Road Level Crossing Protection Equipment

Total Page:16

File Type:pdf, Size:1020Kb

Road Level Crossing Protection Equipment Engineering Procedure Signalling CRN SM 013 ROAD LEVEL CROSSING PROTECTION EQUIPMENT Version 2.0 Issued December 2013 Owner: Principal Signal Engineer Approved by: Stewart Rendell Authorised by: Glenn Dewberry Disclaimer. This document was prepared for use on the CRN Network only. John Holland Rail Pty Ltd makes no warranties, express or implied, that compliance with the contents of this document shall be sufficient to ensure safe systems or work or operation. It is the document user’s sole responsibility to ensure that the copy of the document it is viewing is the current version of the document as in use by JHR. JHR accepts no liability whatsoever in relation to the use of this document by any party, and JHR excludes any liability which arises in any manner by the use of this document. Copyright. The information in this document is protected by Copyright and no part of this document may be reproduced, altered, stored or transmitted by any person without the prior consent of JHR. © JHR UNCONTROLLED WHEN PRINTED Page 1 of 66 Issued December 2013 Version 2.0 CRN Engineering Procedure - Signalling CRN SM 013 Road Level Crossing Protection Equipment Document control Revision Date of Approval Summary of change 1.0 June 1999 RIC Standard SC 07 60 01 00 EQ Version 1.0 June 1999. 1.0 July 2011 Conversion to CRN Signalling Standard CRN SM 013. 2.0 December 2013 Inclusion of Safetran S40 and S60 Mechanisms, reformatting of figures and tables, and updating text Summary of changes from previous version Section Summary of change All Include automated table of figures, tables and photographs 2.4 Change heading from Bell to Audible Warning Device, include electronic bell text – Photo 3 3.1 Inclusion of Safetran S40 and S60 models 3.1.7 Safetran S40 mechanism information 3.1.8 Safetran S60 mechanism information 5.3 Change heading from Bell to Audible Warning Device 5.3.1 Update text to include electronic bell 5.4.4 Include breakaway mounting inspection 5.4.5 Include tethering lanyard inspection 5.5.1 Include Safetran model hold clear information – Figure 16 & 17 5.5.2 Include Safetran model drive up motor contact information in Table 1 6.1 Update of suggested maintenance tools 6.3 Change heading from Bell to Audible Warning Device and update text 6.5.1 Safetran S40 and S60 lubrication information 6.5.7 New Section – SafeTran S40 information – new Circuit Diagram 13 6.5.8 New Section – SafeTran S60 information – new Circuit Diagram 14 7.2 Change heading from Bell to Audible Warning Device 7.3.2 Inclusion of aluminium boom barrier arm and tethering lanyard detail 7.3.3 Inclusion of Safetran mechanisms in Counterweighting section © JHR UNCONTROLLED WHEN PRINTED Page 2 of 66 Issued December 2013 Version 2.0 CRN Engineering Procedure - Signalling CRN SM 013 Road Level Crossing Protection Equipment Contents 1 Introduction .................................................................................................................................. 7 1.1 Scope of this Manual ........................................................................................................ 7 1.2 Referenced Documents .................................................................................................... 8 2 Description of Equipment ........................................................................................................... 9 2.1 Road Approach Signs ....................................................................................................... 9 2.2 Early Warning Signals ..................................................................................................... 11 2.3 Type F Flashing Lights .................................................................................................... 11 2.4 Audible Warning Devices - Bells ..................................................................................... 12 3 Road Boom Barrier Mechanisms ............................................................................................. 14 3.1 Road Barrier Mechanisms .............................................................................................. 14 3.1.1 WRRS Type B .............................................................................................................. 15 3.1.2 WRRS Type D .............................................................................................................. 15 3.1.3 Western Cullen Hayes Type 3590 ................................................................................ 16 3.1.4 Western Cullen Hayes Type 3593 ................................................................................ 16 3.1.5 Harmon Type H1 .......................................................................................................... 17 3.1.6 Westinghouse Type EB ................................................................................................ 18 3.1.7 Safetran Type S40........................................................................................................ 18 3.1.8 Safetran Type S60........................................................................................................ 19 3.2 Power Supply .................................................................................................................. 19 3.3 Flashers .......................................................................................................................... 19 3.4 Level Crossing Monitor ................................................................................................... 