Diversity, Distribution, and Conservation of Endemic Island Rodents

Total Page:16

File Type:pdf, Size:1020Kb

Diversity, Distribution, and Conservation of Endemic Island Rodents ARTICLE IN PRESS Quaternary International 182 (2008) 6–15 Diversity, distribution, and conservation of endemic island rodents Giovanni Amoria,Ã, Spartaco Gippolitib, Kristofer M. Helgenc,d aInstitute of Ecosystem Studies, CNR-Institute of Ecosystem Studies, Via A. Borelli 50, 00161 Rome, Italy bConservation Unit, Pistoia Zoological Garden, Italy cDivision of Mammals, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA dDepartment of Biological Sciences, Division of Environmental and Life Sciences, Macquarie University, Sydney, New South Wales 2109, Australia Available online 8 June 2007 Abstract Rodents on islands are usually thought of by conservationists mainly in reference to invasive pest species, which have wrought considerable ecological damage on islands around the globe. However, almost one in five of the world’s nearly 2300 rodent species is an island endemic, and insular rodents suffer from high rates of extinction and endangerment. Rates of Quaternary extinction and current threat are especially high in the West Indies and the species-rich archipelagos of Southeast Asia. Rodent endemism reaches its most striking levels on large or remote oceanic islands, such as Madagascar, the Caribbean, the Ryukyu Islands, the oceanic Philippines, Sulawesi, the Galapagos, and the Solomon Islands, as well as on very large land-bridge islands, especially New Guinea. While conservation efforts in the past and present have focused mainly on charismatic mammals (such as birds and large mammals), efforts specifically targeted toward less conspicuous animals (such as insular rodents) may be necessary to stem large numbers of extinctions in the near future. r 2007 Elsevier Ltd and INQUA. All rights reserved. 1. Introduction factors (genetic and ecological) has produced the high rates of endemism normally observed in island systems. Conservation of biodiversity has been described as one Impacts from human activities have caused the degrada- of the principal environmental challenges for humanity tion of many habitats and the decline of many species, in (Wilson, 1992) and considerable scientific efforts are some cases leading to their extinction. Particularly vulner- devoted to this issue. However, a gap exists between able are mammal populations on islands. Among insular theory and practice in conservation activities. In reality, mammals, rodents deserve special attention because of considerable attention and funds are directed toward a few their relatively high degree of representation in insular species (or, more rarely, habitats) of high economic or faunas, high rates of endemism, general lack of informa- emotional interest (Amori and Gippoliti, 2000), while vast tion on insular rodent population status, and little portions of global biodiversity remain neglected or still attention paid hitherto to their conservation compared to unknown. birds, larger mammals, and some reptiles in insular Here our attention is focused on island rodents, chosen contexts. Ironically, rodent species in island ecosystems especially because the dynamics of insular faunas are of are often considered only in a negative context, because of high interest from an evolutionary and ecological stand- the well-known ecological damage wrought by a few widely point. Animal populations on different islands, especially introduced pest species (e.g. Rattus rattus, R. norvegicus, oceanic islands, are geographically and often genetically R. exulans, and Mus musculus), while the fate of endemic isolated, forming closed biological systems with reduced species is often overlooked. In fact, islands maintain an impacts from immigration. The combination of such enormous and largely irreplaceable heritage of rodent biological diversity (Ceballos and Brown, 1995), and the aim of this paper is to highlight the diversity of island ÃCorresponding author. Tel.: +39 06 49918013; fax: +39 06 4457516. endemic rodents and provide some remarks on conserva- E-mail address: [email protected] (G. Amori). tion priorities. 