Aspects of the Petrology, Mineralogy, and Geochemistry of the Granitic Rocks Associated with Questa Caldera, Northern New Mexico

Total Page:16

File Type:pdf, Size:1020Kb

Aspects of the Petrology, Mineralogy, and Geochemistry of the Granitic Rocks Associated with Questa Caldera, Northern New Mexico DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Aspects of the Petrology, Mineralogy, and Geochemistry of the Granitic Rocks Associated with Questa Caldera, Northern New Mexico By Brigitte Dillet and Gerald K. Czamanske Open-file Report 87-258 lU.S. Geological Survey, 345 Middlefield Rd., Menlo Park, California. This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards (and stratigraphic nomenclature). (Any use of trade names is for descriptive purposes only and does not imply endorsement by the USGS.) Aspects of the Petrology, Mineralogy, and Geochemistry of the Granitic Rocks Associated with Questa Caldera, Northern New Mexico By Brigitte Dillet and Gerald K. Czamanske, U.S. Geological Survey This report consists largely of the Ph.D. thesis prepared by Brigitte Dillet and defended at the University of Clermont-Ferrand, France, in February, 1987. From December, 1983 through December, 1985 Ms. Dillet was supported by a grant from the French Government to carry out this thesis study at the offices of the U.S. Geological Survey in Menlo Park, California, under the guidance of Gerald Czamanske. Expenses for field work and part of 1986 were contributed by the U.S. Geological Survey as part of a comprehensive study of the volcanic and plutonic rocks associated with Questa caldera Appendices B through L have been added to the thesis to provide accurate sample locations, supplemental major- and minor-element data, and electron microprobe analyses obtained by G.K.C. for allanite, apatite, chevkinite, feldspars, and sphene in the Questa granitoids. NOTES: 1. Because early pagination is used in the thesis, pages 8, 9, ^, 3P, 179, and 185 do not exist. 2. Because of unavoidable systems changes, pages 221 through 225 cannot be reproduced and are difficult to read. Users may obtain unreduced copies of these pages by directly contacting Gerald Czamanske. Table of Contents Chapter I Petrography and Chemistry p. 9 Chapter II Opaque Oxide Minerals P- 49 Chapter III Mafic Silicates p. 117 Chapter IV Conclusion p. 179 Bibliography Appendix p. 185 INDEX Resume I Table of contents (Sommaire) Vlil INTRODUCTION 1 CHAPTER!: Petrography and Chemistry 9 PARTI: Petrography 11 1. Virgin Canyon 11 2. Canada Rnabete 17 3. Rlto del Mecfio 20 4. Cabresto Lake 21 5. Rio Hondo 26 6. Southern caidera margin intrusions 30 7. LuceroPeak 36 8. Discussion 37 PARTU: Whole-rock chemistry 41 CHAPTER II: Opaque Oxide Minerals 49 PARTI: Textures 51 1. Exsolution textures 51 a) llmenite-hematite exsolution intergrowths 51 b) Hmenite-magnetite intergrowths 56 2. Replacement textures 60 a) Granular aggregates of flmenrte 60 Sphene rims around ilmenite 62 Irregular ilmenite in sphene 62 Sphene rims around magnetite 64 b) Oxidation of ilmenite 66 Oxidation of magnetite 66 PART n: Occurrence and chemistry of opaque oxide minerals in the Questa granitic plutons 67 1. Virgin Canyon 67 2. Canada Rnabete 78 3. RitodelMedkD 84 4. Cabresto Lake 89 5. Rio Hondo 92 6. Bear Canyon 96 7. Sulphur Gulch 