, 1995 Veron (2000) Madrepora brueggemanni Brook, 1891; Isopora ACROPORIDAE Acropora brueggemanni (Brook, 1891) Veron (2000) brueggemanni (Brook, 1891) ACROPORIDAE Acropora bushyensis Veron & Wallace, 1984 Veron (2000) Acropora fasciculare Latypov, 1992 ACROPORIDAE Acropora cardenae Wells, 1985 Veron (2000) CoP16 Doc.
    [Show full text]
  • Volume 4 Issue 1B
    Captive & Field Herpetology Volume 4 Issue 1 2020 Volume 4 Issue 1 2020 ISSN - 2515-5725 Published by Captive & Field Herpetology Captive & Field Herpetology Volume 4 Issue1 2020 The Captive and Field Herpetological journal is an open access peer-reviewed online journal which aims to better understand herpetology by publishing observational notes both in and ex-situ. Natural history notes, breeding observations, husbandry notes and literature reviews are all examples of the articles featured within C&F Herpetological journals. Each issue will feature literature or book reviews in an effort to resurface past literature and ignite new research ideas. For upcoming issues we are particularly interested in [but also accept other] articles demonstrating: • Conflict and interactions between herpetofauna and humans, specifically venomous snakes • Herpetofauna behaviour in human-disturbed habitats • Unusual behaviour of captive animals • Predator - prey interactions • Species range expansions • Species documented in new locations • Field reports • Literature reviews of books and scientific literature For submission guidelines visit: www.captiveandfieldherpetology.com Or contact us via: [email protected] Front cover image: Timon lepidus, Portugal 2019, John Benjamin Owens Captive & Field Herpetology Volume 4 Issue1 2020 Editorial Team Editor John Benjamin Owens Bangor University [email protected] [email protected] Reviewers Dr James Hicks Berkshire College of Agriculture [email protected] JP Dunbar
    [Show full text]
  • A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution
    marine drugs Review A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution Adrian Galitz 1 , Yoichi Nakao 2 , Peter J. Schupp 3,4 , Gert Wörheide 1,5,6 and Dirk Erpenbeck 1,5,* 1 Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany; [email protected] (A.G.); [email protected] (G.W.) 2 Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan; [email protected] 3 Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, 26111 Wilhelmshaven, Germany; [email protected] 4 Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg (HIFMB), 26129 Oldenburg, Germany 5 GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 Munich, Germany 6 SNSB-Bavarian State Collection of Palaeontology and Geology, 80333 Munich, Germany * Correspondence: [email protected] Abstract: Marine sponges are the most prolific marine sources for discovery of novel bioactive compounds. Sponge secondary metabolites are sought-after for their potential in pharmaceutical applications, and in the past, they were also used as taxonomic markers alongside the difficult and homoplasy-prone sponge morphology for species delineation (chemotaxonomy). The understanding Citation: Galitz, A.; Nakao, Y.; of phylogenetic distribution and distinctiveness of metabolites to sponge lineages is pivotal to reveal Schupp, P.J.; Wörheide, G.; pathways and evolution of compound production in sponges. This benefits the discovery rate and Erpenbeck, D. A Soft Spot for yield of bioprospecting for novel marine natural products by identifying lineages with high potential Chemistry–Current Taxonomic and Evolutionary Implications of Sponge of being new sources of valuable sponge compounds.