1040-6182/$ - see front matter r 2007 Elsevier Ltd and INQUA. All rights reserved. doi:10.1016/j.quaint.2007.05.014 ARTICLE IN PRESS G. Amori et al. / Quaternary International 182 (2008) 6–15 7 2. Insular rodents: how many, and where? Table 1 A basic summary of extant rodent genera endemic to islands For the purposes of this review, we compiled selected n species Genus Family Zoogeographical summary statistics on insular rodents worldwide. Rodents region from all islands are included, with New Guinea considered as the largest island. Islands are grouped according to the 2 Capromys Capromyidae Neotropical major zoogeographical regions. Taxonomic judgements 2 Geocapromys Capromyidae Neotropical 5 Mesocapromys Capromyidae Neotropical and distributional data are derived from Wilson and 3 Mysateles Capromyidae Neotropical Reeder (2005), in many cases supplemented with informa- 1 Plagiodontia Capromyidae Neotropical tion from newer publications on endemic island species 2 Nesoryzomys Cricetidae Neotropical (e.g. Goodman et al., 2005; Helgen, 2005a, b; Rickart et al., 1 Glirurus Gliridae Palaearctic 2005; Cucchi et al., 2006). We include in our compilation 1 Abeomelomys Muridae Australian 1 Anisomys Muridae Australian only those species that are extant or that we regard as 2 Baiyankamys Muridae Australian highly likely to be extant, and exclude those species that are 3 Chiruromys Muridae Australian well-established as extinct or that we regard as highly likely 2 Coccymys Muridae Australian to be extinct (see below). Judgements regarding species 1 Crossomys Muridae Australian extinctions rely largely on MacPhee and Fleming (1999), 2 Hyomys Muridae Australian 1 Leporillus Muridae Australian Amori and Clout (2003),andWilson and Reeder (2005). 3 Leptomys Muridae Australian Threatened genera were identified according to the criteria 1 Lorentzimys Muridae Australian by Amori and Gippoliti (2001, 2003). We level a special 2 Macruromys Muridae Australian focus on the genus rank in regional and other comparisons 4 Mallomys Muridae Australian of rodents. When applied consistently and in a phyloge- 2 Mammelomys Muridae Australian 2 Microhydromys Muridae Australian netic framework, as we feel is generally done appropriately 1 Parahydromys Muridae Australian across Rodentia, the genus represents a convenient means 2 Paraleptomys Muridae Australian for measuring biodiversity (Williams and Gaston, 1994), 9 Paramelomys Muridae Australian and can be very useful in conservation planning aimed at 2 Pogonomelomys Muridae Australian establishing the most pressing priorities (Russell et al., 5 Pogonomys Muridae Australian 1 Protochromys Muridae Australian 1998). Moreover, this taxonomic rank is useful in broad- 5 Pseudohydromys Muridae Australian scale comparisons because, though always dynamic (e.g. 4 Solomys Muridae Australian Weksler et al., 2006), it is usually more stable than 1 Xenuromys Muridae Australian taxonomy at the species level, especially for such a speciose 1 Abditomys Muridae Oriental group as Rodentia (Helgen, 2003a). 1 Anonymomys Muridae Oriental 10 Apomys Muridae Oriental Rodent species restricted to islands include at least 388 2 Archboldomys Muridae Oriental extant species (17.5% of all extant rodent species), 4 Batomys Muridae Oriental classified in 127 genera and 10 families. Species of Muridae 3 Bullimus Muridae Oriental (258 species) and Sciuridae (54 species) are most wide- 6 Bunomys Muridae Oriental spread on islands. There are 83 currently recognized rodent 2 Carpomys Muridae Oriental 5 Chrotomys Muridae Oriental genera entirely endemic to islands (corresponding to 197 4 Crateromys Muridae Oriental species in total), representing 17% of all rodent genera 4 Crunomys Muridae Oriental (Table 1). Only one rodent family, Capromyidae (the 1 Diplothrix Muridae Oriental hutias), is found only on islands, being endemic to the 2 Echiothrix Muridae Oriental Caribbean region. 1 Eropeplus Muridae Oriental 3 Haeromys Muridae Oriental It is well known that species richness typically scales 1 Kadarsanomys Muridae Oriental according to island size (MacArthur and Wilson, 1967). 1 Komodomys Muridae Oriental Degree of endemism, on the other hand, is less closely 1 Lenomys Muridae Oriental linked to an island’s size (Myers and De Grave, 2000; 2 Limnomys Muridae Oriental Fattorini, 2006) but rather to its remoteness and the 3 Margaretamys Muridae Oriental 1 Melasmothrix Muridae Oriental duration of its isolation, and thus to its geological history. 