Universal Small Payload Interface – an Assessment of US Piggyback Launch Capability

Total Page:16

File Type:pdf, Size:1020Kb

Universal Small Payload Interface – an Assessment of US Piggyback Launch Capability SSC00-XI-3 Universal Small Payload Interface – An Assessment of US Piggyback Launch Capability Shahed Aziz AeroAstro, Inc. 327 A Street, 5th Floor Boston, MA 02210 (617) 451-8630 [email protected] Paul Gloyer AeroAstro, Inc. Bldg 8201, Room 209 Stennis Space Center, MS 39529 (228) 688-2790 [email protected] Joel Pedlikin AeroAstro, Inc. 327 A Street, 5th Floor Boston, MA 02210 (617) 451-8630 [email protected] Kimberly Kohlhepp AeroAstro, Inc. 327 A Street, 5th Floor Boston, MA 02210 (617) 451-8630 [email protected] Abstract. Small satellites are becoming the solution of choice for planners trying to reduce space mission costs and shorten schedules. Secondary launches are a quick, frequent, low-cost, reliable solution for small satellites. Most international small spacecraft are launched as secondary piggyback payloads, aboard larger more efficient rockets. However, piggyback accommodations in the US are rare, done only on a case-by-case basis, and far from low cost. AeroAstro is presently developing the Universal Small Payload Interface (USPI), a standardized template for integrating and launching small spacecraft. It is designed so that mission developers can design to its requirements in order to be compatible on demand with a number of different secondary launch vehicle slots. The ‘Phase A’ USPI, based exclusively on existing secondary opportunities, will be complete by August 2000. Phases B and C, based on potential modifications of existing launch vehicles, will be complete by the end of the year. Missions will be quickly designed to a common interface standard, decreasing their dependence on a specific launch. When the spacecraft is ready, the next USPI launch available will be used, bringing ‘launch on-demand’ closer to reality. Introduction assessment is a part of the Universal Small Payload Interface (USPI) project sponsored by This paper discusses an assessment of US the US National Reconnaissance Office capability to launch small or micro-satellites (NRO) Office of Space Launch (OSL). using secondary or "piggyback" launches on large commercial or military launch systems. The motivation for the USPI project is to Secondary launches are payloads that foster US small satellite development by constitute less than 40% of the overall payload allowing cheaper access to space for small, being launched into orbits dependent upon the micro, and pico-satellites. Per-kilogram orbit of the larger – primary – payload. The launch costs for small launchers are roughly Shahed Aziz 1 14th Annual AIAA/USU Conference on Small Satellites three times higher than for large capacity piggyback payloads tend to skew the launchers, while the larger launchers tend to piggyback launch data, they are considered have unused payload mass at launch. shared or co-manifested payloads. Multiple Therefore, exploiting that extra mass capacity payload launches (like Iridium and Orbcomm) for small satellites with standard piggyback also are not considered, as they control the payload adapters would allow cheaper access insertion orbit and are basically treated as to space for these satellites. Anecdotal primary payloads. evidence suggests that US government policy – as the major launch systems customer – has Piggyback capabilities can be assessed by: not fostered piggyback launches for small · The launcher’s historical record of satellites in the US. This paper examines that piggyback launches issue with historical data on piggyback · The consistency of the launcher’s launches and current and future piggyback piggyback payload attachment (i.e. is there accommodations. The assessment used the a standard attachment interface) European Ariane 4 launcher and its ASAP 4 · The provider’s policy regarding piggyback adapter as a benchmark to highlight the payloads opportunities available for small satellites with · The transparency and ease of the process standard piggyback payload adapters and for getting a piggyback payload on a proactive launch policies. launcher The following section describes the criteria Assessments should not be made in isolation, used in the assessment of US piggyback so US piggyback launch capabilities need to launch capabilities. Following the assessment be assessed vis-à-vis the strongest competition criteria is the assessment of historical, present, – a benchmark. Historically, the Soviet Union and planned US piggyback capabilities and a – and now Russia – has been the US’ major discussion of the conclusions based on the competitor in space. However, the assessment. geopolitical competition between the two powers has always overshadowed and strongly Assessment Criteria influenced their competition in space. On the other hand, the Ariane 4 launcher, A launcher’s ability to launch small secondary commercially offered as a launch service by payloads with a much larger primary payload Arianespace SA, has become the dominant is the primary criterion of assessment. commercial satellite launch system over the last two decades. The Ariane 4 – with the To qualify as a piggyback, a payload has to: Ariane Structure for Auxiliary Payloads · Be less than 100 kg (ASAP 4) – is also the major adapter for · Be launched with a much larger payload – piggyback launches to Low Earth Orbit (LEO) the piggyback payload should be less than and Geo-stationary Transfer Orbit (GTO). 