Les Bases De L'imagerie Satellitaire IMA207, M2/MVA, M2/IRIV-ID

Total Page:16

File Type:pdf, Size:1020Kb

Les Bases De L'imagerie Satellitaire IMA207, M2/MVA, M2/IRIV-ID Les Bases de l’Imagerie Satellitaire IMA207, M2/MVA, M2/IRIV-ID Jean Marie Nicolas <[email protected]> Cadre priv´e } sans modifications Voir page 173 Version 2018.2 Table des matieres` 1 Principes de mecanique´ satellitaire 7 1.1 G´eom´etried’unsyst`emeorbital. .................. 8 1.1.1 Rappelsdem´ecaniquek´eplerienne. ............... 8 1.1.2 Equationsfondamentalesdessatellites . ................. 9 1.1.3 Param`etresorbitaux . .......... 11 1.2 Descripteursd’uneorbite . .............. 13 1.3 Priseencomptedelanonsph´ericit´edelaTerre . .................... 14 1.3.1 LaTerreenWGS84 ................................ ..... 14 1.3.2 Trajectoires circulaires : les orbites h´eliosynchrones .................... 15 1.3.3 Trajectoires excentriques: les orbites gel´ees . ..................... 16 1.4 Donn´ees num´eriques des lanceurs et satellites actuels........................ 17 1.4.1 Quelques donn´ees sur les altitudes des satellites . ..................... 17 1.4.2 Lanceursactuels ............................... ........ 18 1.4.3 Lesfrottementsdanslahauteatmosph`ere . ................ 19 1.4.4 Lescorrectionsorbitales . ............ 20 1.4.5 Bilandesforcesagissantsurunsatellite . ................. 21 1.5 OrbitesetrotationdelaTerre. ............... 21 1.5.1 Repr´esentationd’uneorbitedepuislaTerre . .................. 21 1.5.2 Cycle et phasage d’un satellite NPO h´eliosynchrone . ................... 22 1.6 Repr´esenterlaTerre. ............. 30 1.6.1 LaTerrevudel’espace. ......... 30 1.6.2 LaTerrevuedusolterrestre:SRTetellipso¨ıde . .................. 31 1.6.3 La Terre vuedu sol terrestre : g´eod´esie, Syst`eme de R´ef´erence Verticale (SRV) et r´ef´erentiel g´eod´esique ....................................... ... 32 1.6.4 UnSRTglobal:leWGS84. ....... 33 1.6.5 Un mod`ele r´egional : le r´eseau g´eod´esique franc¸aisRGF93................. 33 1.6.6 La Terre et sa surface : les MNT (Mod`ele Num´erique de Terrain) ............. 34 2 Gen´ eralit´ es´ sur les satellites de tel´ ed´ etection´ 36 2.1 Lat´el´ed´etectioncivile. ................. 37 2.1.1 Lesbesoinsent´el´edectioncivile . ................ 37 2.1.2 Lessatellitesdet´el´edectioncivile . .................. 37 2.2 G´en´eralit´essurlessatellitesimageurs . ...................... 38 2.2.1 Choixdescapteurs .............................. ........ 38 2.2.2 Choixdutyped’orbite . ......... 39 2.2.3 Choix de l’altitude de l’orbite : cycle, fauch´ee et couverture ................ 40 2.2.4 Capteursagilesettempsderevisite . .............. 42 2.2.5 Choixd’orbitesh´eliosynchrones . ............... 47 2.2.6 La visibilit´ede la Terre depuis un satellite en orbite..................... 47 2.2.7 La visibilit´ed’un satellite depuis la Terre : les stationsder´eception . 48 2.3 LessatellitesoptiquesetInfraRouge(IR) . ................... 50 2.3.1 Principesg´en´eraux . ........... 50 2.3.2 Les capteurs optiques : principes ´el´ementaires . ..................... 50 2.4 Lessatellitesradar .............................. ............ 53 2.4.1 Principesg´en´eraux . ........... 