1 Nesoromys Muridae Oriental For example, Madagascar, isolated from all other land- 1 Palawanomys Muridae Oriental masses for the last 85 million years, shows an index of 1 Papagomys Muridae Oriental 100% endemism in its native rodent fauna (owing 1 Paruromys Muridae Oriental apparently to the infrequency of dispersal to and from 1 Paulamys Muridae Oriental 2 Phloeomys Muridae Oriental the island). Meanwhile, Borneo, which has been periodi- 1 Pithecheirops Muridae Oriental cally connected during times of lowered sea levels in the 2 Rhynchomys Muridae Oriental late Quaternary with other land areas on the Sunda Shelf 1 Sommeromys Muridae Oriental (including mainland Asia, Sumatra, and Java), has an 1 Srilankamys Muridae Oriental index of only 12%. Islands or archipelagos with highest 7 Taeromys Muridae Oriental ARTICLE IN PRESS 8 G. Amori et al. / Quaternary International 182 (2008) 6–15 Table 1 (continued ) oceanic islands have an endemism index of 465%, while all land-bridge islands have an endemism index
Recommended publications
  • Evolutionary Biology of the Genus Rattus: Profile of an Archetypal Rodent Pest
    Bromadiolone resistance does not respond to absence of anticoagulants in experimental populations of Norway rats. Heiberg, A.C.; Leirs, H.; Siegismund, Hans Redlef Published in: <em>Rats, Mice and People: Rodent Biology and Management</em> Publication date: 2003 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Heiberg, A. C., Leirs, H., & Siegismund, H. R. (2003). Bromadiolone resistance does not respond to absence of anticoagulants in experimental populations of Norway rats. In G. R. Singleton, L. A. Hinds, C. J. Krebs, & D. M. Spratt (Eds.), Rats, Mice and People: Rodent Biology and Management (Vol. 96, pp. 461-464). Download date: 27. Sep. 2021 SYMPOSIUM 7: MANAGEMENT—URBAN RODENTS AND RODENTICIDE RESISTANCE This file forms part of ACIAR Monograph 96, Rats, mice and people: rodent biology and management. The other parts of Monograph 96 can be downloaded from <www.aciar.gov.au>. © Australian Centre for International Agricultural Research 2003 Grant R. Singleton, Lyn A. Hinds, Charles J. Krebs and Dave M. Spratt, 2003. Rats, mice and people: rodent biology and management. ACIAR Monograph No. 96, 564p. ISBN 1 86320 357 5 [electronic version] ISSN 1447-090X [electronic version] Technical editing and production by Clarus Design, Canberra 431 Ecological perspectives on the management of commensal rodents David P. Cowan, Roger J. Quy* and Mark S. Lambert Central Science Laboratory, Sand Hutton, York YO41 1LZ, UNITED KINGDOM *Corresponding author, email: [email protected] Abstract. The need to control Norway rats in the United Kingdom has led to heavy reliance on rodenticides, particu- larly because alternative methods do not reduce rat numbers as quickly or as efficiently.
    [Show full text]
  • Checklist of the Mammals of Indonesia
    CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation i ii CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation By Ibnu Maryanto Maharadatunkamsi Anang Setiawan Achmadi Sigit Wiantoro Eko Sulistyadi Masaaki Yoneda Agustinus Suyanto Jito Sugardjito RESEARCH CENTER FOR BIOLOGY INDONESIAN INSTITUTE OF SCIENCES (LIPI) iii © 2019 RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI) Cataloging in Publication Data. CHECKLIST OF THE MAMMALS OF INDONESIA: Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation/ Ibnu Maryanto, Maharadatunkamsi, Anang Setiawan Achmadi, Sigit Wiantoro, Eko Sulistyadi, Masaaki Yoneda, Agustinus Suyanto, & Jito Sugardjito. ix+ 66 pp; 21 x 29,7 cm ISBN: 978-979-579-108-9 1. Checklist of mammals 2. Indonesia Cover Desain : Eko Harsono Photo : I. Maryanto Third Edition : December 2019 Published by: RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI). Jl Raya Jakarta-Bogor, Km 46, Cibinong, Bogor, Jawa Barat 16911 Telp: 021-87907604/87907636; Fax: 021-87907612 Email: [email protected] . iv PREFACE TO THIRD EDITION This book is a third edition of checklist of the Mammals of Indonesia. The new edition provides remarkable information in several ways compare to the first and second editions, the remarks column contain the abbreviation of the specific island distributions, synonym and specific location. Thus, in this edition we are also corrected the distribution of some species including some new additional species in accordance with the discovery of new species in Indonesia.