40% of the total mass launched on that Therefore, Ariane has been chosen as the particular mission benchmark for US piggyback capability · Be listed as an auxiliary payload on the assessment. ASAP 4 has proven the technical launch manifest data and commercial viability of piggyback payloads. It has also demonstrated the For some small launch vehicles (most notably viability of the European Space Agency Pegasus XL), 100 kg payloads are a large (ESA) policy of nurturing small satellite fraction of available capacity. Since these development by supporting standard Shahed Aziz 2 14th Annual AIAA/USU Conference on Small Satellites piggyback accommodations on Ariane 4 has also forced the majority of Ariane 4 launches. For these reasons, Ariane 4 is the launches to GTO, reducing its share of most appropriate benchmark for assessing US piggyback launches (since GTO does not piggyback capability. seem very attractive for small spacecraft users/ designers). The higher proportion of Ariane 4 piggyback launches therefore reflects Historical Piggyback Capability a much weaker historical US position vis-à-vis piggyback payloads. The major reason for Figure 1 shows piggyback payloads as this discrepency between the two sets of data percentages of all payloads launched through is that ESA policy has effectively forced 1999. The raw data are skewed by the launch Arianespace to offer piggyback of Russian and US (Orbcomm) satellite accommodations whenever possible. clusters. These data show small/piggyback payloads accounting for 6% of the global total Figure 3 shows the global distribution of and 8% of the US (i.e., the US piggyback piggyback payloads by mass with the majority payload launch rate is on par with the global in the 40-80 kg ranges. Soviet/Russian rate in overall percentages). However, the US payloads dominated the 60-80 kg range while should have launched more piggyback the only range with predominantly US satellites compared to the benchmark Ariane payloads is the 40-60 kg range. Russian 4, because they had more launches with the predominance in the 60-80 kg range is same or better payload mass margin available. primarily a historical artifact (although there have been a significant number of Figure 2 shows piggyback payloads as a Soviet/former Soviet piggyback launches, a percentage of all payloads launched by each large number of launches in the early years of active US launch vehicle (the high percentage the space age were below 100 kg because of of Pegasus small payloads are co-manifested lesser payload capacities). Ignoring the launches, mostly for the Orbcomm Russian data, there is again a very strong constellation). US vehicles have launched a representation by Ariane piggyback payloads smaller percentage of piggyback payloads across the mass ranges. This highlights ASAP than Ariane 4. Ariane 4’s dominance of the 4’s capability of handling a wide variety of commercial communications satellite market payloads with the standard piggyback adapter. 100-200kg 100-200kg under 2% 2% 100kg under 4% 100kg 6% over 200kg over 200kg 94% World Payloads 92% U.S. Payloads Figure 1. Piggyback Payloads Launched Through 19991 Shahed Aziz 3 14th Annual AIAA/USU Conference on Small Satellites U.S. Payloads by Launch Vehicle 200 180 160 140 120 100 80 60 40 20 0 Ariane Athena Atlas Delta Pegasus Shuttle Taurus Titan (ref.) Total under 100kg 25 0 0 10 29 9 4 4 Total 100-200kg 3 1 0 0 11 3 0 0 Payloads over 200 kg 177 4 107 183 12 182 4 84 Figure 2. Piggyback Payload Launches by Launch Vehicle for US Vehicles1 The majority of payloads under 100 kg are actually co-manifests – mostly for the Orbcomm constellation.. Ariane data provided for reference. 225 200 175 Worldwide Small Payloads 150 125 100 75 50 25 0 0-20 kg 20-40kg 40-60kg 60-80kg 80-100kg 100- 120- 140- 160- 180- 120kg 140kg 160kg 180kg 200kg US Vehicles 5 4 32 13 2 5 2 1 1 6 Ariane 6 4 13 2 0 0 0 2 1 0 Russian 4 6 16 201 1 2 0 0 0 0 Other 4 4 8 4 3 7 3 7 1 4 Figure 3. Distribution of Small Payloads According to Size1 The majority of US piggybacks (45%) are in the 40-60 kg range. Ignoring the Russian payloads in the 60-80 kg range, Ariane piggybacks are generally across the range. Shahed Aziz 4 14th Annual AIAA/USU Conference on Small Satellites Payloads by Orbit Piggyback Payloads by Orbit 300 313 60 59 250 208 50 200 177 40 150 30 100 57 20 18 10 10 8 0 50 Total U.S. 24 Total U.S. 0 2 0 Ariane 3 Ariane GTO GTO Polar Polar LEO LEO Figure 4.