53 2.4.2 Lescapteursradar: principes ´el´ementaires . ................... 53 2.4.3 Bandesradaretth´ematiques . ............ 53 Jean Marie Nicolas <[email protected]> Cadre priv´e } sans modifications Voir page 173 1/173 Les Bases de l’Imagerie Satellitaire IMA207, M2/MVA, M2/IRIV-ID 2.5 Lesimagesetleurg´eor´ef´erencement . ................... 54 2.5.1 Lepositionnementdessatellites . .............. 54 2.5.2 Orientationlocaledesimages . ............ 54 2.5.3 PriseencomptedelarotationdelaTerre . .............. 55 2.5.4 Imagesetm´etaparam`etres . ............ 56 2.6 Quelquessatellitesdet´el´ed´etection . ...................... 56 2.7 Quelquesimages .................................. ......... 58 3 Geom´ etrie´ des images 62 3.1 G´en´eralit´essurlessyst`emesd’imagerie . ...................... 63 3.1.1 Notionder´esolution . .......... 63 3.1.2 Echantillonnagedesdonn´ees. ............. 64 3.1.3 Rayonperspectifetgerbeperspective . ............... 64 3.1.4 Rep´erageducapteurparrapportausol. ............... 66 3.1.5 Enregistrement continu ou instantan´e: image par le mouvement .............. 70 3.1.6 Monoscopieetst´er´eoscopie . ............. 70 3.2 Lescapteurs ..................................... ........ 71 3.2.1 R´esolution:limitesphysiques . .............. 71 3.2.2 Capteurs num´eriques et chambres photographiques . ................... 71 3.2.3 Quelques PSF (Point Spread Function) de syst`emes satellitaires .............. 72 3.2.4 Capteurgrandchamp,capteurpetitchamp. ............... 73 3.3 G´eom´etriedesacquisitionsoptiques . ................... 73 3.3.1 GSI et case sol : hypoth`ese de Terre plate en vis´ee verticale ................ 73 3.3.2 G´eom´etrie des prises de vues optiques en vis´ee oblique(capteurspetitchamps) . 75 3.3.3 Leslimitesdel’agilit´e . ............ 79 3.4 G´eom´etrie des acquisitions RSO (Radar `aSynth`ese d’Ouverture).................. 80 3.4.1 Principesdel’acquisitionRSO . ............. 80 3.4.2 G´eom´etrie“optique”etg´eom´etrieRSO . ................. 81 3.4.3 Acquisitions sous diff´erentesincidences:hypoth`esedeTerreplate . ... 81 3.5 Effetsdurelief........................................ ..... 82 3.5.1 Analysequalitative . .......... 82 3.5.2 Effets du relief : analyse quantitative. Cas des capteurs passifs ............... 83 3.5.3 Effets du relief : analyse quantitative. Cas des capteurs actifs................ 85 3.6 Recalagedesdonn´ees. ............ 85 3.6.1 Niveauxderectification[18] . ............ 85 3.6.2 Transformations g´eom´etriques : mod`eles empiriques[18].................. 87 3.6.3 Transformations g´eom´etriques : mod`eles physiques3D[18] ................ 88 3.6.4 M´ethodesd’interpolation. ............. 89 4 Les satellites optiques 90 4.1 Les satellites imageurs `achamp de limbe `alimbe et grand champ (applications m´et´eorologiques) . 91 4.1.1 Images plan´etaires : les satellites m´et´eorologiquesg´eostationnaires . 91 4.1.2 Lessatellites `ad´efilementNOAA-POES. ............... 97 4.1.3 DMSP : Defense MeteorologicalSatellite Program . ................. 99 4.1.4 NPOESS(Suomi) ................................. ..... 99 4.1.5 Lessatellites `ad´efilementMETOP-ESA. ............... 99 4.1.6 Les satellites `ad´efilement METEOR (URSS puis Russie).................. 