TMG E1280 Road Level Crossing Protection Equipment

Total Page:16

File Type:pdf, Size:1020Kb

TMG E1280 Road Level Crossing Protection Equipment Engineering Manual Signals Maintenance TMG E1280 ROAD LEVEL CROSSING PROTECTION EQUIPMENT Version 1.0 Issued November 2012 Owner: Chief Engineer, Signals & Control Systems Approved Warwick Allison Authorised by: Paul Szacsvay by: Chief Engineer Principal Engineer Signals & Control Systems Signal Research & Development Engineering Manual Disclaimer This document was prepared for use on the RailCorp Network only. RailCorp makes no warranties, express or implied, that compliance with the contents of this document shall be sufficient to ensure safe systems or work or operation. It is the document user’s sole responsibility to ensure that the copy of the document it is viewing is the current version of the document as in use by RailCorp. RailCorp accepts no liability whatsoever in relation to the use of this document by any party, and RailCorp excludes any liability which arises in any manner by the use of this document. Copyright The information in this document is protected by Copyright and no part of this document may be reproduced, altered, stored or transmitted by any person without the prior consent of RailCorp. UNCONTROLLED WHEN PRINTED Page 1 of 66 RailCorp Engineering Manual — Signals — Maintenance Road Level Crossing Protection Equipment TMG E1280 Document control Version Date Summary of change 1.0 23 November 2012 First issue This Manual replaces Manual No. SC 07 60 01 00 EQ Road Level Crossing Protection Equipment version 1.0 dated June 1999. Summary of changes from previous version Summary of change Section Initial update of SC07600100EQ prepared by Jason Firmstone and renumbered TMG E1280. Document reformatted to comply with TMA 400 Engineering Publications All Manual. © RailCorp Page 2 of 66 Issued November 2012 UNCONTROLLED WHEN PRINTED Version 1.0 RailCorp Engineering Manual — Signals — Maintenance Road Level Crossing Protection Equipment TMG E1280 Contents 1 Introduction .............................................................................................................................5 1.1 Scope of this manual.................................................................................................................5 1.2 Referenced documents.............................................................................................................6 2 Description of equipment.......................................................................................................6 2.1 Road approach signs ................................................................................................................6 2.2 Early warning signals ................................................................................................................9 2.3 Type F flashing lights ................................................................................................................9 2.4 Bells.........................................................................................................................................11 2.5 Road Barrier Mechanisms.......................................................................................................13 2.5.1 WRRS Type B .........................................................................................................13 2.5.2 WRRS Type D .........................................................................................................14 2.5.3 Western Cullen Hayes Type 3590...........................................................................15 2.5.4 Western Cullen Hayes Type 3593...........................................................................15 2.5.5 Harmon Type H1 .....................................................................................................16 2.5.6 Westinghouse Type EB ...........................................................................................17 2.6 Power supply...........................................................................................................................17 2.7 Flashers...................................................................................................................................17 2.8 Level Crossing Monitor ...........................................................................................................18 3 Principles of operation .........................................................................................................18 3.1 Level crossing protection ........................................................................................................18 3.2 Boom barrier mechanisms ......................................................................................................18 4 Operational and functional checks .....................................................................................19 4.1 