Recommended publications
  • ODQN 15-2, April 2011
    National Aeronautics and Space Administration Orbital Debris Quarterly News Volume 15, Issue 2 April 2011 United Nations Discusses Space Inside... Debris and Long-Term Sustainability 14th NASA/DoD ODWG Meeting 2 of Activities in Outer Space NASA/DoD Meeting Space Debris has been an agenda item for In 2010 the subject of long-term sustainability on Active Debris each annual meeting of the Scientific and Technical of activities in outer space was added to the Removal 2 Subcommittee of the United Nations’ Committee Subcommittee’s agenda, and a working group was Kessler Receives 2011 on the Peaceful Uses of Outer Space (COPUOS) formed under a multi-year work plan. At the 2011 Dirk Brouwer Award 2 since 1994. In 1999 the Subcommittee produced meeting of the Subcommittee, terms of reference Russian Launch its first major assessment on the topic, Technical for the working group were established. The Vehicle Stage Reenters Report on Space Debris (Orbital Debris Quarterly objective of the Working Group will be “to examine Over U.S. 3 News, April 1999, pp. 7, 9), followed in 2007 with the and propose measures to ensure the safe and U.S. Commercial Earth establishment of space debris mitigation guidelines sustainable use of outer space for peaceful purposes, Obs Spacecraft Executes (Orbital Debris Quarterly News, April 2007, pp. 1-2). for the benefit of all countries. The Working Group Controlled Reentry 3 During its 48th session in February 2011, the will prepare a report on the long-term sustainability Subcommittee continued its deliberations on space of outer space activities containing a consolidated New Chapter on debris with numerous special presentations, including set of current practices and operating procedures, Space Waste 3 those by the United States, France, the Russian technical standards and policies associated with the Update on LEO Federation, the European Space Agency (ESA), safe conduct of space activities.
    [Show full text]
  • The Start of the Manned Space Race by Andrew J
    The Start of the Manned Space Race by Andrew J. LePage November 1998 Introduction of Sputnik 1 and 2 in October and November of 1957 changed everything. At the same time NACA and the USAF were studying manned spaceflight (see The Beginnings of The first Sputnik launches were to affect the manned America's Man in Space Program in the October space program in several ways. The impact the 1998 issue of SpaceViews), comparable efforts were launch of Sputnik 1 had on the West led Soviet quietly taking place independently in the Soviet Primer Nikita Khrushchev to exploit space missions Union . As with virtually every other aspect of the for their propaganda value. Development of more Soviet Union's early space program, Chief Designer advanced and spectacular missions like the manned Sergei P. Korolev and his OKB-1 (Experimental satellite program were immediately approved and Design Bureau No. 1) lead the way. All during the placed on the fast track. Also at the insistence of 1950s when Korolev and his colleague, Mikhail K. Khrushchev, Sputnik 2 was launched with a dog on Tikhonravov of NII-4 (Scientific Research Institute board. While thermal control problems marred the No. 4), were pushing their original Earth satellite mission, it did demonstrate that weightlessness would proposal, it also included plans to send probes to the not be a major hazard for a human (see Sputnik 2: Moon and men into orbit. When the satellite The First Animal in Space in the November 1997 proposal was finally adopted by the Soviet issue of SpaceViews). As a result, Korolev scrapped government on January 30, 1956, the lunar probe and his initial, more conservative approach and moved manned satellite projects were also given the green ahead with a much more aggressive plan.
    [Show full text]
  • L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
    databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade.
    [Show full text]
  • Atlas Launch System Mission Planner's Guide, Atlas V Addendum
    ATLAS Atlas Launch System Mission Planner’s Guide, Atlas V Addendum FOREWORD This Atlas V Addendum supplements the current version of the Atlas Launch System Mission Plan- ner’s Guide (AMPG) and presents the initial vehicle capabilities for the newly available Atlas V launch system. Atlas V’s multiple vehicle configurations and performance levels can provide the optimum match for a range of customer requirements at the lowest cost. The performance data are presented in sufficient detail for preliminary assessment of the Atlas V vehicle family for your missions. This guide, in combination with the AMPG, includes essential technical and programmatic data for preliminary mission planning and spacecraft design. Interface data are in sufficient detail to assess a first-order compatibility. This guide contains current information on Lockheed Martin’s plans for Atlas V launch services. It is subject to change as Atlas V development progresses, and will be revised peri- odically. Potential users of Atlas V launch service are encouraged to contact the offices listed below to obtain the latest technical and program status information for the Atlas V development. For technical and business development inquiries, contact: COMMERCIAL BUSINESS U.S. GOVERNMENT INQUIRIES BUSINESS INQUIRIES Telephone: (691) 645-6400 Telephone: (303) 977-5250 Fax: (619) 645-6500 Fax: (303) 971-2472 Postal Address: Postal Address: International Launch Services, Inc. Commercial Launch Services, Inc. P.O. Box 124670 P.O. Box 179 San Diego, CA 92112-4670 Denver, CO 80201 Street Address: Street Address: International Launch Services, Inc. Commercial Launch Services, Inc. 101 West Broadway P.O. Box 179 Suite 2000 MS DC1400 San Diego, CA 92101 12999 Deer Creek Canyon Road Littleton, CO 80127-5146 A current version of this document can be found, in electronic form, on the Internet at: http://www.ilslaunch.com ii ATLAS LAUNCH SYSTEM MISSION PLANNER’S GUIDE ATLAS V ADDENDUM (AVMPG) REVISIONS Revision Date Rev No.