100 4.1.7 LecapteurPOLDER ............................... ...... 101 4.1.8 SPOT-V´eg´etation. .......... 103 4.2 Les satellites imageurs grand champ en oc´eanographie . ...................... 103 4.2.1 Imagesr´egionales:NIMBUS7 . .......... 103 4.2.2 LamissionSeaWIFS.............................. ....... 103 4.2.3 LeprogrammesOkean .. .... ... .... .... .... ... .... ....... 104 4.2.4 Haiyang:lasurveillancedelamerenChine . .............. 104 4.2.5 LesprogrammesindiensOceanSat. ............ 105 4.3 Lessatellitesimageurs`achamplimit´e . ................... 105 4.3.1 Leprogrammeam´ericainLANDSAT . .......... 105 4.3.2 LeprogrammeNMP ................................ ..... 107 4.3.3 NASA’sEarthObservingSystems . ........... 107 Jean Marie Nicolas <[email protected]> Cadre priv´e } sans modifications Voir page 173 2/173 Les Bases de l’Imagerie Satellitaire IMA207, M2/MVA, M2/IRIV-ID 4.3.4 LeprogrammeRESURS-O. ....... 109 4.3.5 Lessatelliteseurop´eensSPOT1`a7 . .............. 109 4.3.6 Les satellites europ´eens Sentinel-2 et Sentinel-3 . ...................... 112 4.3.7 LeprogrammeindienIRS . ........ 113 4.3.8 Lesprogrammesjaponais . ......... 114 4.3.9 LeprogrammeSino-br´esilienCBERS (Ziyuan0I) . ................ 115 4.3.10 Lesprogrammeschinois . .......... 116 4.3.11 RapidEye..................................... ...... 117 4.3.12 Alsat-2(Alg´erie) . ........... 117 4.3.13 Egypte ....................................... ..... 118 4.3.14 RazakSAT : le satellite d’observation de la Terre de Malaisie................ 118 4.3.15 LeprogrammedelaTha¨ılande:Theos . ............. 118 4.3.16 VNREDSat1A(VietNam). ........ 119 4.4 Lessyst`emesimageurshauter´esolution . ................... 119 4.4.1 GeoEye:OrbviewetIkonos . ......... 119 4.4.2 DigitalGlobe:Quickbird,Worldview . .............. 120 4.4.3 Pl´eiades:lacomposanteoptiqued’ORFEO . ............... 123 4.4.4 KOMPSAT-2, KOMPSAT-3 et KOMPSAT-3A (Cor´ee) . ............ 124 4.4.5 Duba¨ıSat1et2(Emiratsarabesunis) . .............. 124 4.4.6 Deimos-2(Espagne) ... .... ... .... .... .... ... .... ........ 124 4.4.7 Cartosat(Inde) ................................ ........ 124 4.4.8 EROS(Isra¨el)................................. ........ 125 4.4.9 ASNARO(Japon) ................................. ..... 125 4.4.10 KazEOSat-1(Kazakhstan) . ........... 125 4.4.11 LeprogrammeduP´erou:Perusat-1 . ............. 126 4.4.12 Les programmes RESURS-F, SPIN-2 et RESURS-P (Russie) ............... 126 4.4.13 LeprogrammedeSingapour:Teleos-1 . ............. 127 4.4.14 Formosat-2etFormosat-5(Taiwan)) . ............... 127 4.5 Capteurssuperspectrauxethyperspectraux . .................... 128 4.5.1 Modis......................................... .... 128 4.5.2 Hyperion ...................................... ..... 128 4.5.3 Meris(satelliteENVISAT) . ........... 128 4.5.4 Chris(satelliteProba-1) . ............ 129 4.5.5 VIIRS(satelliteSuomi) . .......... 129 4.5.6 Venµs............................................. 129 4.6 L’acquisitionvideoenorbite:SkySat . ................. 130 4.7 Mini,micro,nanosatellites . ............... 131 4.7.1 SSTI(SmallSpacecraftTechnologyInitiative) . .................. 131 4.7.2 LesProba:Proba-1etProba-V . .......... 131 4.7.3 LesplateformesSSTL .. .... ... .... ...