20 4 Principles of Operation ............................................................................................................. 20 4.1 Level Crossing Protection ............................................................................................... 20 4.2 Boom Barrier Mechanisms .............................................................................................. 24 5 Operational and Functional Checks ........................................................................................ 25 5.1 Intervals ........................................................................................................................... 25 5.2 Type F Flashing Lights (All Types) ................................................................................. 25 5.2.1 Voltage At Lamps ......................................................................................................... 25 5.2.2 Lamp Alignment ............................................................................................................ 25 5.2.3 Flash Rate .................................................................................................................... 25 5.2.4 Roundels, Covers and Fasteners ................................................................................. 25 5.3 Audible Warning Devices ................................................................................................ 26 5.3.1 External ........................................................................................................................ 26 5.3.2 Internal .......................................................................................................................... 26 5.4 Road Boom Barriers ....................................................................................................... 26 5.4.1 All Types ....................................................................................................................... 26 5.4.1.1 Boom Lights ........................................................................................................ 26 5.4.1.2 Reflective Treatment .......................................................................................... 26 5.4.2 Timber Booms .............................................................................................................. 26 5.4.3 Aluminium / GRP and GRP Booms .............................................................................. 27 5.4.4 Aluminium / GRP and GRP Booms “Breakaway” mounting......................................... 27 5.4.5 Tethering Lanyard ........................................................................................................ 27 5.5 Road Boom Mechanisms (All Types).............................................................................. 27 5.5.1 Hold Clear Device......................................................................................................... 27 5.5.2 Boom Angle .................................................................................................................. 31 5.5.3 Speed of Operation ...................................................................................................... 31 5.6 Power Supply .................................................................................................................. 32 5.6.1 Batteries ....................................................................................................................... 32 5.6.1.1 For a Level Crossing not fitted with a Level Crossing Monitor ........................... 32 5.6.1.2 For a Level Crossing fitted with a Level Crossing Monitor ................................. 32 5.6.2 Battery Charger ............................................................................................................ 32 5.6.2.1 For a Level Crossing not fitted with a Level Crossing Monitor ........................... 32 5.6.2.2 For a Level Crossing fitted with a Level Crossing Monitor
Recommended publications
  • Report on Railway Accident with Freight Car Set That Rolled Uncontrolledly from Alnabru to Sydhavna on 24 March 2010
    Issued March 2011 REPORT JB 2011/03 REPORT ON RAILWAY ACCIDENT WITH FREIGHT CAR SET THAT ROLLED UNCONTROLLEDLY FROM ALNABRU TO SYDHAVNA ON 24 MARCH 2010 Accident Investigation Board Norway • P.O. Box 213, N-2001 Lillestrøm, Norway • Phone: + 47 63 89 63 00 • Fax: + 47 63 89 63 01 www.aibn.no • [email protected] This report has been translated into English and published by the AIBN to facilitate access by international readers. As accurate as the translation might be, the original Norwegian text takes precedence as the report of reference. The Accident Investigation Board has compiled this report for the sole purpose of improving railway safety. The object of any investigation is to identify faults or discrepancies which may endanger railway safety, whether or not these are causal factors in the accident, and to make safety recommendations. It is not the Board’s task to apportion blame or liability. Use of this report for any other purpose than for railway safety should be avoided. Photos: AIBN and Ruter As Accident Investigation Board Norway Page 2 TABLE OF CONTENTS NOTIFICATION OF THE ACCIDENT ............................................................................................. 4 SUMMARY ......................................................................................................................................... 4 1. INFORMATION ABOUT THE ACCIDENT ..................................................................... 6 1.1 Chain of events ...................................................................................................................