Intervals...................................................................................................................................19 4.2 Type F flashing lights (all types) .............................................................................................19 4.2.1 Voltage at lamps ......................................................................................................19 4.2.2 Lamp alignment .......................................................................................................19 4.2.3 Flash rate.................................................................................................................20 4.2.4 Roundels, covers and fasteners ..............................................................................20 4.3 Bells.........................................................................................................................................20 4.3.1 External....................................................................................................................20 4.3.2 Internal.....................................................................................................................20 4.4 Road boom barriers ................................................................................................................20 4.4.1 All types ...................................................................................................................20 4.4.1.1 Boom lights...............................................................................................20 4.4.1.2 Reflective treatment .................................................................................21 4.4.2 Timber Booms .........................................................................................................21 4.4.3 Aluminium / GRP and GRP booms .........................................................................21 4.5 Road boom mechanisms (all types)........................................................................................21 4.5.1.1 Hold clear device......................................................................................21 4.5.1.2 Boom angle ..............................................................................................24 4.5.1.3 Speed of operation...................................................................................25 4.6 Power supply...........................................................................................................................26 4.6.1 Batteries...................................................................................................................26 © RailCorp Page 3 of 66 Issued November 2012 UNCONTROLLED WHEN PRINTED Version 1.0 RailCorp Engineering Manual — Signals — Maintenance Road Level Crossing Protection Equipment TMG E1280 4.6.1.1 For a level crossing not fitted with a level crossing monitor.....................26 4.6.1.2 For a level crossing fitted with a level crossing monitor...........................26 4.6.2 Battery charger ........................................................................................................26 4.6.2.1 For a level crossing not fitted with a level crossing monitor.....................26 4.6.2.2 For a level crossing fitted with a level crossing monitor...........................27 4.7 Level crossing monitor ............................................................................................................27 4.8 Train detection ........................................................................................................................27 5 On-site maintenance.............................................................................................................27 5.1 Recommended tools ...............................................................................................................27 5.2 Type F lights............................................................................................................................28 5.3 Bells.........................................................................................................................................28 5.4 Road boom barriers ................................................................................................................28 5.4.1 All types ...................................................................................................................28 5.4.2 Timber booms..........................................................................................................28 5.4.3 GRP and aluminium/GRP booms............................................................................28 5.5 Boom gate mechanisms..........................................................................................................29
Recommended publications
  • Road Level Crossing Protection Equipment