Recommended publications
  • ODQN 15-2, April 2011
    National Aeronautics and Space Administration Orbital Debris Quarterly News Volume 15, Issue 2 April 2011 United Nations Discusses Space Inside... Debris and Long-Term Sustainability 14th NASA/DoD ODWG Meeting 2 of Activities in Outer Space NASA/DoD Meeting Space Debris has been an agenda item for In 2010 the subject of long-term sustainability on Active Debris each annual meeting of the Scientific and Technical of activities in outer space was added to the Removal 2 Subcommittee of the United Nations’ Committee Subcommittee’s agenda, and a working group was Kessler Receives 2011 on the Peaceful Uses of Outer Space (COPUOS) formed under a multi-year work plan. At the 2011 Dirk Brouwer Award 2 since 1994. In 1999 the Subcommittee produced meeting of the Subcommittee, terms of reference Russian Launch its first major assessment on the topic, Technical for the working group were established. The Vehicle Stage Reenters Report on Space Debris (Orbital Debris Quarterly objective of the Working Group will be “to examine Over U.S. 3 News, April 1999, pp. 7, 9), followed in 2007 with the and propose measures to ensure the safe and U.S. Commercial Earth establishment of space debris mitigation guidelines sustainable use of outer space for peaceful purposes, Obs Spacecraft Executes (Orbital Debris Quarterly News, April 2007, pp. 1-2). for the benefit of all countries. The Working Group Controlled Reentry 3 During its 48th session in February 2011, the will prepare a report on the long-term sustainability Subcommittee continued its deliberations on space of outer space activities containing a consolidated New Chapter on debris with numerous special presentations, including set of current practices and operating procedures, Space Waste 3 those by the United States, France, the Russian technical standards and policies associated with the Update on LEO Federation, the European Space Agency (ESA), safe conduct of space activities.
    [Show full text]
  • The Start of the Manned Space Race by Andrew J
    The Start of the Manned Space Race by Andrew J. LePage November 1998 Introduction of Sputnik 1 and 2 in October and November of 1957 changed everything. At the same time NACA and the USAF were studying manned spaceflight (see The Beginnings of The first Sputnik launches were to affect the manned America's Man in Space Program in the October space program in several ways. The impact the 1998 issue of SpaceViews), comparable efforts were launch of Sputnik 1 had on the West led Soviet quietly taking place independently in the Soviet Primer Nikita Khrushchev to exploit space missions Union . As with virtually every other aspect of the for their propaganda value. Development of more Soviet Union's early space program, Chief Designer advanced and spectacular missions like the manned Sergei P. Korolev and his OKB-1 (Experimental satellite program were immediately approved and Design Bureau No. 1) lead the way. All during the placed on the fast track. Also at the insistence of 1950s when Korolev and his colleague, Mikhail K. Khrushchev, Sputnik 2 was launched with a dog on Tikhonravov of NII-4 (Scientific Research Institute board. While thermal control problems marred the No. 4), were pushing their original Earth satellite mission, it did demonstrate that weightlessness would proposal, it also included plans to send probes to the not be a major hazard for a human (see Sputnik 2: Moon and men into orbit. When the satellite The First Animal in Space in the November 1997 proposal was finally adopted by the Soviet issue of SpaceViews). As a result, Korolev scrapped government on January 30, 1956, the lunar probe and his initial, more conservative approach and moved manned satellite projects were also given the green ahead with a much more aggressive plan.
    [Show full text]
  • Rafael Space Propulsion
    Rafael Space Propulsion CATALOGUE A B C D E F G Proprietary Notice This document includes data proprietary to Rafael Ltd. and shall not be duplicated, used, or disclosed, in whole or in part, for any purpose without written authorization from Rafael Ltd. Rafael Space Propulsion INTRODUCTION AND OVERVIEW PART A: HERITAGE PART B: SATELLITE PROPULSION SYSTEMS PART C: PROPELLANT TANKS PART D: PROPULSION THRUSTERS Satellites Launchers PART E: PROPULSION SYSTEM VALVES PART F: SPACE PRODUCTION CAPABILITIES PART G: QUALITY MANAGEMENT CATALOGUE – Version 2 | 2019 Heritage PART A Heritage 0 Heritage PART A Rafael Introduction and Overview Rafael Advanced Defense Systems Ltd. designs, develops, manufactures and supplies a wide range of high-tech systems for air, land, sea and space applications. Rafael was established as part of the Ministry of Defense more than 70 years ago and was incorporated in 2002. Currently, 7% of its sales are re-invested in R&D. Rafael’s know-how is embedded in almost every operational Israel Defense Forces (IDF) system; the company has a special relationship with the IDF. Rafael has formed partnerships with companies with leading aerospace and defense companies worldwide to develop applications based on its proprietary technologies. Offset activities and industrial co-operations have been set-up with more than 20 countries world-wide. Over the last decade, international business activities have been steadily expanding across the globe, with Rafael acting as either prime-contractor or subcontractor, capitalizing on its strengths at both system and sub-system levels. Rafael’s highly skilled and dedicated workforce tackles complex projects, from initial development phases, through prototype, production and acceptance tests.
