CHROMOSOMES of RATS and MICE of THAILAND Amara
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Quaternary Murid Rodents of Timor Part I: New Material of Coryphomys Buehleri Schaub, 1937, and Description of a Second Species of the Genus
QUATERNARY MURID RODENTS OF TIMOR PART I: NEW MATERIAL OF CORYPHOMYS BUEHLERI SCHAUB, 1937, AND DESCRIPTION OF A SECOND SPECIES OF THE GENUS K. P. APLIN Australian National Wildlife Collection, CSIRO Division of Sustainable Ecosystems, Canberra and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) K. M. HELGEN Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution, Washington and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 341, 80 pp., 21 figures, 4 tables Issued July 21, 2010 Copyright E American Museum of Natural History 2010 ISSN 0003-0090 CONTENTS Abstract.......................................................... 3 Introduction . ...................................................... 3 The environmental context ........................................... 5 Materialsandmethods.............................................. 7 Systematics....................................................... 11 Coryphomys Schaub, 1937 ........................................... 11 Coryphomys buehleri Schaub, 1937 . ................................... 12 Extended description of Coryphomys buehleri............................ 12 Coryphomys musseri, sp.nov.......................................... 25 Description.................................................... 26 Coryphomys, sp.indet.............................................. 34 Discussion . .................................................... -
Morphological Comparison of Ryukyu Mouse Mus Caroli
Zoological Studies 42(2): 258-267 (2003) Morphological Comparison of Ryukyu Mouse Mus caroli (Rodentia: Muridae) Populations from Okinawajima and Taiwan Masaharu Motokawa1,*, Liang-Kong Lin2 and Junko Motokawa3 1The Kyoto University Museum, Kyoto 606-8501, Japan 2Laboratory of Wildlife Ecology, Department of Biology, Tunghai University, Taichung, Taiwan 407, R.O.C. 3Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan (Accepted January 14, 2003) Masaharu Motokawa, Liang-Kong Lin and Junko Motokawa (2003) Morphological comparison of Ryukyu mouse Mus caroli (Rodentia: Muridae) populations from Okinawajima and Taiwan. Zoological Studies 42(2): 258-267. We performed univariate, bivariate, and multivariate analyses of 4 external and 17 cranial morphome- tric characters in the Ryukyu mouse, Mus caroli Bonhote, 1902 (Mammalia: Rodentia: Muridae), using 177 specimens collected from Okinawajima in the central Ryukyus and from Taiwan. There were clear morphologi- cal differences between populations from Okinawajima and Taiwan. The univariate and bivariate analyses indi- cated that the Okinawajima population differs from the Taiwan population by a shorter tail, smaller ear and audi- tory bulla, less robust incisors, larger molar row, narrower cranium in the orbital region, and longer postpalatal region. Principal component and canonical discriminant analyses based on cranial variables also suggested morphological divergence between the 2 populations. http://www.sinica.edu.tw/zool/zoolstud/42.2/258.pdf Key words: Mus caroli, M. formosanus, Taxonomy, Morphometric analyses, Allometry. The Ryukyu mouse, Mus caroli, is distrib- ognize it as a valid species (e.g., Lin and Lin uted in the Ryukyu Archipelago (Japan), Taiwan, 1983). Hainan, and southern China to the Malay Another name included in M. -
Report on Biodiversity and Tropical Forests in Indonesia