97 8. Red River 99 9. LuceroPeak 102 PART IB: Summary and conclusions 103 1. Parageneses 103 2. Temperature and oxygen fugatity 105 3. llmenite-hematite solvus 110 4. Occurrence of sphene 112 CHAPTER III: Mafic Silicates 117 PARTI: Mate silicates in peraJkaJine rocks 119 OCCURRENCE 119 1. Virgin Canyon 119 IE 2. Canada Pinabete 122 3. Amalia Tuff, peralkaline rhyoiite, and northern dikes 122 CHEMISTRY 123 1. AlkaJi amphiboie 123 2. Tetrasiilicic mica 132 3. Sodic pyroxene 135 CONCLUSIONS 138 PART II: Biotite and calcic amphiboie 139 OCCURRENCE 139 1. Virgin Canyon 139 2. Canada Pinabete 139 3. RitDdelMedo 140 4. Cabresto Lake 142 5. Rio Hondo 145 6. Bear Canyon 146 7. Sulphur Gulch 146 8. Red River 146 9. LuceroPeak 147 BIOTITE CHEMISTRY 147 A) Description 157 1. Virgin Canyon, Canada Pinabete, and Rito del Mecfo 157 2. Cabresto Lake and Rfo Hondo 159 3. Late mineralized piutons 159 B) Discussion 163 C) Oxygen fugacity-temperature relations 165 AMPHIBOLE CHEMISTRY 170 CORRELATION BETWEEN BIOITIE AND AMPKTBOLE CHEMISTRY 176 SUMMARY AND CONCLUSIONS 178 CONCLUSION 179 BIBLIOGRAPHY AND APPENDIX 185 LIST OF PLATES Plate 1.1: Textures of granitic rocks from the Virgin Canyon, Canada Pinabete, and Rito del Medio plutons 18 Plate 1.2: Textures of granitic rocks from the Cabresto Lake and Rio Hondo piutons 24 Plate 1.3: Textures of granitic rocks from the Rio Hondo, Bear Canyon, and Lucero Peak plutons, and Red River intrusive complex 34 Plate 11.1: Photomicrographs of ilmenite-hematite exsolution intergrowths 55 Plate II.2: Photomicrographs of ilmenite-magnetite intergrowths 61 Plate 11.3: Photomicrographs of magnetite-ilmenite intergrowths, photomicrographs of iimenite-magnetite-sphene intergrowths 63 Plate 11.4: Photomicrographs of iimenite-magnetite-sphene intergrowths 65 Plate 11.5: Photomicrographs of accessory phases, Canada Ptnabete and Rito del Medio granites 81 Plate 11.6: Photomicrographs of "him" association, Rito del Medio granite 85 Plate 11.7: Photomicrographs of occurrences of sphene 113 Plate 111.1: Photomicrographs of mafic sificates in the peralkafine granite of Virgin Canyon 121 Plate IH.2: Photomicrographs of occurrences of biotite in the Questa granitic piutons 141 Plate I1I.3: Photomicrographs of occurrences of biotite and amphboie in the Questa granitic piutons 143 LIST OF TABLES Table 1.1: Modal analyses, Virgin Canyon pluton 14 Table 1.2: Modal analyses, Canada Pinabete pluton 16 Table L3: Modal analyses, Rito del Mecfio pluton 16 Table 1.4: Modal analyses, Cabresto Lake pluton 22 Table L5: Modal analyses, Rio Hondo pluton 28 Table 1.6: Modal analyses, Bear Canyon pluton 32 Table 1.7: Modal analyses, Sulphur Gulch pluton 32 Table 13: Modal analyses, Red River intrusive complex 32 Table 1.9: Modal analyses, Lucero Peak pluton 37 Table 1.10: Chemical analyses and rock norms for representative samples of the Questagranitic rocks 42 Table 11.1: Opaque oxide mineral textures in the Questa granitic rocks 52 Table il.2: Types of ilmenite-hematite exsolution intergrowths 54 Table II.3: llmenfte-magnetite intergowths in the Questa granitic rocks 58 Table II.4: Composition of magnetite in the Questa granitic plutons, mole percent 71 Table 11.5: Composition of ilmenrte in the Questa granitic plutons, mole percent 73 Table 11.6: Calculated