    [Show full text]
  • Synthetic Aperture Radar
    Synthetic Aperture Radar Subjects: Information Technology & Data Management Submitted by: Sung Wook Paek Definition SAR constellations Table of Contents [Hide] 1. Introduction Space-based radar observation has growing potentials for monitoring the global biospheric diversity subject to anthropogenic drivers at geological scales [1]. The performance of radar is less affected by weather and sunlight conditions than that of optical sensors. Satellites with onboard sensors can provide comprehensive coverage of remote areas or vast regions that may be too costly for unmanned aerial vehicles (UAVs) or ground-based platforms, provided that all platforms provide congruent results via calibrations [2][3][4]. Therefore, it was Seasat, the first satellite dedicated to remote sensing of the Earth’s oceans, that carried the first synthetic aperture radar (SAR) and other radar instruments operable in space. Despite these advantages, miniaturization of radar-carrying satellites was rather slow compared to satellites carrying optical devices due to the lack of commercial-off-the-shelf (COTS) components as well as challenging design requirements for the satellite platform [5][6]. Representative use cases of space-based radar include altimetry, sounding, scatterometry, and so forth in the studies of land, cryosphere, and oceans. Biospheric monitoring is another useful application because radar has high sensitivity in detecting surface changes in a target area and discriminating mobile targets against a background [7]. This paper will consider mainly SAR because of its three-dimensional mapping capability through interferometry. The heritage of Seasat has influenced many of later SAR missions for decades, as listed in Table 1 [8][9][10][11][12][13]; for instance, Shuttle Image Radar (SIR) missions used spare parts of the previous Seasat mission onboard Space Shuttles to test SAR image applications in land use, geology, hydrology, and forestry [14][15].
    [Show full text]
  • Russian and Chinese Responses to U.S. Military Plans in Space
    Russian and Chinese Responses to U.S. Military Plans in Space Pavel Podvig and Hui Zhang © 2008 by the American Academy of Arts and Sciences All rights reserved. ISBN: 0-87724-068-X The views expressed in this volume are those held by each contributor and are not necessarily those of the Officers and Fellows of the American Academy of Arts and Sciences. Please direct inquiries to: American Academy of Arts and Sciences 136 Irving Street Cambridge, MA 02138-1996 Telephone: (617) 576-5000 Fax: (617) 576-5050 Email: [email protected] Visit our website at www.amacad.org Contents v PREFACE vii ACRONYMS 1 CHAPTER 1 Russia and Military Uses of Space Pavel Podvig 31 CHAPTER 2 Chinese Perspectives on Space Weapons Hui Zhang 79 CONTRIBUTORS Preface In recent years, Russia and China have urged the negotiation of an interna - tional treaty to prevent an arms race in outer space. The United States has responded by insisting that existing treaties and rules governing the use of space are sufficient. The standoff has produced a six-year deadlock in Geneva at the United Nations Conference on Disarmament, but the parties have not been inactive. Russia and China have much to lose if the United States were to pursue the programs laid out in its planning documents. This makes prob - able the eventual formulation of responses that are adverse to a broad range of U.S. interests in space. The Chinese anti-satellite test in January 2007 was prelude to an unfolding drama in which the main act is still subject to revi - sion.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2017
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .
    [Show full text]
  • Space Launch Vehicles: Government Activities, Commercial Competition, and Satellite Exports
    Order Code IB93062 CRS Issue Brief for Congress Received through the CRS Web Space Launch Vehicles: Government Activities, Commercial Competition, and Satellite Exports Updated March 22, 2002 Marcia S. Smith Resources, Science, and Industry Division Congressional Research Service The Library of Congress CONTENTS SUMMARY MOST RECENT DEVELOPMENTS BACKGROUND AND ANALYSIS U.S. Launch Vehicle Policy From “Shuttle-Only” to “Mixed Fleet” Clinton Administration Policy U.S. Launch Vehicle Programs and Issues NASA’s Space Shuttle Program Future Launch Vehicle Development Programs DOD’s Evolved Expendable Launch Vehicle (EELV) Program Government-Led Reusable Launch Vehicle (RLV) Programs Private Sector RLV Development Efforts U.S. Commercial Launch Services Industry Congressional Interest Foreign Competition (Including Satellite Export Issues) Europe China Russia Ukraine India Japan LEGISLATION IB93062 03-22-02 Space Launch Vehicles: Government Activities, Commercial Competition, and Satellite Exports SUMMARY Launching satellites into orbit, once the Since 1999, projections for launch services exclusive domain of the U.S. and Soviet gov- demand have decreased dramatically, however. ernments, today is an industry in which compa- At the same time, NASA’s main RLV nies in the United States, Europe, China, Rus- program, X-33, suffered delays. NASA termi- sia, Ukraine, Japan, and India compete. In the nated the program in March 2001. Companies United States, the National Aeronautics and developing new launch vehicles are reassessing Space Administration (NASA) continues to be their plans, and NASA has initiated a new responsible for launches of its space shuttle, and “Space Launch Initiative” (SLI) to broaden the the Air Force has responsibility for launches choices from which it can choose a new RLV associated with U.S.
    [Show full text]
  • OFEK-9 Soars Into Space
    A MONTHLY REPORT COVERING NEWS AND INVESTMENT OPPORTUNITIES JOSEPH MORGENSTERN, PUBLISHER July 2010 Vol. XXV Issue No.7 You are invited to visit us at our website: http://ishitech.co.il OFEK-9 Soars into Space Towards the end of With the launch of Ofek-9, Israel has six spy satel- June Israel launched lites in space. a spy satellite from Defense News is a leading international news a base in the south weekly covering the global defense industry. of the country, the Barbara Opall-Rome, the Defense News’ Israeli defence ministry said, with the device report- edly capable of monitoring arch-foe Iran. co.il “A few minutes ago the State of Israel launched http://ishitech. the Ofek-9 (Horizon-9) satellite from the Pal- machim base,” the ministry said. “The results of the launch are being examined by the technical In this Issue team.” It gave no details on the satellite, but public Ofek-9 soars into space radio said it, like its predecessors in the Ofek BiolineRX deal with Cypress Bioscience worth up to $365m series, were capable of taking high resolution Merck Serono to expand Israel operations pictures and aimed at monitoring Iran’s nuclear Collagen made from transgenic tobacco plants Economic Developments Q1 2010 programme. Computers used in drive to test stress Computers used in drive to test stress The radio said the satellite was developed by Diamonds in space Israel Aircraft Industries and launched on a Sha- Nano-diamonds are forever “Bad Name” vit rocket. “A Nice Shower” Odds & Ends Israel, regards Iran as its principal threat after Medtronic invests $70m in cardiology co BioControl repeated predictions by the Islamic republic’s hardline President Mahmoud Ahmadinejad of the Jewish state’s demise.