    [Show full text]
  • Geographic Signaling System (Geo)
    FIELD REFERENCE MANUAL GEOGRAPHIC SIGNALING SYSTEM (GEO) JULY 2008 (REVISED SEPTEMBER 2018) DOCUMENT NO. SIG-00-05-09 VERSION D Siemens Mobility 700 East Waterfront Drive Munhall, Pennsylvania 15120 1-800-793-SAFE Copyright © 2008-2018 Siemens Mobility, Inc. All rights reserved PRINTED IN THE U.S.A. PROPRIETARY INFORMATION The material contained herein constitutes proprietary and confidential information, and is the intellectual property of Siemens Mobility, Inc., Rail Automation (Siemens) protected under United States patent, copyright and/or other laws and international treaty provisions. This information and the software it describes are for authorized use only, and may not be: (i) modified, translated, reverse engineered, decompiled, disassembled or used to create derivative works; (ii) copied or reproduced for any reason other than specific application needs; or (iii) rented, leased, lent, sublicensed, distributed, remarketed, or in any way transferred; without the prior written authorization of Siemens. This proprietary notice and any other associated labels may not be removed. TRANSLATIONS The manuals and product information of Siemens Mobility, Inc. are intended to be produced and read in English. Any translation of the manuals and product information are unofficial and can be imprecise and inaccurate in whole or in part. Siemens Mobility, Inc. does not warrant the accuracy, reliability, or timeliness of any information contained in any translation of manual or product information from its original official released version in English and shall not be liable for any losses caused by such reliance on the accuracy, reliability, or timeliness of such information. Any person or entity that relies on translated information does so at his or her own risk.
    [Show full text]
  • Level Crossing Technology 65 Selcat Project: Level Crossing Technology 67 1
    Editors Very year more than 1200 El-Miloudi EL-KOURSI (INRETS) accidents occur at level Louahdi KHOUDOUR (INRETS) crossings in the european E Neda LAZAREVIC (INRETS) union with more than 330 people killed. Level crossings have been Laszlo TORDAI (UIC) identified as being a particular weak Roman SLOVÁK (TUBS) point in road infrastructure seriou- sely affecting road safety. SAFER EUROPEAN LEVEL CROSSING APPRAISAL These procedings present the first results of the SELCAT project AND TECHNOLOGY “Safer European Level Crossing Appraisal And Technology” funded by the European commission. EUROPEAN LEVELAPPRAISAL CROSSING TECHNOLOGY AND SAFER Actes n°117 First Workshop Mai 2008 “Appraisal” Prix : 15,24 ¤ May 16th 2007 Editors 1 7 Villeneuve d’Ascq (France) ° 1 El-Miloudi EL-KOURSI INRETS-ESTAS N S Louahdi KHOUDOUR INRETS-ESTAS E T Neda LAZAREVIC INRETS-ESTAS °117 C Laszlo TORDAI UIC A Roman SLOVÁK TUBS INRETS n ISSN 0769-0266 ISBN 978-2-85782-663-7 Actes LES COLLECTIONS DE L’INRETS Conformément à la note du 04/07/2014 de la direction générale de l'Ifsttar précisant la politique de diffusion des ouvrages parus dans les collections éditées par l'Institut, la reproduction de cet ouvrage est autorisée selon les termes de la licence CC BY-NC-ND. Cette licence autorise la redistribution non commerciale de copies identiques à l’original. Dans ce cadre, cet ouvrage peut être copié, distribué et communiqué par tous moyens et sous tous formats. Attribution — Vous devez créditer l'Oeuvre et intégrer un lien vers la licence. Vous devez indiquer ces informations par tous les moyens possibles mais vous ne pouvez pas suggérer que l'Ifsttar vous soutient ou soutient la façon dont vous avez utilisé son Oeuvre.