temperatures and oxygen fugacffies for ilmenite-magnetite equilibration 106 Table 111.1: Partial chemical analyses of amphfoole separates from the Questa granitic rocks 123 Table 111.2: Electron micro-probe analyses and structural formulae for alkali amphfootes 124 Table III.3: Comparison of structural formulae calculated by the Rock and Leake program for alkali amphiboles 130 Table III.4: Electron microprobe analyses and structural formulae for tetrasilicic micas and biotites 133 Table 111.5: Averaged electron microprobe analyses, with structural formulae, for sodic pyroxene 136 Table 111.6: Indication of unit representation for btotite analyses 148 Table 111.7: Representative electron microprobe analyses and structural formulae for biotites in the Questa granitic rocks 149 Table 1113: Partial chemical analyses of biotite separates from the Questa granitic rocks 156 Table 111.9: Representative electron microprobe analyses and structural formulae for amphfooies in the Canada Pinabete, Cabresto Lake and Red River plutons 172 Table 111.10: Representative microprobe analyses and structural formulae for amphfcotes in the Rfc Hondo pluton 173 UST OF FIGURES Rg. 1: Regional geologic map of the southern Rocky Mountains 2 Rg. 2: Generalized geologic map of the Questa area 4 Rg. 1.1: QAP diagrams for the individual Questa piutons 13 Rg. 1.2: Questa granitic rocks in a QAP diagram with the different trends in various Plutonic suites 38 Rg. 1.3: Variation of oxides against Si02 for the Questa granitic rocks 44 Rg. 1.4: ^O+H^O against SiO2 for the Questa granitic rocks 46 Rg. L5: Representation of bulk compositions of the Questa granitic rocks in terms of normative Q+Ab+Or 47 Rg. 1.6: Chondrite normalized REE patterns for selected samples of the Questa granitic system 48 Rg. 1.7: Nb + Y against Rb for the Questa granitic rocks 48 Rg. 11.1: The system hematite-ilmenite 53 Rg. H.2: Fe^+Mn+Zn-1 /2F03* against Ti in magnetite, Virgin Canyon 70 Rg. II.3: Fe2* against Mn in fimenrte, Virgin Canyon 70 Rg. II.4: Fe^+Nb against Ti in ilmenite, Virgin Canyon 70 Rg. IL5: SJ02 in host rock against Mn in ilmenite, Virgin Canyon 70 Rg. II.6: Fe^+Mn+Zh-l/SFe3* against Ti in magnetite, Canada Pinabete 82 Rg. 11.7: Fe2* against Mn in iimenite, Canada Pinabete 82 Rg. IL8: Fe^+Nb against TI in ilmenite, Canada Pinabete 82 Rg. 11.9: TI in ilmenorutiJe against Ti in hematite, Canada Pinabete 82 Rg. 11.10: Fe2* against Mn in ilmenite, Rto del Medfo 88 Rg. 11.11: Fe^+Nb against Ti in ilmenite, RHo del Medio 88 Rg. 11.12: Fe2+/Ti against Mn/Ti in nmenite, Cabresto Lake 88 Rg. 11.13: Fe3* against Ti in iimenite, Cabresto Lake 88 Rg. IL14: Fe2*/!! aga/nst Mn/Ti in iimenite, Rk> Hondo 95 Rg.lL15: Fe3* against T\ in amente, Rfo Hondo 95 Fig. IL16: Fe2* against Mn in Imenite, Bear Canyon and Lucero Peak 95 Rg. 1L17: Fe^+Nb against Ti in imenite, Bear Canyon and Ludero Peak 95 Rg. IL18: Fe2*/!! against Mn/Tl in nmenite, carapace unit from Sulphur Gulch 98 Rg. 11.19: Fe3* against Ti in ilmenite, carapace unit from Sulphur Gulch 98 Rg. IIJ20: Fe2*/Ti against Mn/Ti in ilmenite, Red River 98 Rg. IL21: Fe3* against Ti in iimenite, Red River 98 Fig. 11.22: Mnym/Mn^ against Ti in magnetite, Questa granitic piutons 104 Rg. IL23: Mn in fimenrte against host-rock SKD^ Questa granitic piutons 104 Rg.