    [Show full text]
  • Norntates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y
    AMERICAN MUSEUM Norntates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 3052, 19 pp., 9 figures, 1 table December 14, 1992 Sucking Lice (Insecta, Anoplura) from Indigenous Sulawesi Rodents: a New Species of Polyplax from a Montane Shrew Rat, and New Information About Polyplax wallacei and P. eropepli LANCE A. DURDEN' AND GUY G. MUSSER2 ABSTRACT Polyplax melasmothrixi, a new species of po- from Eropeplus canus from tropical upper mon- lyplacid sucking louse, is described from Melas- tane rain forest also in Central Sulawesi. Host and mothrix naso, a small-bodied shrew rat known habitat associations for these three species ofsuck- only from tropical upper montane rain forest in ing lice are discussed. Polyplax melasmothrixi and Central Sulawesi, Indonesia. The male ofPolyplax P. eropepli are both known only from montane wallacei is described from specimens collected from habitats in Central Sulawesi and both appear to Bunomys chrysocomus trapped in tropical lowland be host specific (to M. naso and E. canus, respec- evergreen rain forest in Central Sulawesi. A further tively). Contrastingly, P. wallacei parasitizes two specimen ofPolyplax eropepli, a taxon previously species ofBunomys in lowland forests and is known known only from the type series, is documented from North and Central Sulawesi. INTRODUCTION Melasmothrix naso, Bunomys chrysoco- Musser and Holden, 1991). The shrew rat, mus, and Eropeplus canus are three murine M. naso, and the large-bodied E. canus have rodents found only in forests on the Indo- been recorded only from montane rainforest nesian island of Sulawesi (Musser, 1987; formations in the mountainous central part I Assistant Professor and Assistant Curator, Institute of Arthropodology and Parasitology, Georgia Southern Uni- versity, Landrum Box 8056, Statesboro, Georgia 30460.
    [Show full text]
  • Quaternary Murid Rodents of Timor Part I: New Material of Coryphomys Buehleri Schaub, 1937, and Description of a Second Species of the Genus
    QUATERNARY MURID RODENTS OF TIMOR PART I: NEW MATERIAL OF CORYPHOMYS BUEHLERI SCHAUB, 1937, AND DESCRIPTION OF A SECOND SPECIES OF THE GENUS K. P. APLIN Australian National Wildlife Collection, CSIRO Division of Sustainable Ecosystems, Canberra and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) K. M. HELGEN Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution, Washington and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 341, 80 pp., 21 figures, 4 tables Issued July 21, 2010 Copyright E American Museum of Natural History 2010 ISSN 0003-0090 CONTENTS Abstract.......................................................... 3 Introduction . ...................................................... 3 The environmental context ........................................... 5 Materialsandmethods.............................................. 7 Systematics....................................................... 11 Coryphomys Schaub, 1937 ........................................... 11 Coryphomys buehleri Schaub, 1937 . ................................... 12 Extended description of Coryphomys buehleri............................ 12 Coryphomys musseri, sp.nov.......................................... 25 Description.................................................... 26 Coryphomys, sp.indet.............................................. 34 Discussion . ....................................................