    [Show full text]
  • Irse News Issue 161 November 2010 Irse Careers Page and Job Board
    IRSE NEWS ISSUE 161 NOVEMBER 2010 IRSE CAREERS PAGE AND JOB BOARD The IRSE Careers site is now live at www.irse.org/careers Here you can view signalling job vacancies, fi nd out about other careers options, and contact recruiting companies to help you fi nd the next step in your career. For more information on the advertising and branding opportunities available, please contact Joe Brooks on +44 (0)20 657 1801 or [email protected]. Front Cover: Dakota, Minnesota & Eastern train Second 170, bound from Minneapolis, Minnesota to Kansas City, Missouri, passes the radio-activated switch at the north siding switch Eckards, Iowa, on 4 October 2009. This is one of several locations on the DM&E system where radio-activated switches are used to expedite train operations without the expense of a full Centralized Traffic Control (CTC) installation. Photo by Jon Roma NEWS VIEW 161 Let’s plan for the future IRSE NEWS is published monthly by the Institution of The UK Government has unveiled their spending review during October, pledging to Railway Signal Engineers (IRSE). The IRSE is not as a invest more than 30 billion pounds on transport projects over the next four years, with body responsible for the opinions expressed in IRSE NEWS. this sector seen as a particular key driver for economic growth and productivity. © Copyright 2010, IRSE. All rights reserved. This includes 14 billion pounds of funding that will go to Network Rail to support No part of this publication may be reproduced, maintenance and investment, including improvements to the East Coast Main Line, stored in a retrieval system, or transmitted in any station upgrades around the West Midlands and signal replacement programmes in form or by any means without the permission in writing of the publisher.
    [Show full text]
  • New IDEAS for High-Speed Rail
    IDEA Innovations Deserving Exploratory Analysis Programs HIGH-SPEED RAIL New IDEAS for High-Speed Rail Annual Progress Report JANUARY 2005 TRANSPORTATION RESEARCH BOARD EXECUTIVE COMMITTEE 2004 OFFICERS CHAIR: MICHAEL S. TOWNES, President and CEO, Hampton Roads PHILIP A. SHUCET, Commissioner, Virginia DOT Transit, Hampton, VA C. MICHAEL WALTON, Ernest H. Cockrell Centennial Chair in VICE CHAIR: JOSEPH H. BOARDMAN, Commissioner, New York Engineering, University of Texas, Austin State DOT LINDA S. WATSON, Executive Director, LYNX—Central Florida EXECUTIVE DIRECTOR: ROBERT E. SKINNER, JR., Transportation Regional Transportation Authority, Orlando, FL Research Board MARION C. BLAKEY, Federal Aviation Administrator, U.S.DOT MEMBERS (ex officio) MICHAEL W. BEHRENS, Executive Director, Texas DOT SAMUEL G. BONASSO, Acting Administrator, Research and Special Programs Administration, U.S.DOT (ex officio) SARAH C. CAMPBELL, President, TransManagement, Inc., Washington, DC REBECCA M. BREWSTER, President and COO, American Transportation Research Institute, Smyrna, GA (ex officio) E. DEAN CARLSON, Director, Carlson Associates, Topeka, KS GEORGE BUGLIARELLO, Chancellor, Polytechnic University and Foreign JOHN L. CRAIG, Director, Nebraska Department of Roads Secretary, National Academy of Engineering (ex officio) DOUGLAS G. DUNCAN, President and CEO, FedEx Freight, Memphis, TN THOMAS H. COLLINS (Adm., U.S. Coast Guard), Commandant, U.S. GENEVIEVE GIULIANO, Director, Metrans Transportation Center and Coast Guard (ex officio) Professor, School of Policy,
    [Show full text]
  • The Bulletin BERNARD LINDER, 1918-2017
    ERA BULLETIN — FEBRUARY, 2018 The Bulletin Electric Railroaders’ Association, Incorporated Vol. 61, No. 2 February, 2018 The Bulletin BERNARD LINDER, 1918-2017 Published by the Electric by Alexander Ivanoff Railroaders’ Association, Incorporated, PO Box Longtime ERA Bulletin Editor-in-Chief Ber- Despite having worked for New York City 3323, New York, New nard Linder (ERA #2668) passed away on Transit and having been a railfan, Bernie did York 10163-3323. the evening of December 12, 2017 at the age not hear about ERA until a chance encounter of 99, after a brief illness. Born on March 31, with the late Martin Schachne (ERA #1137). For general