Recommended publications
  • Metamorphism of Sedimentary Manganese Deposits
    Acta Mineralogica-Petrographica, Szeged, XX/2, 325—336, 1972. METAMORPHISM OF SEDIMENTARY MANGANESE DEPOSITS SUPRIYA ROY ABSTRACT: Metamorphosed sedimentary deposits of manganese occur extensively in India, Brazil, U. S. A., Australia, New Zealand, U. S. S. R., West and South West Africa, Madagascar and Japan. Different mineral-assemblages have been recorded from these deposits which may be classi- fied into oxide, carbonate, silicate and silicate-carbonate formations. The oxide formations are represented by lower oxides (braunite, bixbyite, hollandite, hausmannite, jacobsite, vredenburgite •etc.), the carbonate formations by rhodochrosite, kutnahorite, manganoan calcite etc., the silicate formations by spessartite, rhodonite, manganiferous amphiboles and pyroxenes, manganophyllite, piedmontite etc. and the silicate-carbonate formations by rhodochrosite, rhodonite, tephroite, spessartite etc. Pétrographie and phase-equilibia data indicate that the original bulk composition in the sediments, the reactions during metamorphism (contact and regional and the variations and effect of 02, C02, etc. with rise of temperature, control the mineralogy of the metamorphosed manga- nese formations. The general trend of formation and transformation of mineral phases in oxide, carbonate, silicate and silicate-carbonate formations during regional and contact metamorphism has, thus, been established. Sedimentary manganese formations, later modified by regional or contact metamorphism, have been reported from different parts of the world. The most important among such deposits occur in India, Brazil, U.S.A., U.S.S.R., Ghana, South and South West Africa, Madagascar, Australia, New Zealand, Great Britain, Japan etc. An attempt will be made to summarize the pertinent data on these metamorphosed sedimentary formations so as to establish the role of original bulk composition of the sediments, transformation and reaction of phases at ele- vated temperature and varying oxygen and carbon dioxide fugacities in determin- ing the mineral assemblages in these deposits.
    [Show full text]
  • Speciation of Manganese in a Synthetic Recycling Slag Relevant for Lithium Recycling from Lithium-Ion Batteries
    metals Article Speciation of Manganese in a Synthetic Recycling Slag Relevant for Lithium Recycling from Lithium-Ion Batteries Alena Wittkowski 1, Thomas Schirmer 2, Hao Qiu 3 , Daniel Goldmann 3 and Ursula E. A. Fittschen 1,* 1 Institute of Inorganic and Analytical Chemistry, Clausthal University of Technology, Arnold-Sommerfeld Str. 4, 38678 Clausthal-Zellerfeld, Germany; [email protected] 2 Department of Mineralogy, Geochemistry, Salt Deposits, Institute of Disposal Research, Clausthal University of Technology, Adolph-Roemer-Str. 2A, 38678 Clausthal-Zellerfeld, Germany; [email protected] 3 Department of Mineral and Waste Processing, Institute of Mineral and Waste Processing, Waste Disposal and Geomechanics, Clausthal University of Technology, Walther-Nernst-Str. 9, 38678 Clausthal-Zellerfeld, Germany; [email protected] (H.Q.); [email protected] (D.G.) * Correspondence: ursula.fi[email protected]; Tel.: +49-5323-722205 Abstract: Lithium aluminum oxide has previously been identified to be a suitable compound to recover lithium (Li) from Li-ion battery recycling slags. Its formation is hampered in the presence of high concentrations of manganese (9 wt.% MnO2). In this study, mock-up slags of the system Li2O-CaO-SiO2-Al2O3-MgO-MnOx with up to 17 mol% MnO2-content were prepared. The man- ganese (Mn)-bearing phases were characterized with inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray diffraction (XRD), electron probe microanalysis (EPMA), and X-ray absorption near edge structure analysis (XANES). The XRD results confirm the decrease of LiAlO2 phases from Mn-poor slags (7 mol% MnO2) to Mn-rich slags (17 mol% MnO2).