    [Show full text]
  • Ecological Assessments in the B+WISER Sites
    Ecological Assessments in the B+WISER Sites (Northern Sierra Madre Natural Park, Upper Marikina-Kaliwa Forest Reserve, Bago River Watershed and Forest Reserve, Naujan Lake National Park and Subwatersheds, Mt. Kitanglad Range Natural Park and Mt. Apo Natural Park) Philippines Biodiversity & Watersheds Improved for Stronger Economy & Ecosystem Resilience (B+WISER) 23 March 2015 This publication was produced for review by the United States Agency for International Development. It was prepared by Chemonics International Inc. The Biodiversity and Watersheds Improved for Stronger Economy and Ecosystem Resilience Program is funded by the USAID, Contract No. AID-492-C-13-00002 and implemented by Chemonics International in association with: Fauna and Flora International (FFI) Haribon Foundation World Agroforestry Center (ICRAF) The author’s views expressed in this publication do not necessarily reflect the views of the United States Agency for International Development or the United States Government. Ecological Assessments in the B+WISER Sites Philippines Biodiversity and Watersheds Improved for Stronger Economy and Ecosystem Resilience (B+WISER) Program Implemented with: Department of Environment and Natural Resources Other National Government Agencies Local Government Units and Agencies Supported by: United States Agency for International Development Contract No.: AID-492-C-13-00002 Managed by: Chemonics International Inc. in partnership with Fauna and Flora International (FFI) Haribon Foundation World Agroforestry Center (ICRAF) 23 March
    [Show full text]
  • Two New Species of Shrew-Rats (Rhynchomys: Muridae: Rodentia) from Luzon Island, Philippines
    Journal of Mammalogy, 100(4):1112–1129, 2019 DOI:10.1093/jmammal/gyz066 Version of Record, first published online 6 June 2019, with fixed content and layout in compliance with Art. 8.1.3.2 ICZN. Two new species of shrew-rats (Rhynchomys: Muridae: Rodentia) from Luzon Island, Philippines Downloaded from https://academic.oup.com/jmammal/article-abstract/100/4/1112/5506757 by Louisiana State University user on 05 November 2019 Eric A. Rickart,* Danilo S. Balete,† Robert M. Timm, Phillip A. Alviola, Jacob A. Esselstyn, and Lawrence R. Heaney Natural History Museum of Utah, University of Utah, Salt Lake City, UT 84108, USA (EAR) Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA (DSB, LRH) Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA (RMT) Institute of Biological Sciences, University of the Philippines, Los Baños, Laguna 4031, Philippines (PAA) Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA (JAE) * Correspondent: [email protected] † Deceased 1 July 2017. The murine genus Rhynchomys includes the large-bodied Philippine “shrew-rats,” highly specialized members of the vermivorous clade of Philippine murids. Four species are recognized, all of which are endemic to Luzon Island: R. soricoides from mountains within the Central Cordillera, R. isarogensis from Mt. Isarog on the Bicol Peninsula, R. banahao from Mt. Banahaw in south-central Luzon, and R. tapulao from Mt. Tapulao in the Zambales Mountains. Field surveys in 2006 and 2008 revealed two additional populations of Rhynchomys, one from Mt.
    [Show full text]
  • Novltates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y
    AMERICAN MUSEUM Novltates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 3064, 34 pp., 8 figures, 2 tables June 10, 1993 Philippine Rodents: Chromosomal Characteristics and Their Significance for Phylogenetic Inference Among 13 Species (Rodentia: Muridae: Murinae) ERIC A. RICKART1 AND GUY G. MUSSER2 ABSTRACT Karyotypes are reported for 13 murines be- bers of 50 and 88, respectively, indicating longing to the endemic Philippine genera Apomys, substantial chromosomal variability within that Archboldomys, Batomys, Bullimus, Chrotomys, genus. Archboldomys (2N = 26, FN = 43) has an Phloeomys, and Rhynchomys, and the widespread aberrant sex chromosome system and a karyotype genus Rattus. The karyotype of Phloeomys cum- that is substantially different from other taxa stud- ingi (2N = 44, FN = 66) differs from that of P. ied. The karyotype ofBullimus bagobus (2N = 42, pallidus (2N = 40, FN = 60), and both are chro- FN = ca. 58) is numerically similar to that of the mosomally distinct from other taxa examined. Two native Rattus everetti and the two non-native spe- species of Batomys (2N = 52), Chrotomys gon- cies ofRattus, R. tanezumi and R. exulans. Chro- zalesi (2N = 44), Rhynchomys isarogensis (2N = mosomal data corroborate some phylogenetic re- 44), and Apomys musculus (2N = 42) have FN = lationships inferred from morphology, and support 52-53 and a predominance of telocentric chro- the hypothesis that the Philippine murid fauna is mosomes. Two other species ofApomys have dip- composed of separate clades representing inde- loid numbers of30 and 44, and fundamental num- pendent ancestral invasions of the archipelago. INTRODUCTION The Philippine Islands support a remark- Heaney and Rickart, 1990; Musser and Hea- ably diverse murine rodent fauna, including ney, 1992).