    Engineering Procedure Signalling CRN SM 013 ROAD LEVEL CROSSING PROTECTION EQUIPMENT Version 2.0 Issued December 2013 Owner: Principal Signal Engineer Approved by: Stewart Rendell Authorised by: Glenn Dewberry Disclaimer. This document was prepared for use on the CRN Network only. John Holland Rail Pty Ltd makes no warranties, express or implied, that compliance with the contents of this document shall be sufficient to ensure safe systems or work or operation. It is the document user’s sole responsibility to ensure that the copy of the document it is viewing is the current version of the document as in use by JHR. JHR accepts no liability whatsoever in relation to the use of this document by any party, and JHR excludes any liability which arises in any manner by the use of this document. Copyright. The information in this document is protected by Copyright and no part of this document may be reproduced, altered, stored or transmitted by any person without the prior consent of JHR. © JHR UNCONTROLLED WHEN PRINTED Page 1 of 66 Issued December 2013 Version 2.0 CRN Engineering Procedure - Signalling CRN SM 013 Road Level Crossing Protection Equipment Document control Revision Date of Approval Summary of change 1.0 June 1999 RIC Standard SC 07 60 01 00 EQ Version 1.0 June 1999. 1.0 July 2011 Conversion to CRN Signalling Standard CRN SM 013. 2.0 December 2013 Inclusion of Safetran S40 and S60 Mechanisms, reformatting of figures and tables, and updating text Summary of changes from previous version Section Summary of change All Include automated
    [Show full text]
  • Level Crossing Technology 65 Selcat Project: Level Crossing Technology 67 1
    Editors Very year more than 1200 El-Miloudi EL-KOURSI (INRETS) accidents occur at level Louahdi KHOUDOUR (INRETS) crossings in the european E Neda LAZAREVIC (INRETS) union with more than 330 people killed. Level crossings have been Laszlo TORDAI (UIC) identified as being a particular weak Roman SLOVÁK (TUBS) point in road infrastructure seriou- sely affecting road safety. SAFER EUROPEAN LEVEL CROSSING APPRAISAL These procedings present the first results of the SELCAT project AND TECHNOLOGY “Safer European Level Crossing Appraisal And Technology” funded by the European commission. EUROPEAN LEVELAPPRAISAL CROSSING TECHNOLOGY AND SAFER Actes n°117 First Workshop Mai 2008 “Appraisal” Prix : 15,24 ¤ May 16th 2007 Editors 1 7 Villeneuve d’Ascq (France) ° 1 El-Miloudi EL-KOURSI INRETS-ESTAS N S Louahdi KHOUDOUR INRETS-ESTAS E T Neda LAZAREVIC INRETS-ESTAS °117 C Laszlo TORDAI UIC A Roman SLOVÁK TUBS INRETS n ISSN 0769-0266 ISBN 978-2-85782-663-7 Actes LES COLLECTIONS DE L’INRETS Conformément à la note du 04/07/2014 de la direction générale de l'Ifsttar précisant la politique de diffusion des ouvrages parus dans les collections éditées par l'Institut, la reproduction de cet ouvrage est autorisée selon les termes de la licence CC BY-NC-ND. Cette licence autorise la redistribution non commerciale de copies identiques à l’original. Dans ce cadre, cet ouvrage peut être copié, distribué et communiqué par tous moyens et sous tous formats. Attribution — Vous devez créditer l'Oeuvre et intégrer un lien vers la licence. Vous devez indiquer ces informations par tous les moyens possibles mais vous ne pouvez pas suggérer que l'Ifsttar vous soutient ou soutient la façon dont vous avez utilisé son Oeuvre.
    [Show full text]
  • LNW Route Specification 2017
    Delivering a better railway for a better Britain Route Specifications 2017 London North Western London North Western July 2017 Network Rail – Route Specifications: London North Western 02 SRS H.44 Roses Line and Branches (including Preston 85 Route H: Cross-Pennine, Yorkshire & Humber and - Ormskirk and Blackburn - Hellifield North West (North West section) SRS H.45 Chester/Ellesmere Port - Warrington Bank Quay 89 SRS H.05 North Transpennine: Leeds - Guide Bridge 4 SRS H.46 Blackpool South Branch 92 SRS H.10 Manchester Victoria - Mirfield (via Rochdale)/ 8 SRS H.98/H.99 Freight Trunk/Other Freight Routes 95 SRS N.07 Weaver Junction to Liverpool South Parkway 196 Stalybridge Route M: West Midlands and Chilterns SRS N.08 Norton Bridge/Colwich Junction to Cheadle 199 SRS H.17 South Transpennine: Dore - Hazel Grove 12 Hulme Route Map 106 SRS H.22 Manchester Piccadilly - Crewe 16 SRS N.09 Crewe to Kidsgrove 204 M1 and M12 London Marylebone to Birmingham Snow Hill 107 SRS H.23 Manchester Piccadilly - Deansgate 19 SRS N.10 Watford Junction to St Albans Abbey 207 M2, M3 and M4 Aylesbury lines 111 SRS H.24 Deansgate - Liverpool South Parkway 22 SRS N.11 Euston to Watford Junction (DC Lines) 210 M5 Rugby to Birmingham New Street 115 SRS H.25 Liverpool Lime Street - Liverpool South Parkway 25 SRS N.12 Bletchley to Bedford 214 M6 and M7 Stafford and Wolverhampton 119 SRS H.26 North Transpennine: Manchester Piccadilly - 28 SRS N.13 Crewe to Chester 218 M8, M9, M19 and M21 Cross City Souh lines 123 Guide Bridge SRS N.99 Freight lines 221 M10 ad M22
    [Show full text]
  • Mandatory Requirements for Signalling Safeworking Procedures Version 2.0 Issued Date: 26 May 2015