Report on Biodiversity and Tropical Forests in Indonesia Submitted in accordance with Foreign Assistance Act Sections 118/119 February 20, 2004 Prepared for USAID/Indonesia Jl. Medan Merdeka Selatan No. 3-5 Jakarta 10110 Indonesia Prepared by Steve Rhee, M.E.Sc. Darrell Kitchener, Ph.D. Tim Brown, Ph.D. Reed Merrill, M.Sc. Russ Dilts, Ph.D. Stacey Tighe, Ph.D. Table of Contents Table of Contents............................................................................................................................. i List of Tables .................................................................................................................................. v List of Figures............................................................................................................................... vii Acronyms....................................................................................................................................... ix Executive Summary.................................................................................................................... xvii 1. Introduction............................................................................................................................1- 1 2. Legislative and Institutional Structure Affecting Biological Resources...............................2 - 1 2.1 Government of Indonesia................................................................................................2 - 2 2.1.1 Legislative Basis for Protection and Management of Biodiversity and -
Utility of a High-Resolution Mouse Single Nucleotide Polymorphism
bioRxiv preprint doi: https://doi.org/10.1101/2020.09.29.318071; this version posted September 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Mouse single nucleotide polymorphic targets for cross hybridization in rodents 1 2 3 4 Utility of a high-resolution mouse single nucleotide polymorphism microarray assessed for 5 rodent comparative genomics 6 7 8 9 Short title: Mouse single nucleotide polymorphic targets for cross hybridization in rodents 10 11 12 13 Rachel D. Kelly, Maja Milojevic, Freda Qi, Kathleen A. Hill* 14 15 16 17 1Department of Biology, The University of Western Ontario, London, Ontario, Canada 18 19 20 * Corresponding author 21 22 Email: [email protected] (KH) 23 24 25 26 27 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.29.318071; this version posted September 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Mouse single nucleotide polymorphic targets for cross hybridization in rodents 28 Abstract 29 In the study of genetic diversity in non-model species there is a notable lack of the low-cost, high 30 resolution tools that are readily available for model organisms. Genotyping microarray 31 technology for model organisms is well-developed, affordable, and potentially adaptable for 32 cross-species hybridization. -
Complete Sections As Applicable
This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2016.014aM officers) Short title: One (1) new species in the genus Mammarenavirus (e.g. 6 new species in the genus Zetavirus) Modules attached 2 3 4 5 (modules 1 and 11 are required) 6 7 8 9 10 Author(s): Kim Blasdell, [email protected] Veasna Duong, [email protected] Marc Eloit, [email protected] Fabrice Chretien, [email protected] Sowath Ly, [email protected] Vibol Hul, [email protected] Vincent Deubel, [email protected] Serge Morand, [email protected] Philippe Buchy, [email protected] / [email protected] Corresponding author with e-mail address: Philippe Buchy, [email protected] / [email protected] List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp . If in doubt, contact the appropriate subcommittee ICTV Arenaviridae Study Group chair (fungal, invertebrate, plant, prokaryote or vertebrate viruses) ICTV Study Group comments (if any) and response of the proposer: Date first submitted to ICTV: July 18, 2016 Date of this revision (if different to above): ICTV-EC comments and response of the proposer: Page 1 of 12 MODULE 2: NEW SPECIES creating and naming one or more new species. -
Μ¥ ºÉ°´˜ªržiµá¨¸Ê¥Š¨¼„—Oª¥Œ¤Äœž¦³Áš«Åš¥ A