inquiries, or 1918, Bernie grew up in in the Bronx and He became a member in 1961 and since Bulletin submissions, became interested in electric traction through 1963, Bernie had been involved in some ca- contact us at bulletin@ erausa.org. ERA’s his parents. His father pacity with what started website is was a newsstand ven- out as the New York Divi- www.erausa.org. dor in the subway and sion Bulletin (now simply he would go with his the Bulletin). He was Editorial Staff: mother to help out. asked by Arthur Lonto to Editor-in-Chief: Jeffrey Erlitz From an early age become the Bulletin Edi- Tri-State News and Bernie collected news tor in 1980, and since Commuter Rail Editor: stories on transit and then his name had been Ronald Yee traction events, as far on well over 400 monthly North American and World as collecting car ros- issues, and until his News Editor: Alexander Ivanoff ters at the age of 13.
    [Show full text]
  • LNW Route Specification 2017
    Delivering a better railway for a better Britain Route Specifications 2017 London North Western London North Western July 2017 Network Rail – Route Specifications: London North Western 02 SRS H.44 Roses Line and Branches (including Preston 85 Route H: Cross-Pennine, Yorkshire & Humber and - Ormskirk and Blackburn - Hellifield North West (North West section) SRS H.45 Chester/Ellesmere Port - Warrington Bank Quay 89 SRS H.05 North Transpennine: Leeds - Guide Bridge 4 SRS H.46 Blackpool South Branch 92 SRS H.10 Manchester Victoria - Mirfield (via Rochdale)/ 8 SRS H.98/H.99 Freight Trunk/Other Freight Routes 95 SRS N.07 Weaver Junction to Liverpool South Parkway 196 Stalybridge Route M: West Midlands and Chilterns SRS N.08 Norton Bridge/Colwich Junction to Cheadle 199 SRS H.17 South Transpennine: Dore - Hazel Grove 12 Hulme Route Map 106 SRS H.22 Manchester Piccadilly - Crewe 16 SRS N.09 Crewe to Kidsgrove 204 M1 and M12 London Marylebone to Birmingham Snow Hill 107 SRS H.23 Manchester Piccadilly - Deansgate 19 SRS N.10 Watford Junction to St Albans Abbey 207 M2, M3 and M4 Aylesbury lines 111 SRS H.24 Deansgate - Liverpool South Parkway 22 SRS N.11 Euston to Watford Junction (DC Lines) 210 M5 Rugby to Birmingham New Street 115 SRS H.25 Liverpool Lime Street - Liverpool South Parkway 25 SRS N.12 Bletchley to Bedford 214 M6 and M7 Stafford and Wolverhampton 119 SRS H.26 North Transpennine: Manchester Piccadilly - 28 SRS N.13 Crewe to Chester 218 M8, M9, M19 and M21 Cross City Souh lines 123 Guide Bridge SRS N.99 Freight lines 221 M10 ad M22
    [Show full text]
  • A Round up of Recent Activities in Our Sections
    Section Activities A round up of recent activities in our Sections AS PUBLISHED IN The Journal April 2018 Volume 136 Part 2 Sections BIRMINGHAM CROYDON & BRIGHTON DARLINGTON & NORTH EAST EDINBURGH Our online events calendar holds all GLASGOW of our Section meetings. IRISH LANCASTER, BARROW & CARLISLE You’ll also find full contact details on LONDON our website. MANCHESTER & LIVERPOOL MILTON KEYNES NORTH WALES NOTTINGHAM & DERBY SOUTH & WEST WALES THAMES VALLEY WESSEX WEST OF ENGLAND WEST YORKSHIRE YORK SECTION ACTIVITIES lighting Towers that sprang up on the railway organisation. On one occasion, John was landscape during the modernisation days of called into to record Pickfords moving the A round up the 1960s and 70s. Dickens Inn from one end of St. Catherine’s Dock in London to the other. Photographers were based at the regional of recent offices and in the various railway workshops A less glamorous assignment, but nonetheless which were around at that time. John was fascinating (and unnerving) was recording called in to take pictures of work in progress on the water jets spraying out of the brickwork in activities in new trains and then at their launch. Abbotscliffe Tunnel. This required elaborate lighting to ensure a clear shot could be On some occasions, it was just a case of recorded. Works for the opening of the our Sections. being in the right place at the right time. On Channel Tunnel including over bridge deck his way to another job in Gloucester he was raising and tunnel floor lowering provided a lot able to get in position on a signal gantry at of work in the early 1990s.