    [Show full text]
  • Appendix 15B. Tables of Operational Military Satellites TED MOLCZAN and JOHN PIKE*
    Appendix 15B. Tables of operational military satellites TED MOLCZAN and JOHN PIKE* Table 15B.1. US operational military satellites, as of 31 December 2002a Common Official Intl NORAD Launched Launch Perigee Apogee Incl. Period name name name design. (date) Launcher site (km) (km) (deg.) (min.) Comments Navigation satellites in medium earth orbit GPS 2-02 SVN 13/USA 38 1989-044A 20061 10 June 89 Delta 6925 CCAFS 19 594 20 787 53.4 718.0 GPS 2-04b SVN 19/USA 47 1989-085A 20302 21 Oct 89 Delta 6925 CCAFS 21 204 21 238 53.4 760.2 (Retired, not in SEM Almanac) GPS 2-05 SVN 17/USA 49 1989-097A 20361 11 Dec 89 Delta 6925 CCAFS 19 795 20 583 55.9 718.0 GPS 2-08b SVN 21/USA 63 1990-068A 20724 2 Aug 90 Delta 6925 CCAFS 19 716 20 705 56.2 718.8 (Decommissioned Jan. 2003) GPS 2-09 SVN 15/USA 64 1990-088A 20830 1 Oct 90 Delta 6925 CCAFS 19 978 20 404 55.8 718.0 GPS 2A-01 SVN 23/USA 66 1990-103A 20959 26 Nov 90 Delta 6925 CCAFS 19 764 20 637 56.4 718.4 GPS 2A-02 SVN 24/USA 71 1991-047A 21552 4 July 91 Delta 7925 CCAFS 19 927 20 450 56.0 717.9 GPS 2A-03 SVN 25/USA 79 1992-009A 21890 23 Feb 92 Delta 7925 CCAFS 19 913 20 464 53.9 717.9 GPS 2A-04b SVN 28/USA 80 1992-019A 21930 10 Apr 92 Delta 7925 CCAFS 20 088 20 284 54.5 717.8 (Decommissioned May 1997) GPS 2A-05 SVN 26/USA 83 1992-039A 22014 7 July 92 Delta 7925 CCAFS 19 822 20 558 55.9 718.0 GPS 2A-06 SVN 27/USA 84 1992-058A 22108 9 Sep 92 Delta 7925 CCAFS 19 742 20 638 54.1 718.0 GPS 2A-07 SVN 32/USA 85 1992-079A 22231 22 Nov 92 Delta 7925 CCAFS 20 042 20 339 55.7 718.0 GPS 2A-08 SVN 29/USA 87 1992-089A
    [Show full text]
  • Synthetic Aperture Radar (SAR) (L-Band, Res
    University of Rome “Sapienza”, Faculty of Enginnering, Aula del Chiostro, June 14th, 2016 1 SPACE BASED RADAR: A SECRET START 21/12/1964: Quill (P-40), NRO experimental satellite of Corona Program. 1st SAR in orbit (all weather all time imaging) Due to the poor quality, images were considered useless and the program was discontinued (secret until 9 July 2012) RADAR ALTIMETRY: A NEW START IN 1973 14/5/1973 Skylab: mission included S-193, NASA & DoD experimental multimode instrument, including technology test of Radar Altimetry at 13,9 GHz. Positive results. 9/4/1975 Geodynamics Experimental Ocean Satellite (GEOS-3) : First satellite totally dedicated to radar altimetry (13,9 GHz, height accuracy=20 cm). Unexpected result: evaluation of surface wind speed from RA data 27/6/1978:Seasat, 3 out of 5 instruments were radar: Radar Altimeter: f.o. of GEOS-3, (Ku- band, accur. 10cm)Scatterometer and the “first official” Synthetic Aperture Radar (SAR) (L-band, Res. 25m) Quil Seasat 2 1981, 1984: SPACE SHUTTLE, A NEW OPPORTUNITY FOR EARTH OBSERVATION Apr. 12, 1981: Inaugural flight of the Space Shuttle. Nov. 12-14, 1981: OSTA-1,(Office of Space and Terrestrial Applications) comprised the first Shuttle Imaging Radar A (SIR-A). L band, resolution40x40 m, fixed look angle 47°, swath width 50 km, based on Seasat design, and using its spare parts as well as spare parts of other NASA missions (other 4 instruments were different passive sensors in VIS-IR) Oct. 5-13, 1984: OSTA-3, Shuttle Imaging Radar–B (SIR-B). Upgraded SIR-A, L band, resolution 30-20m (azimuth), 58-16m (range), variable look angle 15°-65°, swath width 50 km.