82 ´¸¦µ¥ºÉ°´ªriµÁ¨¸Ê¥¨¼oª¥¤Ä¦³Á«Å¥ A CHECKLIST OF THE WILD MAMMALS IN THAILAND 1*/ Prateep Duengkae ABSTRACT A checklist of wild mammals (not including bats) in Thailand has been compiled based on literature surveys. The work involved the creation of a species checklist with information on locality type, species code, distribution andtaxonomic problems.The wild mammals of Thailand are comprised of 197 species, 116 genera, 28 families and 13 orders. The number of wild mammals has increased from that reported in previous studies, with some groups requiring taxonomic revision. ´¥n° ´¸¦µ¥ºÉ°´ªriµÁ¨¸Ê¥¨¼oª¥¤ (Ťn¦ª¤oµµª) ¸ÊÅo嵦¦ª¦ª¤µÁ°µ¦ ·É¡·¤¡r¨³Â®¨n o°¤¼¨ Á¥Â¡¦nµÁªÅr nµÇ 夵¦»¦ª¤¡¦o°¤´Îµ¤µÁ°Ä¦¼Â °ºÉ°Å¥ ºÉ°µ¤´ ºÉ°· ¡¦o°¤´ °´¬¦¥n° ®¨n¸É¡¦´Ê¦ µ¦Â¡¦n¦³µ¥Ä¦³Á«Å¥ ¡¦o°¤°£·¦µ¥Á¦ºÉ°°»¦¤ª·µÄµ· ¹ÉÄ {»´¦³Á«Å¥Åo¤¸¦µ¥µÅªo¨oª 197 · 116 »¨ 28 ª«r 13 °´´ ´Ê¸Ê¡ªnµÁ}¦µ¥µ·´ÊÄ®¤n (new species) °Ã¨ ¨³¦µ¥µÄ®¤n(new record) °¦³Á«Å¥ Ã¥¸É¤¸µ¨»n¤¥´o°¤¸µ¦«¹¬µÄ ¦µ¥¨³Á°¸¥Á¡·É¤¤µ ¹Êoª¥ 1£µª·µ¸ªª·¥µiµÅ¤o ³ª«µ¦r ¤®µª·¥µ¨´¥Á¬¦«µ¦r 50 ¤.Á¬¦«µ¦r .¡®¨Ã¥· ¨µ¥µª »´¦ ¦»Á¡ 10900 *E-mail:[email protected] ªµ¦µ¦´ªr µÁ¤i º°Å¥ e¸É 18 ´¸É 1 ¡.«. 2554 Journal of Wildlife in Thailand Vol.18 No.1 2011 83 εε µ¦«¹¬µÁ¡ºÉ°¦ª¦ª¤´¦µ¥¸ ºÉ°´ªrÁ¨¥¨¸Ê ¼ª¥¤Ä¦³Á«Å¥o ¸ÉÁ}Á°µ¦µ ª·µµ¦Ä´Ê nªn° e ¡.«. -
Rodent Damage to Various Annual and Perennial Crops of India and Its Management
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Great Plains Wildlife Damage Control Workshop Wildlife Damage Management, Internet Center Proceedings for April 1987 Rodent Damage to Various Annual and Perennial Crops of India and Its Management Ranjan Advani Dept. of Health, City of New York Follow this and additional works at: https://digitalcommons.unl.edu/gpwdcwp Part of the Environmental Health and Protection Commons Advani, Ranjan, "Rodent Damage to Various Annual and Perennial Crops of India and Its Management" (1987). Great Plains Wildlife Damage Control Workshop Proceedings. 47. https://digitalcommons.unl.edu/gpwdcwp/47 This Article is brought to you for free and open access by the Wildlife Damage Management, Internet Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Great Plains Wildlife Damage Control Workshop Proceedings by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Rodent Damage to Various Annual and Perennial Crops of India and Its Management1 Ranj an Advani 2 Abstract.—The results of about 12 years' study deals with rodent damage to several annual and perennial crops of India including cereal, vegetable, fruit, plantation and other cash crops. The rodent species composition in order of predominance infesting different crops and cropping patterns percent damages and cost effectiveness of rodent control operations in each crop and status of rodent management by predators are analysed. INTRODUCTION attempts and preliminary investigations in cocoa and coconut crops yielded information that pods Rodents, as one of the major important and nuts worth of rupees 500 and 650 respectively vertebrate pests (Advani, 1982a) are directly can be saved when one rupee is spent on trapping of related to the production, storage and processing rodents in the plantations (Advani, 1982b). -
Ecologically-Based Management of Rodent Pests ECOLOGICALL V-BASED MANAGEMENT of RODENT PESTS
Ecologically-based Management of Rodent Pests ECOLOGICALL V-BASED MANAGEMENT OF RODENT PESTS Edited by: Grant R. Singleton, Lyn A. Hinds, Herwig Leirs and Zhibin Zhang Australian Centre for International Agricultural Research Canberra 1999 The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or deemed relevant to ACIAR's research objectives. The series is distributed internationally, with an emphasis on the Third World ©Australian Centre for International Agricultural Research GPO Box Canberra, ACT 2601. Singleton, C.R., Hinds, L.A., Leirs, H. and Zhang, Z.ed. 1999. Ecologically-based management of rodent ACIAR Monograph No. 59, 494p. ISBN 1 86320 262 5 Editing and design by