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Chromite Crystal Structure and Chemistry Applied As an Exploration Tool
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository February 2015 Chromite Crystal Structure and Chemistry applied as an Exploration Tool Patrick H.M. Shepherd The University of Western Ontario Supervisor Dr. Roberta L. Flemming The University of Western Ontario Graduate Program in Geology A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Patrick H.M. Shepherd 2015 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Geology Commons Recommended Citation Shepherd, Patrick H.M., "Chromite Crystal Structure and Chemistry applied as an Exploration Tool" (2015). Electronic Thesis and Dissertation Repository. 2685. https://ir.lib.uwo.ca/etd/2685 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Western University Scholarship@Western University of Western Ontario - Electronic Thesis and Dissertation Repository Chromite Crystal Structure and Chemistry Applied as an Exploration Tool Patrick H.M. Shepherd Supervisor Roberta Flemming The University of Western Ontario Follow this and additional works at: http://ir.lib.uwo.ca/etd Part of the Geology Commons This Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in University of Western Ontario - Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Chromite Crystal Structure and Chemistry Applied as an Exploration Tool (Thesis format: Integrated Article) by Patrick H.M.
    [Show full text]
  • Review of Manganese Processing for Production of TRIP/TWIP Steels, Part 1: Current Practice and Processing Fundamentals
    TSpace Research Repository tspace.library.utoronto.ca Review of Manganese Processing for Production of TRIP/TWIP Steels, Part 1: Current Practice and Processing Fundamentals Richart Elliott, Kenneth S. Coley, Sina Mostaghel, and Mansoor Barati Version Post-print/Accepted Manuscript Citation Elliott, R., Coley, K., Mostaghel, S. et al. JOM (2018) 70: 680. (published version) https://doi.org/10.1007/s11837-018-2769-4 Publisher’s statement This is a post-peer-review, pre-copyedit version of an article published in The Journal of The Minerals, Metals & Materials Society. The final authenticated version is available online at: http://dx.doi.org/10.1007/s11837-018-2769-4 How to cite TSpace items Always cite the published version, so the author(s) will receive recognition through services that track citation counts, e.g. Scopus. If you need to cite the page number of the author manuscript from TSpace because you cannot access the published version, then cite the TSpace version in addition to the published version using the permanent URI (handle) found on the record page. This article was made openly accessible by U of T Faculty. Please tell us how this access benefits you. Your story matters. A Review of Manganese Processing for the Production of TRIP/TWIP Steels Part 1: Current Practice and Processing Fundamentals R. Elliott1*, K. Coley1,2, S. Mostaghel3, and M. Barati1 1Department of Materials Science & Engineering, University of Toronto, Toronto, Canada 2McMaster Steel Research Centre, Department of Materials Science and Engineering, McMaster University, Hamilton, Canada 3Hatch Ltd., 2800 Speakman Drive, Mississauga, Canada *Contact: [email protected] Abstract The increasing demand for high performance steel alloys has led to the development of TRansformation Induced Plasticity (TRIP) and TWinning Induced Plasticity (TWIP) alloys over the past three decades.
    [Show full text]
  • Galaxite (Mn , Fe , Mg)(Al, Fe )2O4 C 2001-2005 Mineral Data Publishing, Version 1
    2+ 2+ 3+ Galaxite (Mn , Fe , Mg)(Al, Fe )2O4 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Cubic. Point Group: 4/m32/m. As octahedra and rounded grains, to 0.5 mm; as exsolution blebs. Twinning: On {111} as both twin and composition plane, the spinel law, probable. Physical Properties: Fracture: Conchoidal. Hardness = 7.5 D(meas.) = 4.234 D(calc.) = [4.22] Optical Properties: Opaque; may be translucent in thin section. Color: Black, red-brown, red to yellow; in transmitted light, golden yellow, brownish orange, mahogany-red, deep red to reddish black. Streak: Red-brown. Luster: Vitreous. Optical Class: Isotropic. n = 1.923 Cell Data: Space Group: Fd3m. a = 8.258 Z = 8 X-ray Powder Pattern: Synthetic MnAl2O4. 2.492 (100), 2.921 (60), 1.4600 (45), 1.5896 (40), 0.8429 (30), 2.065 (25), 1.0749 (25) Chemistry: (1) (2) (3) (1) (2) (3) SiO2 0.96 0.30 MnO 34.03 39.1 39.9 TiO2 trace < 0.05 0.13 CoO 0.25 Al2O3 45.71 56.3 48.0 ZnO trace 0.43 Fe2O3 4.6 8.9 MgO 1.50 0.83 1.79 V2O3 0.14 CaO trace FeO 16.36 0.0 Total 98.56 101.7 99.0 (1) Bald Knob, North Carolina, USA; total Fe as FeO. (2) Do.; by electron microprobe, 2+ 3+ 2+ Fe :Fe calculated from stoichiometry; corresponds to (Mn0.95Mg0.04Zn0.01)Σ=1.00 3+ (Al1.90Fe0.10)Σ=2.00O4. (3) Bonneval-sur-Arc, France; by electron microprobe, total Fe as Fe2O3; 2+ 3+ 3+ corresponds to (Mn0.92Mg0.08)Σ=1.00(Al1.70Fe0.20Mn0.09Si0.01)Σ=2.00O4.