    T HR SC 02000 ST Standard Mandatory Requirements for Signalling Safeworking Procedures Version 2.0 Issued date: 26 May 2015 Important Warning This document is one of a set of standards developed solely and specifically for use on public transport assets which are vested in or owned, managed, controlled, commissioned or funded by the NSW Government, a NSW Government agency or a Transport Agency (as defined in the Asset Standards Authority Charter). It is not suitable for any other purpose. You must not use or adapt it or rely upon it in any way unless you are authorised in writing to do so by a relevant NSW Government agency. If this document forms part of a contract with, or is a condition of approval by a NSW Government agency, use of the document is subject to the terms of the contract or approval. This document may not be current. Current standards are available for download from the Asset Standards Authority website at Superseded by T HR SC 02000 ST v3.0 www.asa.transport.nsw.gov.au. © State of NSW through Transport for NSW T HR SC 02000 ST Mandatory Requirements for Signalling Safeworking Procedures Version 2.0 Issued date: 26 May 2015 Standard governance Owner: Lead Signals and Control Systems Engineer, Asset Standards Authority Authoriser: Chief Engineer Rail, Asset Standards Authority Approver: Director, Asset Standards Authority on behalf of the ASA Configuration Control Board Document history Version Summary of Changes 1.0 First issue. 2.0 Minor technical changes to the following topics: • treatment of trainstop failures in
    [Show full text]
  • View / Open TM Database Composite.Pdf
    • • • • TRANSPORTATION-MARKINGS • DATABASE • COMPOSITE CATEGORIES • CLASSIFICATION & INDEX • • • -­ • III III • 1 TRANSPORTATION-MARKINGS: A STUDY IN CO.MMUNICATION MONOGRAPH SERIES Alternate Series Title: An Inter-modal Study of Safety Aids Transportatiol1-Markings Database Alternate T-M Titles: Transport [ation] Mark [ing]s / Transport Marks / Waymarks T-MFoundations, 4th edition, 2005 (Part A, Volume I, First Studies in T-M) (3rd edition, 1999; 2nd edition, 1991) Composite Categories A First Study in T-M: The US, 2nd edition, 1993 (Part B, Vol I) Classification & Index International Marine Aids to Navigation, 2nd edition, 1988 (parts C & D, Vol I) [Unified First Edition ofParts A-D, University Press ofAmerica, 1981] International Traffic Control Devices, 2nd edition, 2004 (Part E, Volume II, Further Studies in T-M) (lst edition, 1984) Part Iv Volume III, Additional Studies, International Railway Signals, 1991 (Part F, Vol II) International Aero Navigation Aids, 1994 (Part G, Vol II) Transportation-Markil1gs: A Study il1 T-M General Classification with Index, 2nd edition, 2004 (Part H, Vol II) (1st edition, 1994) Commllnication Monograph Series Transportation-Markings Database: Marine Aids to Navigation, 1st edition, 1997 (I'art Ii, Volume III, Additional Studies in T-M) TCDs, 1st edition, 1998 (Part Iii, Vol III) Railway Signals. 1st edition, 2000 (part Iiii, Vol III) Aero Nav Aids, 1st edition, 2001 (Part Iiv, Vol III) Composite Categories Classification & Index, 1st edition, 2006 (part Iv, Vol III) (2nd edition ofDatabase, Parts Ii-v,
    [Show full text]
  • Relation Between Pre-Warning Time and Actual Train Velocity in Automatic Level Crossing Signalling Systems at Level Crossings
    Article citation info: 39 Łukasik J. Relation between pre-warning time and actual train velocity in automatic level crossing signalling systems at level crossings. Diagnostyka. 2021;22(2):39-46. https://doi.org/10.29354/diag/133700 ISSN 1641-6414 DIAGNOSTYKA, 2021, Vol. 22, No. 2 e-ISSN 2449-5220 DOI: 10.29354/diag/133700 RELATION BETWEEN PRE-WARNING TIME AND ACTUAL TRAIN VELOCITY IN AUTOMATIC LEVEL CROSSING SIGNALLING SYSTEMS AT LEVEL CROSSINGS Jerzy ŁUKASIK Silesian University of Technology, Faculty of Transport and Aviation Engineering [email protected] Abstract At level crossings equipped with automatic level crossing signalling devices (which are category B and C crossings in Poland), warning time depends on several factors including the length of what is referred to as the level crossing’s danger zone for road vehicles, and the train velocity. These systems are designed by taking into consideration the maximum train velocity applicable to the given railway line, which is why a train running with a velocity that is lower than the maximum one, e.g. a freight train, produces pre-warning time excess. The pre-warning time excess affects the redundant prolongation of the time when the level crossing is closed for road vehicles. What has been proposed in the article is to reduce the pre-warning time excess by making the pre-warning time depended on the actual train velocity. It describes a structural concept of a solution which should first be implemented in automatic level crossing signalling systems. Owing to adequate assumptions, the concept of the pre-warning time excess reduction exerts no negative effect on safety at level crossings.