    [Show full text]
  • Mandatory Requirements for Signalling Safeworking Procedures Version 2.0 Issued Date: 26 May 2015
    T HR SC 02000 ST Standard Mandatory Requirements for Signalling Safeworking Procedures Version 2.0 Issued date: 26 May 2015 Important Warning This document is one of a set of standards developed solely and specifically for use on public transport assets which are vested in or owned, managed, controlled, commissioned or funded by the NSW Government, a NSW Government agency or a Transport Agency (as defined in the Asset Standards Authority Charter). It is not suitable for any other purpose. You must not use or adapt it or rely upon it in any way unless you are authorised in writing to do so by a relevant NSW Government agency. If this document forms part of a contract with, or is a condition of approval by a NSW Government agency, use of the document is subject to the terms of the contract or approval. This document may not be current. Current standards are available for download from the Asset Standards Authority website at Superseded by T HR SC 02000 ST v3.0 www.asa.transport.nsw.gov.au. © State of NSW through Transport for NSW T HR SC 02000 ST Mandatory Requirements for Signalling Safeworking Procedures Version 2.0 Issued date: 26 May 2015 Standard governance Owner: Lead Signals and Control Systems Engineer, Asset Standards Authority Authoriser: Chief Engineer Rail, Asset Standards Authority Approver: Director, Asset Standards Authority on behalf of the ASA Configuration Control Board Document history Version Summary of Changes 1.0 First issue. 2.0 Minor technical changes to the following topics: • treatment of trainstop failures in
    [Show full text]
  • Introduction and Overview to Highway Grade Crossings Course Is to Provide the Participant with an Introduction to Highway Grade Crossings
    Introduction and Overview to Highway Grade Crossings Course 104 PREVIEWPARTICIPANT ONLY GUIDE Introduction and Overview to Highway Grade Crossings Participant Guide Signals Maintenance Training Consortium COURSE 104 September 2019 Version PREVIEW ONLY COURSE 104: INTRODUCTION AND OVERVIEW TO HIGHWAY GRADE CROSSINGS Disclaimer: This course is intended to educate employees of transit agencies that have agreed to voluntarily participate in the Signals Maintenance Consortium. It is intended only as informal guide on the matters addressed, and should not be relied upon as legal advice. Anyone using this document or information provided in the associated training program should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of care in any given circumstances. The Signals Consortium, it’s participating agencies and labor unions, as well as the Transportation Learning Center, make no guaranty or warranty as to the accuracy or completeness of any information provided herein. The Signals Consortium, its participating agencies and labor unions, as well as the Transportation Learning Center, disclaims liability for any injury or other damages of any nature whatsoever, directly or indirectly, resulting from the use of or reliance on this document or the associated training program. NOTE: All images contained within this document were contributed by Signals Training Consortium members unless otherwise noted. PREVIEW ONLY © 2019 Transportation Learning Center Content may have been modified by a member location. Original available on www.transittraining.net i COURSE 104: INTRODUCTION AND OVERVIEW TO HIGHWAY GRADE CROSSINGS TABLE OF CONTENTS PAGE How to Use the Participant Guide .............................................................................................