    [Show full text]
  • Rhodonite (Mn2+,Fe2+,Mg, Ca)Sio3
    2+ 2+ Rhodonite (Mn ; Fe ; Mg; Ca)SiO3 c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Triclinic. Point Group: 1: Crystals rough, with rounded edges, typically tabular and elongated [001], to 20 cm; commonly massive, cleavable to compact. Twinning: Lamellar, with 010 kas composition plane. f g Physical Properties: Cleavage: Perfect on 110 and 110 , (110) (110) = 92.5±; good on 001 . Fracture: Conchoidal to uneven. Hafrdnegss = 5f.5{6.g5 D(me^as.) = 3.57{3.76 D(cfalc.)g= 3.726 Optical Properties: Transparent to translucent. Color: Rose-pink to brownish red, gray, or yellow, exterior commonly black from manganese oxides; in thin section, colorless to faint pink. Streak: White. Luster: Vitreous, somewhat pearly on cleavages. Optical Class: Biaxial (+). Pleochroism: Weak; X = yellowish red; Y = pinkish red; Z = pale yellowish red. Orientation: X a 5 ; Y b 20 ; Z c 25 . Dispersion: r < v: ^ ' ± ^ ' ± ^ ' ± ® = 1.711{1.734 ¯ = 1.716{1.739 ° = 1.724{1.748 2V(meas.) = 63±{87± Cell Data: Space Group: C 1: a = 9.758 b = 10.499 c = 12.205 ® = 108:58± ¯ = 102:92± ° = 82:52± Z = 20 X-ray Powder Pattern: Franklin, New Jersey, USA. (ICDD 13-138). 2.772 (100), 2.980 (65), 2.924 (65), 3.14 (30), 3.34 (25), 3.10 (25), 2.651 (18) Chemistry: (1) SiO2 45.46 Al2O3 0.27 Fe2O3 0.00 FeO 0.96 MnO 50.54 ZnO trace MgO 0.55 CaO 2.25 + H2O 0.00 H2O¡ 0.00 Total 100.03 2+ (1) Chikla, Bhandara district, Maharashtra, India; corresponds to (Mn0:93Ca0:05 2+ Fe0:02Mg0:02)§=1:02(Si0:99Al0:01)§=1:00O3: Occurrence: In manganese-bearing deposits formed by hydrothermal, contact and regional metamorphic, and sedimentary processes.