Arawang Communication Croup, Canberra Printed by Brown Prior Anderson, Melbourne, Australia page Author Contact Details 8 Abbreviations 12 List of Species 13 Preface 15 1. Ecologically-based Management of Rodent Pests-Re-evaluating 17 Our Approach to an Old Problem Grant R. Singleton, Herwig Leirs, Lyn A. Hinds and Zhibin Zhang Section 1 Basic Research - the Foundation for Sound Management 31 2. Current Paradigms of Rodent Population Dynamics- 33 What Are We Missing? Charles J. Krebs 3. The Behaviour and Ecology of Rattus norvegicus: from Opportunism to 49 Kamikaze Tendencies David W. -
Geographic Variation of Mus Caroli from East and Southeast Asia Based on Mitochondrial Cytochrome B Gene Sequences
Mammal Study 28: 67–72 (2003) © the Mammalogical Society of Japan Geographic variation of Mus caroli from East and Southeast Asia based on mitochondrial cytochrome b gene sequences Mie Terashima1, Agustinus Suyanto2, Kimiyuki Tsuchiya3, Kazuo Moriwaki4, Mei-Lei Jin5 and Hitoshi Suzuki1,* 1 Graduate School of Environmental Earth Science, Hokkaido University, Sapporo 060-0810, Japan 2 Research Centre for Biology, Indonesian Institute of Sciences, Cibinong 16911, Indonesia 3 Department of Agriculture, Tokyo University of Agriculture, Atsugi 243-0034, Japan 4 RIKEN, Bioresource Center, Tsukuba, Ibaraki 305-0074, Japan 5 Shanghai Research Center of Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, China Abstract. We examined intraspecific genetic variation in the mitochondrial cytochrome b gene (1140 bp) in the Okinawa mouse, Mus caroli (Rodentia, Muridae), from Okinawa, Taiwan, Hainan, Yunnan (southern China), Thailand, Vietnam and Java, to better understand their evolutionary history and human impact on dispersal and colonization by the mice. Populations from each of the seven localities had distinctive mitochondrial DNA sequences. The genetic distances, ranging from 0.015 to 0.045 (0.033 on average), were comparable with inter-subspecies differences in the house mouse Mus musculus (0.024). Assuming that nucleotide substitutions occur at a constant rate of 0.024/million years/lineage for mitochondrial DNA, the divergence of in M. caroli is estimated to have occurred 0.3–0.9 million years ago. The relatively great extent of intraspecific mitochondrial DNA variation in this taxon, and the spatial mode of variation suggest that M. caroli is genetically structured in space, to a considerable extent. -
Chapter 7 a New Genus and Species of Small 'Tree-Mouse' (Rodentia
Chapter 7 A New Genus and Species of Small ‘Tree-Mouse’ (Rodentia, Muridae) Related to the Philippine Giant Cloud Rats LAWRENCE R. HEANEY1, DANILO S. BALETE2, ERIC A. RICKART3, M. JOSEFA VELUZ4, AND SHARON A. JANSA5 ABSTRACT A single specimen of a small mouse from Mt. Banahaw–San Cristobal Natural Park, Quezon Province, Luzon Island, Philippines, is here described as a new genus and species. It is easily distinguished from all other murids by its small size (15 g), rusty orange fur, mystacial vibrissae that are two-thirds the length of head and body, postocular patch of bare skin with long vibrissae arising within it, long tail with elongated hairs only on the posterior quarter, ovate ears, procumbent incisors that are deeply notched at the tip, and other distinctive characters. Both morphological and molecular data (from two nuclear genes) indicate that the new taxon is a member of the endemic Philippine clade of ‘‘giant cloud rats,’’ some of which weigh up to 2.6 kg. It is most closely related to the genus Carpomys, which includes the smallest previously known member of the clade (ca. 125 g), but differs from it in many features. The discovery of this new taxon reveals an even greater degree of diversification within the giant cloud rat clade than recognized previously, and adds to the 21 previously known genera of mammals endemic to the Philippines. The new mouse was captured in regenerating lowland rain forest located only 80 kilometers from Manila. This discovery highlights the importance of protecting regenerating tropical lowland rain forest, as well as the few remaining tracts of old-growth lowland rain forest on Luzon. -