    [Show full text]
  • ERTMS Programme Signalling System Engineering Process Guideline Engineering Guidelines
    ERTMS Programme Signalling System Engineering Process Guideline Engineering Guidelines 017 Updated document 16.12.2020 GRIGUN 16E Updated document 07.04.2020 INGGJO NEDJON KJHO 15E Updated document 05.02.2020 INGGJO NEDJON KJHO 00E First Issue 12.12.2020 JANRUN KJHO MAGHEG Revision Reason for issue Date Created by Contr. by Appr. by Title: Pages: 210 ERTMS Programme Produced by: Bane NOR Digitalisation and Technology Signalling System Engineering Process Guideline Engineering Guidelines Prod.doc.no.: Rev: Replaces: Replaced by: Project: ERTMS Programme Document number: Revision: Area: Trackside ERP-30-S-00097 017 Operator's document no.: Operator's rev.: NA NA Page: 2 of 210 ERTMS Signalling System Doc. No: ERP-30-S-00097 Programme Engineering Guidelines Rev: 017 Date: 16.12.2020 This document was created by DOORS and updated by the author with correct revision details, signatures, operator details, and other empty fields not provided by DOORS. The DOORS module name is: Signalling System Engineering Guidelines The DOORS baseline is: Current The DOORS export date: 2020 12 16 Page: 3 of 210 ERTMS Signalling System Doc. No: ERP-30-S-00097 Programme Engineering Guidelines Rev: 017 Date: 16.12.2020 LIST OF CONTENTS 1 INTRODUCTION ............................................................................................................................ 8 1.1 Background ............................................................................................................................ 8 1.2 Purpose and scope ...............................................................................................................
    [Show full text]
  • IRSE Proceedings 1934
    14 PAVER BY MR. C. Vf. PRESCOTT. General Meeting of the Institution HELD AT The Institution of Electrical Engineers Wednesday, 13th December, 1933. The President (Mr. \ 1\f. CHALLIS) in the Chair. The minutes of the last meeting having been read and confirmed, and Mr. R. J. F. Harland, a member present for the first time, presented to the meeting. The President said that they would remember that at the last meeting he appealed to members to send in subjects suitable for papers to be read before the Institution. He was pleased to say that, as a result of that appeal, they had now sufficient for up to the end of 1934. If any gentleman cared to put fonvard a paper, for reading after that date, the Council would be only too pleased to receive it. The President then called upon the Hon. Secretary to read a paper by Mr. C. W. Prescott (Member) " Railway Signalling in Australia" and said that the meeting was very fortunate in having present that evening two or three members who had been associated with railway working in Australia . Railway Signalling in Australia By C. W. PRESCOTT (Member). (Inset Sheets Nos. 1-2). We are told by those who have studied these matters that, so far as geological characteristics, flora and fauna are concerned, Australia is several aeons younger than other parts of the world including Britain and the United States of America. Large tracts of coal have not had time to turn black, some of the animals have not had time to make up their mind to live on land or in the water or to be mammals or the opposite.