    [Show full text]
  • View / Open TM Database Composite.Pdf
    • • • • TRANSPORTATION-MARKINGS • DATABASE • COMPOSITE CATEGORIES • CLASSIFICATION & INDEX • • • -­ • III III • 1 TRANSPORTATION-MARKINGS: A STUDY IN CO.MMUNICATION MONOGRAPH SERIES Alternate Series Title: An Inter-modal Study of Safety Aids Transportatiol1-Markings Database Alternate T-M Titles: Transport [ation] Mark [ing]s / Transport Marks / Waymarks T-MFoundations, 4th edition, 2005 (Part A, Volume I, First Studies in T-M) (3rd edition, 1999; 2nd edition, 1991) Composite Categories A First Study in T-M: The US, 2nd edition, 1993 (Part B, Vol I) Classification & Index International Marine Aids to Navigation, 2nd edition, 1988 (parts C & D, Vol I) [Unified First Edition ofParts A-D, University Press ofAmerica, 1981] International Traffic Control Devices, 2nd edition, 2004 (Part E, Volume II, Further Studies in T-M) (lst edition, 1984) Part Iv Volume III, Additional Studies, International Railway Signals, 1991 (Part F, Vol II) International Aero Navigation Aids, 1994 (Part G, Vol II) Transportation-Markil1gs: A Study il1 T-M General Classification with Index, 2nd edition, 2004 (Part H, Vol II) (1st edition, 1994) Commllnication Monograph Series Transportation-Markings Database: Marine Aids to Navigation, 1st edition, 1997 (I'art Ii, Volume III, Additional Studies in T-M) TCDs, 1st edition, 1998 (Part Iii, Vol III) Railway Signals. 1st edition, 2000 (part Iiii, Vol III) Aero Nav Aids, 1st edition, 2001 (Part Iiv, Vol III) Composite Categories Classification & Index, 1st edition, 2006 (part Iv, Vol III) (2nd edition ofDatabase, Parts Ii-v,
    [Show full text]
  • Finished Vehicle Logistics by Rail in Europe
    Finished Vehicle Logistics by Rail in Europe Version 3 December 2017 This publication was prepared by Oleh Shchuryk, Research & Projects Manager, ECG – the Association of European Vehicle Logistics. Foreword The project to produce this book on ‘Finished Vehicle Logistics by Rail in Europe’ was initiated during the ECG Land Transport Working Group meeting in January 2014, Frankfurt am Main. Initially, it was suggested by the members of the group that Oleh Shchuryk prepares a short briefing paper about the current status quo of rail transport and FVLs by rail in Europe. It was to be a concise document explaining the complex nature of rail, its difficulties and challenges, main players, and their roles and responsibilities to be used by ECG’s members. However, it rapidly grew way beyond these simple objectives as you will see. The first draft of the project was presented at the following Land Transport WG meeting which took place in May 2014, Frankfurt am Main. It received further support from the group and in order to gain more knowledge on specific rail technical issues it was decided that ECG should organise site visits with rail technical experts of ECG member companies at their railway operations sites. These were held with DB Schenker Rail Automotive in Frankfurt am Main, BLG Automotive in Bremerhaven, ARS Altmann in Wolnzach, and STVA in Valenton and Paris. As a result of these collaborations, and continuous research on various rail issues, the document was extensively enlarged. The document consists of several parts, namely a historical section that covers railway development in Europe and specific EU countries; a technical section that discusses the different technical issues of the railway (gauges, electrification, controlling and signalling systems, etc.); a section on the liberalisation process in Europe; a section on the key rail players, and a section on logistics services provided by rail.
    [Show full text]