    [Show full text]
  • Jacobsite (Mn , Fe , Mg)(Fe , Mn )2O4 C 2001-2005 Mineral Data Publishing, Version 1 Crystal Data: Cubic
    2+ 2+ 3+ 3+ Jacobsite (Mn , Fe , Mg)(Fe , Mn )2O4 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Cubic. Point Group: 4/m 32/m. Rarely in octahedral crystals, to 4 mm, which may exhibit exsolved hausmannite or galaxite; coarse to fine granular, massive. Twinning: On {111} as both twin and composition plane, the spinel law, flattened on {111} or lamellar. Physical Properties: Cleavage: {111}, probably a parting. Hardness = 5.5–6.5 VHN = 665–707 (100 g load). D(meas.) = 4.76 D(calc.) = 5.03 Weakly magnetic. Optical Properties: Opaque, translucent on thin edges. Color: Black to brownish black; grayish white with olive tint in reflected light, with brown internal reflections. Streak: Brown. Luster: Metallic, splendent to semimetallic, dull. Optical Class: Isotropic. n = ∼2.3 R: (400) 19.0, (420) 18.8, (440) 18.6, (460) 18.4, (480) 18.2, (500) 18.1, (520) 18.0, (540) 17.8, (560) 17.6, (580) 17.4, (600) 17.2, (620) 17.0, (640) 16.8, (660) 16.6, (680) 16.5, (700) 16.4 Cell Data: Space Group: Fd3m (synthetic MnFe2O4). a = 8.499 Z = 8 X-ray Powder Pattern: Synthetic MnFe2O4. 2.563 (100), 1.5031 (40), 3.005 (35), 1.6355 (35), 1.1063 (30), 2.124 (25), 4.906 (20) Chemistry: (1) (2) TiO2 0.09 0.38 Al2O3 8.14 Fe2O3 73.96 59.5 FeO 2.57 0.5 MnO 13.94 32.1 MgO 9.26 0.03 Total 99.82 100.6 (1) Jakobsberg, Sweden. (2) Bald Knob, North Carolina, USA; by electron microprobe, 2+ 3+ 2+ 2+ 3+ Fe :Fe calculated from stoichiometry; corresponds to (Mn0.99Fe0.02Mg0.01)Σ=1.02(Fe1.62Al0.35 Ti0.01)Σ=1.98O4.
    [Show full text]
  • A Specific Gravity Index for Minerats
    A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951).
    [Show full text]
  • Shigaite Namn Al3(SO4)
    2+ • Shigaite NaMn6 Al3(SO4)2(OH)18 12H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Hexagonal. Point Group: 3. Hexagonal tabular crystals, to 2 cm, may be in groups; as thin films and fracture coatings. Twinning: On {0001}. Physical Properties: Cleavage: On {0001}, perfect. Tenacity: Moderately flexible. Hardness = ∼2 D(meas.) = 2.32 D(calc.) = 2.35 Optical Properties: Semitransparent. Color: Pale yellow, bright yellow, golden yellow, burnt orange; brownish yellow if included, brown to black if altered. Streak: Very pale yellow to white. Luster: Vitreous to dull. Optical Class: Uniaxial (–). Pleochroism: Distinct; O = yellow; E = very pale yellow. Absorption: O > E. ω = 1.546 = n.d. Cell Data: Space Group: R3. a = 9.51–9.52 c = 32.83–33.074 Z = 3 X-ray Powder Pattern: Ioi mine, Japan. 10.89 (100), 5.47 (90), 2.457 (90), 3.664 (80), 2.198 (60), 1.944 (60), 4.36 (40) Chemistry: (1) (2) (3) SO3 13.6 12.75 13.95 Al2O3 15.3 11.8 13.32 Fe2O3 0.9 2.6 MnO 41.7 42.1 37.08 MgO 0.25 Na2O n.d. n.d. 2.70 H2O 28.0 [30.5] 32.95 Total 99.5 [100.0] 100.00 (1) Ioi mine,Japan; by electron microprobe, total Fe as Fe2O3, total Mn as MnO, H2Oby TGA-EGA. (2) Iron Monarch quarry, Australia; by electron microprobe, average of two analyses, • total Fe as Fe2O3, total Mn as MnO, H2O by difference. (3) NaMn6Al3(SO4)2(OH)18 12H2O. Occurrence: A rare secondary mineral in metamorphosed manganese ore deposits.