    [Show full text]
  • Cronología De Lanzamientos Espaciales 1
    Cronología de lanzamientos espaciales 1 Cronología de Lanzamientos Espaciales Año 2008 Copyright © 2008 by Eladio Miranda Batlle. All rights reserved. Los textos, imágenes y tablas que se encuentran en esta cronología cuentan con la autorización de sus propietarios para ser publicadas o se hace referencia a la fuente de donde se obtuvieron los mismos. Eladio Miranda Batlle [email protected] Cronología de lanzamientos espaciales 2 Contenido 2008 Enero Thuraya 3 TecSAR 1 Express AM-33 Febrero Progress M-63 STS – 122 (ATLANTIS) COF (Columbus) Thor 2R Kizuna (WINDS) Marzo Jules Verne ATV-1 STS - 123 (Endeavour) JPL (JEM-ELM-PS) USA 200 AMC 14 Navstar – 2RM 6 DirecTV 11 SAR Lupe 4 Abril Soyuz TM-12 ICO G1 C/NOFS Star One C2-VINASAT 1 Tianlian 1 GIOVE-B AAUSAT 2 Amos 3 IMS 1-CanX 2- CanX 6 -Delfi-C3-Rubin 8 AIS-SEEDS 2 CartoSat 2A COMPASS 1 - CUTE-1.7 Mayo Progress M-64 TWINS 2 Galaxy 18 Cosmos 2437-2438-2439-Yubileiny Fengyun 3A STS-124 (Discovery) JPM-PM,Kibo Eladio Miranda Batlle [email protected] Cronología de lanzamientos espaciales 3 Junio Zhongxing 9 Fermi Gamma-ray Space Telescope- GLAST Skynet 5C- Turksat 3A Orbcomm FM- 37- 38 -39- 40- 41- CDS3 Jason 2 Cosmos 2440 (US-KMO-1) Julio Bard 6-Protostar 1 Echostar 11 SAR Lupe 5 Cosmos 2441(Persona -1) Agosto Traiblazer – PreSat – Nanosail D – Celestis 07 Superbird 7 Inmarsat 4-F3 RapidEye-A-B-C-D-E Septiembre Huan Jing 1A-1B GeoEye1 Progress M-65 Nimiq 4 Galaxy 19 Glonass 724-725-726(Kosmos 2442-2443-2444 Shenzhou 7 Demosat/Falcon 1 Octubre THEOS Soyuz TMA-13 IBEX Chandrayan 1 Shi Jian 6 (SJ 6A-6B) COSMO-Skymed (3 ) VENESAT 1 (Simón Bolivar 1) Noviembre SY 3 (TS 1, 2, 3) CX-1(2) (Chuang Xin 1) Astra 1M Kosmos 2445.
    [Show full text]
  • Human Spaceflight Plans of Russia, China and India
    Presentation to the Secure World Foundation November 3, 2011 by Marcia S. Smith Space and Technology Policy Group, LLC and SpacePolicyOnline.com “Civil” Space Activities in Russia “Civil” space activities Soviet Union did not distinguish between “civil” and “military” space programs until 1985 Line between the two can be quite blurry For purposes of this presentation, “civil” means Soviet/Russian activities analogous to NASA and NOAA (though no time to discuss metsats today) Roscosmos is Russian civil space agency. Headed by Army General (Ret.) Vladimir Popovkin Recent reports of $3.5 billion budget, but probably does not include money from US and others 11-03-11 2 Key Points to Take Away Space cooperation takes place in the broad context of U.S.-Russian relations Russia may not be a superpower today, but it is a global power and strategically important to the United States Complex US-Russian relationship, as New START and INKSNA demonstrate Russian space program modest by Soviet standards, but Retains key elements Leverages legacy capabilities for current activities and commercial gain Is a global launch service provider from four launch sites from Arctic to equator Proud history of many space “firsts,” but also tragedies and setbacks U.S.-Soviet/Russian civil space relationship has transitioned from primarily competition to primarily cooperation/interdependence today Cooperation not new, dates back to 1963, but much more intensive today U.S. is dependent on Russia for some things, but they also need us Bold dreams endure as Mars 500 demonstrates 11-03-11 3 Today is 54th Anniversary of First Female in Space 11-03-11 4 Just One of Many “Firsts” First satellite (Sputnik, Oct.
    [Show full text]