    [Show full text]
  • Chapter Two Marine Organisms
    THE SINGAPORE BLUE PLAN 2018 EDITORS ZEEHAN JAAFAR DANWEI HUANG JANI THUAIBAH ISA TANZIL YAN XIANG OW NICHOLAS YAP PUBLISHED BY THE SINGAPORE INSTITUTE OF BIOLOGY OCTOBER 2018 THE SINGAPORE BLUE PLAN 2018 PUBLISHER THE SINGAPORE INSTITUTE OF BIOLOGY C/O NSSE NATIONAL INSTITUTE OF EDUCATION 1 NANYANG WALK SINGAPORE 637616 CONTACT: [email protected] ISBN: 978-981-11-9018-6 COPYRIGHT © TEXT THE SINGAPORE INSTITUTE OF BIOLOGY COPYRIGHT © PHOTOGRAPHS AND FIGURES BY ORINGAL CONTRIBUTORS AS CREDITED DATE OF PUBLICATION: OCTOBER 2018 EDITED BY: Z. JAAFAR, D. HUANG, J.T.I. TANZIL, Y.X. OW, AND N. YAP COVER DESIGN BY: ABIGAYLE NG THE SINGAPORE BLUE PLAN 2018 ACKNOWLEDGEMENTS The editorial team owes a deep gratitude to all contributors of The Singapore Blue Plan 2018 who have tirelessly volunteered their expertise and effort into this document. We are fortunate to receive the guidance and mentorship of Professor Leo Tan, Professor Chou Loke Ming, Professor Peter Ng, and Mr Francis Lim throughout the planning and preparation stages of The Blue Plan 2018. We are indebted to Dr. Serena Teo, Ms Ria Tan and Dr Neo Mei Lin who have made edits that improved the earlier drafts of this document. We are grateful to contributors of photographs: Heng Pei Yan, the Comprehensive Marine Biodiversity Survey photography team, Ria Tan, Sudhanshi Jain, Randolph Quek, Theresa Su, Oh Ren Min, Neo Mei Lin, Abraham Matthew, Rene Ong, van Heurn FC, Lim Swee Cheng, Tran Anh Duc, and Zarina Zainul. We thank The Singapore Institute of Biology for publishing and printing the The Singapore Blue Plan 2018.
    [Show full text]
  • Proposal for a Revised Classification of the Demospongiae (Porifera) Christine Morrow1 and Paco Cárdenas2,3*
    Morrow and Cárdenas Frontiers in Zoology (2015) 12:7 DOI 10.1186/s12983-015-0099-8 DEBATE Open Access Proposal for a revised classification of the Demospongiae (Porifera) Christine Morrow1 and Paco Cárdenas2,3* Abstract Background: Demospongiae is the largest sponge class including 81% of all living sponges with nearly 7,000 species worldwide. Systema Porifera (2002) was the result of a large international collaboration to update the Demospongiae higher taxa classification, essentially based on morphological data. Since then, an increasing number of molecular phylogenetic studies have considerably shaken this taxonomic framework, with numerous polyphyletic groups revealed or confirmed and new clades discovered. And yet, despite a few taxonomical changes, the overall framework of the Systema Porifera classification still stands and is used as it is by the scientific community. This has led to a widening phylogeny/classification gap which creates biases and inconsistencies for the many end-users of this classification and ultimately impedes our understanding of today’s marine ecosystems and evolutionary processes. In an attempt to bridge this phylogeny/classification gap, we propose to officially revise the higher taxa Demospongiae classification. Discussion: We propose a revision of the Demospongiae higher taxa classification, essentially based on molecular data of the last ten years. We recommend the use of three subclasses: Verongimorpha, Keratosa and Heteroscleromorpha. We retain seven (Agelasida, Chondrosiida, Dendroceratida, Dictyoceratida, Haplosclerida, Poecilosclerida, Verongiida) of the 13 orders from Systema Porifera. We recommend the abandonment of five order names (Hadromerida, Halichondrida, Halisarcida, lithistids, Verticillitida) and resurrect or upgrade six order names (Axinellida, Merliida, Spongillida, Sphaerocladina, Suberitida, Tetractinellida). Finally, we create seven new orders (Bubarida, Desmacellida, Polymastiida, Scopalinida, Clionaida, Tethyida, Trachycladida).