Identification of Sri Lankan Muroid Rodents Using Hair Anatomy
Ceylon Journal of Science (Bio. Sci.) 43 (2): 17-30, 2014 DOI: http://dx.doi.org/10.4038/cjsbs.v43i2.7322 Identification of Sri Lankan Muroid Rodents using Hair Anatomy D. M. C. Niroshini and Suyama Meegaskumbura* Department of Zoology, Faculty of Science, University of Peradeniya, Sri Lanka. Accepted November 26, 2014 ABSTRACT We report here characteristic features of hair anatomy of all fifteen muroid rodent species occurring in Sri Lanka. We examined cuticular scale patterns, cross-sections, medullae patterns, hair profile and made measurements (length and maximum width) of dorsal guard hairs. We also developed a dichotomous key for identification of rodent species based on hair anatomy, supported with photomicrographs of cuticular scales, medullae and illustrations of cross-sections. All species except spiny rats (Mus mayori and M. fernandoni) can reliably be distinguished from each other using hair anatomy, in most cases using a combination of characters. Spiny rats can only be distinguished as a group. Cuticular scale patterns and cross-sections show more heterogeneity among species, compared to other characters. Medullary cell shape, their arrangement, maximum number of cells in the widest region of the hair, hair dimensions and profiles are also useful in species identification. Keywords: cuticular scales, gerbils, guard hair, medullae patterns, mice, rats INTRODUCTION In Sri Lanka, fifteen species of murine rodents (rats and mice) belonging to eight genera, namely, Epidermal hair is a unique feature of mammals. Bandicota, Mus, Golunda, Srilankamys, Rattus, Anatomy of hairs is known to change according to Madromys, Millardia and Vandeleuria and a single the habitats in which mammals live, and hence is species of gerbil, Tatera tatera are recorded. -
1 Checklist of Indian Mammals FINAL.Pmd
CHECKLIST OF INDIAN MAMMALS REVISED AND UPDATED 2008 417 species in 48 families Taxonomy and nomenclature as per Wilson & Reeder (2005) I. ORDER: PROBOSCIDEA 1) Family: Elephantidae (Elephants) 1. Elephas maximus Linnaeus, 1758 Asian Elephant - I, SR, N, BH, BA, M, SE II. ORDER: SIRENIA 2) Family: Dugongidae (Dugong) 2. Dugong dugon (Müller, 1776) Dugong - I, PK(?), SR, M, BA, SE, P, ET, AU - Tropical coastal waters of Indian and W Pacific Ocean III. ORDER: SCANDENTIA 3) Family: Tupaiidae (Treeshrews) 3. Anathana ellioti (Waterhouse, 1850) Madras Treeshrew - I (EN) 4. Tupaia belangeri (Wagner, 1841) Northern Treeshrew - I, N, M, BA, SE, P 5. Tupaia nicobarica (Zelebor, 1869) Nicobar Treeshrew- I (EN) IV. ORDER: PRIMATES SUBORDER: STREPSIRRHINI 4) Family: Lorisidae (Lorises) 6. Loris lydekkerianus Cabrera, 1908 Gray Slender Loris - I, SR 7. Nycticebus bengalensis (Lacépède, 1800) Bengal Slow Loris - I, M, BA, SE, P SUBORDER: HAPLORRHINI 5) Family: Cercopithecidae (Old World monkeys) Subfamily: Cercopithecinae (Macaques) 8. Macaca arctoides (I. Geoffroy, 1831) Stump-tailed Macaque - I, SE, P 9. Macaca assamensis Mc Clelland, 1840 Assam Macaque - I, N, SE, P 10. Macaca fascicularis (Raffles, 1821) Crab-eating Macaque - I, M, SE 11. Macaca leonina (Blyth, 1863) Northern Pig-tailed Macaque - I, M, BA, SE, P 12. Macaca mulatta (Zimmermann, 1780) Rhesus Macaque - I, AF, PK, SE, P 13. Macaca munzala Sinha, Datta, Madhusudan and Mishra, 2005 Arunachal Macaque - I (EN) 14. Macaca radiata (É. Geoffroy, 1812) Bonnet Macaque - I (EN) 15. Macaca silenus (Linnaeus, 1758) Lion-tailed Macaque - I (EN) Subfamily: Colobinae (Langurs and Leaf-monkeys) 16. Semnopithecus ajax (Pocock, 1928) Kashmir Gray Langur - I, PK 17.