    [Show full text]
  • Signalling Safeworking Procedures
    Engineering Manual Signalling and Control Systems Manual MN S 40000 Signalling Safeworking Procedures Version 1.7 Date in Force: 5 July 2017 UNCONTROLLED WHEN PRINTED Sydney Trains Engineering Manual — Signalling and Control Systems Signalling Safeworking Procedures MN S 40000 Approved by: Vince Modafferi Authorised by: Michael Kemmis A/Professional Head Signalling & Engineering Technical Control Systems Publications Manager Engineering System Integrity Systems Assurance Unit Disclaimer This document was prepared for use by Sydney Trains or its contractors only. All Sydney Trains engineering documents are periodically reviewed, and new editions are published, between editions, amendments may also be issued. It is the document user’s sole responsibility to ensure that the copy of the document they are viewing is the current version including any amendments that may have been issued. Errors or omissions in this document should be reported to Sydney Trains. Sydney Trains makes no warranties, express or implied, that compliance with the contents of this document shall be sufficient to ensure safe systems or work or operation. Document control Version Date Author/ Prin. Eng. Summary of change 1.0 16 September 2013 Y Bagaric First issue as a Sydney Trains document 1.1 29 November 2013 Y Bagaric Updated Document Number for Failures 1.2 3 March 2015 M Albrecht Withdraw 40037 Microtrax and Update documents 40025, 40031 & J048 1.3 2 July 2015 C Darmenia Update 40032 and replace J049 with 40049 1.4 1 July 2016 R Del Rosario Title changes & remove 40015, 40018, 40033, 40037, 40041 & 40043 1.5 21 October 2016 C Darmenia Update 40004, 40023 and 40049 1.6 20 February 2017 C Darmenia Update 40010, 40011, 40026, 40030 & 40047 1.7 5 July 2017 C Darmenia Update 40003, 40008 and remove 40021 Summary of changes from previous version Summary of change Chapter Update PR S 40003 to v2.1 Update PR S 40008 to v2.0 Deleted PR S 40021.
    [Show full text]
  • Safety Modeling of Highway Railway Grade Crossings Using Intelligent Transportation System (ITS) Data
    Safety Modeling of Highway Railway Grade Crossings using Intelligent Transportation System (ITS) Data Li Zhao Graduate Research Assistant Ph.D. Candidate, Department of Civil Engineering University of Nebraska-Lincoln Laurence R. Rilett, Ph.D., PE Keith W. Klaasmeyer Chair in Engineering and Technology Director, Nebraska Transportation Center Distinguished Professor, Department of Civil Engineering University of Nebraska-Lincoln Christopher LeFrois ITS Sr. Transportation Technology Engineer Nebraska Transportation Center University of Nebraska-Lincoln A Report on Research Sponsored by University Transportation Center for Railway Safety (UTCRS) University of Nebraska-Lincoln January 2017 The University of Texas Rio Grande Valley / 1201 West University Drive / Engineering Portable EENGR 1.100 / Edinburg, Texas 78539-2999 Phone: +1 (956) 665-8878 / Fax: +1 (956) 665-8879 / [email protected] / railwaysafety.utrgv.edu Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. 26-1121-0018-004 4. Title and Subtitle 5. Report Date Safety Modeling of Highway Railway Grade Crossings January 2017 using Intelligent Transportation System Data 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report Li Zhao, Laurence R. Rilett, and Christopher LeFrois No. 26-1121-0018-004 9. Performing Organization Name and Address 10. Work Unit No. Nebraska Transportation Center 11. Contract or Grant No. 2200 Vine Street PO Box 830851 DTRT13-G-UTC59 Lincoln, NE 68583-0851 12. Sponsoring Organization Name and Address 13. Type of Report and Period University Transportation Center for Railway Safety Covered (UTCRS) November 2013 – December 2016 University of Texas Rio Grande Valley (UTRGV) 1201 W. University Dr. 14. Sponsoring Agency Code Edinburg, TX 78539 USDOT UTC Program 15.