    [Show full text]
  • Endemic Small Mammals Captured Outside of Natural Habitats in the Moramanga District, Central Eastern Madagascar
    Terrestrial “forest-dwelling” endemic small mammals captured outside of natural habitats in the Moramanga District, central eastern Madagascar Toky M. Randriamoria1,2, Voahangy Soarimalala2 petits mammifères, par le biais des trous-pièges et & Steven M. Goodman2, 3 des pièges standards, menées dans cinq villages du 1Département de Biologie Animale, Faculté des District de Moramanga, dans la partie Est-centrale Sciences, Université d’Antananarivo, BP 906, de Madagascar, en 2013 (saison sèche) et en 2014 Antananarivo 101, Madagascar (saison humide) ont permis d’attraper pour la première E-mail: [email protected] fois deux espèces d’Afrosoricida endémiques, 2 Association Vahatra, BP 3972, Antananarivo 101, Microgale majori et M. thomasi, dans des habitats Madagascar anthropogéniques en dehors des forêts naturelles. E-mail: [email protected] La première espèce a été répertoriée dans deux 3Field Museum of Natural History, 1400 South Lake sites (Ambalafary et Antsahatsaka) à travers deux Shore Drive, Chicago, Illinois 60605, USA types d’habitats principaux : la forêt d’Eucalyptus et E-mail: [email protected] le savoka. Le terme savoka désigne des formations végétales secondaires souvent peu pénétrables et correspond à la période de jachère des cultures sur Abstract brûlis. Ces habitats de capture sont situés près de The vast majority of Malagasy rodent (Subfamily 770 m jusqu’à plus de 3 km d’une forêt naturelle. Nesomyinae) and tenrec (Subfamily Oryzorictinae) Concernant M. thomasi, un spécimen a été capturé species living in the eastern humid forest are thought dans un savoka situé à près d’une centaine de to be strictly forest-dwelling. Small mammals surveys mètres d’une forêt naturelle, dans le site de Besakay.
    [Show full text]
  • The Last Survivors: Current Status and Conservation of the Non-Volant Land
    1 The Last Survivors: current status and conservation of the non-volant land 2 mammals of the insular Caribbean 3 4 SAMUEL T. TURVEY,* ROSALIND J. KENNERLEY, JOSE M. NUÑEZ-MIÑO, AND RICHARD P. 5 YOUNG 6 7 Institute of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY (STT) 8 Durrell Wildlife Conservation Trust, Les Augrès Manor, Trinity, Jersey JE3 5BP, Channel 9 Islands (RJK, JNM, RPY) 10 11 *Correspondent: [email protected] 12 13 Running header: Status of Caribbean land mammals 14 1 15 The insular Caribbean is among the few oceanic-type island systems colonized by non-volant 16 land mammals. This region also has experienced the world’s highest levels of historical 17 mammal extinctions, with at least 29 species lost since AD 1500. Representatives of only 2 18 land-mammal families (Capromyidae and Solenodontidae) now survive, in Cuba, Hispaniola, 19 Jamaica, and the Bahama Archipelago. The conservation status of Caribbean land mammals 20 is surprisingly poorly understood. The most recent IUCN Red List assessment, from 2008, 21 recognized 15 endemic species, of which 13 were assessed as threatened. We reassessed all 22 available baseline data on the current status of the Caribbean land-mammal fauna within the 23 framework of the IUCN Red List, to determine specific conservation requirements for 24 Caribbean land-mammal species using an evidence-based approach. We recognize only 13 25 surviving species, 1 of which is not formally described and cannot be assessed using IUCN 26 criteria; 3 further species previously considered valid are interpreted as junior synonyms or 27 subspecies.