    [Show full text]
  • Alt I5LNER&S
    4r>.'44~' ¶4,' Alt I5LNER&SI 4t *vX,it8a.rsAt s 4"5' r K4Wsx ,4 'fv, '' 54,4 'T~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~' 4>i4^ 44 4 r 44,4 >s0 s;)r i; X+9;s tSiX,.<t;.W.FE0''¾'"',f,,v-;, s sHteS<T^ 4~~~~~~~~~~~~~~~~~~~~'44'" 4444 ;,t,4 ~~~~~~~~~' "e'(' 4 if~~~~~~~~~~0~44'~"" , ",4' IN:A.S~~ ~ ~ C~ f'"f4444.444"Z'.4;4 4 p~~~~~~~~~~~~~~~~~~~44'1s-*o=4-4444's0zs*;.-<<<t4 4 4 A'.~~~44~~444) O 4t4t '44,~~~~~~~~~~i'$'" a k -~~~~~~44,44.~~~~~~~~~~~~~~~~~~44-444444,445.44~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.V 4X~~~~~~~~~~~~~~4'44 44 444444444.44. AQ~~ ~ ~~~~, ''4'''t :i2>#ZU '~f"44444' i~~'4~~~k AM 44 2'tC>K""9N 44444444~~~~~~~~~~~,4'4 4444~~~~IT fpw~~ ~ ~ ~ ~ ~ ~ 'V~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Ae, ~~~~~~~~~~~~~~~~~~~~~~2 '4 '~~~~~~~~~~4 40~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ' 4' N.~~..Fg ~ 4F.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ " ~ ~ ~ 4 ~~~ 44zl "'444~~474'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~ ~ &~1k 't-4,~~~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ :"'".'"~~~~~~~~~~~~~~~~~"4 ~~ 444"~~~~~~~~~'44*#"44~~~~~~~~~~4 44~~~~~'f"~~~~~4~~~'yw~~~~4'5'# 44'7'j ~4 y~~~~~~~~~~~~~~~~~~~~~~~~~~~~~""'4 1L IJ;*p*44 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~44~~~~~~~~~~~~~~~~~~~~1 q A ~~~~~ 4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~W~~k* A SYSTEMATIC CLASSIFICATION OF NONSILICATE MINERALS JAMES A. FERRAIOLO Department of Mineral Sciences American Museum of Natural History BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY VOLUME 172: ARTICLE 1 NEW YORK: 1982 BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Volume 172, article l, pages 1-237,
    [Show full text]
  • Shin-Skinner January 2018 Edition
    Page 1 The Shin-Skinner News Vol 57, No 1; January 2018 Che-Hanna Rock & Mineral Club, Inc. P.O. Box 142, Sayre PA 18840-0142 PURPOSE: The club was organized in 1962 in Sayre, PA OFFICERS to assemble for the purpose of studying and collecting rock, President: Bob McGuire [email protected] mineral, fossil, and shell specimens, and to develop skills in Vice-Pres: Ted Rieth [email protected] the lapidary arts. We are members of the Eastern Acting Secretary: JoAnn McGuire [email protected] Federation of Mineralogical & Lapidary Societies (EFMLS) Treasurer & member chair: Trish Benish and the American Federation of Mineralogical Societies [email protected] (AFMS). Immed. Past Pres. Inga Wells [email protected] DUES are payable to the treasurer BY January 1st of each year. After that date membership will be terminated. Make BOARD meetings are held at 6PM on odd-numbered checks payable to Che-Hanna Rock & Mineral Club, Inc. as months unless special meetings are called by the follows: $12.00 for Family; $8.00 for Subscribing Patron; president. $8.00 for Individual and Junior members (under age 17) not BOARD MEMBERS: covered by a family membership. Bruce Benish, Jeff Benish, Mary Walter MEETINGS are held at the Sayre High School (on Lockhart APPOINTED Street) at 7:00 PM in the cafeteria, the 2nd Wednesday Programs: Ted Rieth [email protected] each month, except JUNE, JULY, AUGUST, and Publicity: Hazel Remaley 570-888-7544 DECEMBER. Those meetings and events (and any [email protected] changes) will be announced in this newsletter, with location Editor: David Dick and schedule, as well as on our website [email protected] chehannarocks.com.
    [Show full text]