    [Show full text]
  • Annadel Cabanban Emily Capuli Rainer Froese Daniel Pauly
    Biodiversity of Southeast Asian Seas , Palomares and Pauly 15 AN ANNOTATED CHECKLIST OF PHILIPPINE FLATFISHES : ECOLOGICAL IMPLICATIONS 1 Annadel Cabanban IUCN Commission on Ecosystem Management, Southeast Asia Dumaguete, Philippines; Email: [email protected] Emily Capuli SeaLifeBase Project, Aquatic Biodiversity Informatics Office Khush Hall, IRRI, Los Baños, Laguna, Philippines; Email: [email protected] Rainer Froese IFM-GEOMAR, University of Kiel Duesternbrooker Weg 20, 24105 Kiel, Germany; Email: [email protected] Daniel Pauly The Sea Around Us Project , Fisheries Centre, University of British Columbia, 2202 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z4; Email: [email protected] ABSTRACT An annotated list of the flatfishes of the Philippines was assembled, covering 108 species (vs. 74 in the entire North Atlantic), and thus highlighting this country's feature of being at the center of the world's marine biodiversity. More than 80 recent references relating to Philippine flatfish are assembled. Various biological inferences are drawn from the small sizes typical of Philippine (and tropical) flatfish, and pertinent to the "systems dynamics of flatfish". This was facilitated by FishBase, which documents all data presented here, and which was used to generate the graphs supporting these biological inferences. INTRODUCTION Taxonomy, in its widest sense, is at the root of every scientific discipline, which must first define the objects it studies. Then, the attributes of these objects can be used for various classificatory and/or interpretive schemes; for example, the table of elements in chemistry or evolutionary trees in biology. Fisheries science is no different; here the object of study is a fishery, the interaction between species and certain gears, deployed at certain times in certain places.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Snakes of South-East Asia Including Myanmar, Thailand, Malaysia, Singapore, Sumatra, Borneo, Java and Bali
    A Naturalist’s Guide to the SNAKES OF SOUTH-EAST ASIA including Myanmar, Thailand, Malaysia, Singapore, Sumatra, Borneo, Java and Bali Indraneil Das First published in the United Kingdom in 2012 by Beaufoy Books n n 11 Blenheim Court, 316 Woodstock Road, Oxford OX2 7NS, England Contents www.johnbeaufoy.com 10 9 8 7 6 5 4 3 2 1 Introduction 4 Copyright © 2012 John Beaufoy Publishing Limited Copyright in text © Indraneil Das Snake Topography 4 Copyright in photographs © [to come] Dealing with Snake Bites 6 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publishers. About this Book 7 ISBN [to come] Glossary 8 Edited, designed and typeset by D & N Publishing, Baydon, Wiltshire, UK Printed and bound [to come] Species Accounts and Photographs 11 Checklist of South-East Asian Snakes 141 Dedication Nothing would have happened without the support of the folks at home: my wife, Genevieve V.A. Gee, and son, Rahul Das. To them, I dedicate this book. Further Reading 154 Acknowledgements 155 Index 157 Edited and designed by D & N Publishing, Baydon, Wiltshire, UK Printed and bound in Malaysia by Times Offset (M) Sdn. Bhd. n Introduction n n Snake Topography n INTRODUCTION Snakes form one of the major components of vertebrate fauna of South-East Asia. They feature prominently in folklore, mythology and other belief systems of the indigenous people of the region, and are of ecological and conservation value, some species supporting significant (albeit often illegal) economic activities (primarily, the snake-skin trade, but also sale of meat and other body parts that purportedly have medicinal properties).
    [Show full text]
  • Stock Status of Queensland's Fisheries Resources 2009–10
    Stock status of Queensland’s Fisheries Queensland fisheries resources 2009–10 Employment, Development Economic Innovation and Department of Tomorrow’s Queensland: strong, green, smart, healthy and fair Stock status of Queensland’s fisheries resources 2009–10 PR10–5184 © The State of Queensland, Department of Employment, Economic Development and Innovation, 2010. Except as permitted by the Copyright Act 1968, no part of the work may in any form or by any electronic, mechanical, photocopying, recording, or any other means be reproduced, stored in a retrieval system or be broadcast or transmitted without the prior written permission of the Department of Employment, Economic Development and Innovation. The information contained herein is subject to change without notice. The copyright owner shall not be liable for technical or other errors or omissions contained herein. The reader/user accepts all risks and responsibility for losses, damages, costs and other consequences resulting directly or indirectly from using this information. Enquiries about reproduction, including downloading or printing the web version, should be directed to [email protected] or telephone +61 7 3225 1398. Contents Acronyms 6 Fishery acronyms 6 Introduction 7 Stock status process 7 Stock status assessment 2009–10 8 Stocks with no assessment made 16 Stock background and status determination 17 Barramundi (Lates calcarifer) EC 18 Barramundi (Lates calcarifer) GOC 19 Bream–yellowfin (Acanthopagrus australis) EC 20 Bugs–Balmain (Ibacus chacei and I. brucei) EC 21 Bugs–Moreton Bay (Thenus australiensis & T. parindicus) EC 22 Cobia (Rachycentron canadum) EC 23 Coral trout (Plectropomus spp. and Variola spp.) EC 24 Crab–blue swimmer (Portunus pelagius) EC 25 Crab–mud (Scylla spp.) EC 26 Crab–mud (Scylla spp.) GOC 27 Crab–spanner (Ranina ranina) EC 28 Eel (Anguilla australis and A.
    [Show full text]