    [Show full text]
  • Dental Adaptation in Murine Rodents (Muridae): Assessing Mechanical Predictions Stephanie A
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2010 Dental Adaptation in Murine Rodents (Muridae): Assessing Mechanical Predictions Stephanie A. Martin Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES DENTAL ADAPTATION IN MURINE RODENTS (MURIDAE): ASSESSING MECHANICAL PREDICTIONS By STEPHANIE A. MARTIN A Thesis in press to the Department of Biological Science in partial fulfillment of the requirements for the degree of Master of Science Degree Awarded: Spring Semester, 2010 Copyright©2010 Stephanie A. Martin All Rights Reserved The members of the committee approve the thesis of Stephanie A. Martin defended on March 22, 2010. ______________________ Scott J. Steppan Professor Directing Thesis _____________________ Gregory Erickson Committee Member _____________________ William Parker Committee Member Approved: __________________________________________________________________ P. Bryant Chase, Chair, Department of Biological Science The Graduate School has verified and approved the above-named committee members. ii TABLE OF CONTENTS List of Tables......................................................................................................................iv List of Figures......................................................................................................................v Abstract...............................................................................................................................vi
    [Show full text]
  • Shellfish Exploitation in the Western Canary Islands Over the Last Two Millennia
    Environmental Archaeology The Journal of Human Palaeoecology ISSN: 1461-4103 (Print) 1749-6314 (Online) Journal homepage: http://www.tandfonline.com/loi/yenv20 Shellfish Exploitation in the Western Canary Islands Over the Last Two Millennia Wesley Parker, Yurena Yanes, Eduardo Mesa Hernández, Juan Carlos Hernández Marrero, Jorge Pais, Nora Soto Contreras & Donna Surge To cite this article: Wesley Parker, Yurena Yanes, Eduardo Mesa Hernández, Juan Carlos Hernández Marrero, Jorge Pais, Nora Soto Contreras & Donna Surge (2018): Shellfish Exploitation in the Western Canary Islands Over the Last Two Millennia, Environmental Archaeology, DOI: 10.1080/14614103.2018.1497821 To link to this article: https://doi.org/10.1080/14614103.2018.1497821 View supplementary material Published online: 22 Jul 2018. Submit your article to this journal View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=yenv20 ENVIRONMENTAL ARCHAEOLOGY https://doi.org/10.1080/14614103.2018.1497821 Shellfish Exploitation in the Western Canary Islands Over the Last Two Millennia Wesley Parkera, Yurena Yanesa, Eduardo Mesa Hernándezb, Juan Carlos Hernández Marreroc, Jorge Paisd, Nora Soto Contrerasa and Donna Surgee aDepartment of Geology, University of Cincinnati, Cincinnati, OH, USA; bDepartamento de Prehistoria, Antropología e Historia Antigua, Universidad de La Laguna, La Laguna, Tenerife, Canary Islands, Spain; cEl Museo Arqueológico de La Gomera, San Sebastián de La Gomera, La Gomera, Canary Islands, Spain; dMuseo Arqueológico Benahoarita, Los Llanos de Aridane, La Palma, Canary Islands, Spain; eDepartment of Geological Sciences, University of North Carolina, Chapel Hill, NC, USA ABSTRACT ARTICLE HISTORY The residents of the Canary Archipelago consumed limpets since the arrival of humans ∼2500 Received 26 February 2018 yrs.
    [Show full text]
  • A Cautionary Tale of Previously Unsuspected Mammalian Diversity on a Tropical Oceanic Island Lawrence R
    monograph frontiers of biogeography 8.2, e29667, 2016 Doubling diversity: a cautionary tale of previously unsuspected mammalian diversity on a tropical oceanic island Lawrence R. Heaney1*, Danilo S. Balete1, Mariano Roy M. Duya2, Melizar V. Duya2, Sharon A. Jansa3, Scott J. Steppan4, and Eric A. Rickart5 1Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL 60605, USA; 2Institute of Biology, University of the Philippines - Diliman, Quezon City 1101, Philippines; 3Bell Museum of Natural History, University of Minnesota, Minneapolis, MN 55455, USA; 4Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; 5Natural History Museum of Utah, 301 Wakara Way, Salt Lake City, UT 84108, USA. *Correspondence: [email protected]; http://fieldmuseum.org/users/lawrence-heaney Abstract. The development of meaningful models of species richness dynamics in island ecosystems re- quires accurate measurement of existing biodiversity. To test the assumption that mammalian diversity on tropical oceanic islands is well documented, we conducted a 12-year intensive survey of the native mammal fauna on Luzon Island, a large (ca. 103,000 km2), mostly volcanic island in the Philippines, which was thought to be well known. Prior to the start of our study in 2000, 28 native, non-flying mam- mals had been documented, and extrapolation from prior discoveries indicated that the rate of discov- ery of new species was steady but low. From 2000 to 2012, we surveyed non-flying mammals at 17 loca- tions and discovered at least 28 additional species, doubling the number known. Nearly all of the new species are restricted to a single mountain or mountain range, most of which had not been sampled pre- viously, thus also doubling the number of local centers of endemism within Luzon from four to eight.
    [Show full text]