    [Show full text]
  • Transportation-Markings Database: Railway Signals, Signs, Marks & Markers
    T-M TRANSPORTATION-MARKINGS DATABASE: RAILWAY SIGNALS, SIGNS, MARKS & MARKERS 2nd Edition Brian Clearman MOllnt Angel Abbey 2009 TRANSPORTATION-MARKINGS DATABASE: RAILWAY SIGNALS, SIGNS, MARKS, MARKERS TRANSPORTATION-MARKINGS DATABASE: RAILWAY SIGNALS, SIGNS, MARKS, MARKERS Part Iiii, Second Edition Volume III, Additional Studies Transportation-Markings: A Study in Communication Monograph Series Brian Clearman Mount Angel Abbey 2009 TRANSPORTATION-MARKINGS A STUDY IN COMMUNICATION MONOGRAPH SERIES Alternate Series Title: An Inter-modal Study ofSafety Aids Alternate T-M Titles: Transport ration] Mark [ing]s/Transport Marks/Waymarks T-MFoundations, 5th edition, 2008 (Part A, Volume I, First Studies in T-M) (2nd ed, 1991; 3rd ed, 1999, 4th ed, 2005) A First Study in T-M' The US, 2nd ed, 1993 (part B, Vol I) International Marine Aids to Navigation, 2nd ed, 1988 (Parts C & D, Vol I) [Unified 1st Edition ofParts A-D, 1981, University Press ofAmerica] International Traffic Control Devices, 2nd ed, 2004 (part E, Vol II, Further Studies in T-M) (lst ed, 1984) International Railway Signals, 1991 (part F, Vol II) International Aero Navigation, 1994 (part G, Vol II) T-M General Classification, 2nd ed, 2003 (Part H, Vol II) (lst ed, 1995, [3rd ed, Projected]) Transportation-Markings Database: Marine, 2nd ed, 2007 (part Ii, Vol III, Additional Studies in T-M) (1 st ed, 1997) TCD, 2nd ed, 2008 (Part Iii, Vol III) (lst ed, 1998) Railway, 2nd ed, 2009 (part Iiii, Vol III) (lst ed, 2000) Aero, 1st ed, 2001 (part Iiv) (2nd ed, Projected) Composite Categories
    [Show full text]
  • Products and Solutions Signaling Division the 1520 Signaling Division
    PRODUCTS AND SOLUTIONS SIGNALING DIVISION THE 1520 SIGNALING DIVISION COMPANIES AND ENTERPRISES TRAIN TRAFFIC CONTROL IN THE DIGITAL ERA The Signaling Division of The 1520 Group Pavel Sereda, of Companies is a global system integrator Deputy General that is capable of providing a full-service Director of the customer support of the supplied signaling 1520 Group of and communication systems and equipment Companies and throughout the entire lifecycle. The Division Chief Executive comprises the following Russian companies, having at Officer of the their disposal the full range of solutions for the railway Signaling Division transport: ELTEZA, 1520 Signal, Stalenergo, Foratec AT and CyberTech-Signal. These companies design, produce, supply and implement innovative systems of train control for mainline, industrial and mass transit rail transport. Lately, the Signaling Division has implemented class developers. This signaling technological cluster with large-scale projects in Russia, including design and accumulated engineering resources contributed by the installation of signaling and communication systems on companies of the Division will become the key integrator the Moscow Central Circle (MCC), the Moscow Central in the global digitalization process of the Russian and Diameters (MCD), the Trans-Siberian Railway and the international railways. Baikal-Amur Mainline (Eastern polygon of JSC RZD). Our companies have implemented the first-ever radio- based system of train traffic control with moving Services provided throughout the entire lifecycle blocks (ETCS Level 3) on the railways with a total length of 2000 km in Kazakhstan and of 1000 km in Mongolia within the framework of the complex modernization Design project on the Trans-Mongolian Mainline.
    [Show full text]