    [Show full text]
  • Centaur D-1A Pamphlet (1973)
    • l:Intf.LN3~ UO!S!A!O 9:JedsoJ8t/ J!eAUOJ ''o'l:I3N3~ S:::ml\l'o'NAC ... ) Imagination has been the hallmark of the Cen­ taur program since its inception. Centaur was the vehicle selected to satisfy man's quest for knowledge in space. Already it has sent Survey­ or to probe the moon's surface. Mariner to chart the planet Mars, the Orbiti ng Astronomical Observatory to scan the stars without inter­ ference from the earth's atmosphere, and Pioneer to Jupiter and beyond. Centaur will also be called upon to launch other spacecraft to continue to unlock the secrets of the planets, such as Mariner for Venus and Mercury in 1973, Viking Orbiter/Lander spacecraft to Mars in 1975, and advanced Mariners to Jupiter and Saturn in 1977. Centaur has not only flown scientific missions but also ones with application for solving more tangible problems, such as Applications Tech­ nology Satellites and the Intelsat communica­ tions satellite. Centaur has also been chosen to deliver domestic and military communication satellites to synchronous orbit beginning in 1975. Because man's curiosity will never be satisfied, Convair Aerospace stands ready to respond to the challenges of tomorrow with the same imag­ inative design and quality craftsmanship embod­ ied in Centaur. K. E. Newton Vice President & Program Director Launch Vehicle Programs CONTENTS INTRODUCTION Introduction A little over a decade ago, Centaur began the first evolutionary steps from conventional Centaur Structure and Major Systems 3 Structure 4 rocketry to the high-energy-fueled vehicles of Propulsion 5 oxygen/hydrogen. Centaur faced numerous Reaction Control 6 problems, many of them demanding solutions Guidance 7 beyond the then current state of the art.
    [Show full text]
  • Launch Options for the Future: a Buyer's Guide (Part 7 Of
    — Chapter 3 Enhanced Baseline CONTENTS , Page Improving the Shuttle . 27 Advanced Solid Rocket Motors (ASRMs) . 27 Liquid Rocket Boosters (LRBs) . 28 Lighter Tanks . 29 Improving Shuttle Ground Operations . 29 Improving Existing ELVs . 29 Delta . 30 Atlas-Centaur . ● ● . .* . 30 Titan . ● . ✎ ✎ . 30 Capability . ✎ . ✎ ✎ . ● ✎ ✎ . 30 Table 3-1. Theoretical Lift Capability of Enhanced U.S. Launch Systems. 31 Chapter 3 Enhanced Baseline The ENHANCED BASELINE option is the U.S. Government’s “Best Buy” if . it desires a space program with current or slightly greater levels of activity. By making in- cremental improvements to existing launch vehicles, production and launch facilities, the U.S. could increase its launch capacity to about 1.4 million pounds per year to LEO. The investment required would be low compared to building new vehicles; however, the ade- quacy of the resulting fleet resiliency and dependability is uncertain. This option would not provide the low launch costs (e.g. 10 percent of current costs) sought for SDI deploy- ment or an aggressive civilian space initiative, like a piloted mission to Mars, IMPROVING THE SHUTTLE The Shuttle, though a remarkable tech- . reducing the number of factory joints and nological achievement, never achieved its in- the number of parts, tended payload capacity and recent safety . designing the ASRMs so that the Space modifications have further degraded its per- Shuttle Main Engines no longer need to formance by approximately 4,800 pounds. be throttled during the region of maxi- Advanced Solid Rocket Motors (ASRMs) or mum dynamic pressure, Liquid Rocket Boosters (LRBs) have the potential to restore some of this perfor- ● replacing asbestos-bearing materials, mance; studies on both are underway.
    [Show full text]
  • The Evolving Launch Vehicle Market Supply and the Effect on Future NASA Missions
    Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com The Evolving Launch Vehicle Market Supply and the Effect on Future NASA Missions Presented at the 2007 ISPA/SCEA Joint International Conference & Workshop June 12-15, New Orleans, LA Bob Bitten, Debra Emmons, Claude Freaner 1 Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com Abstract • The upcoming retirement of the Delta II family of launch vehicles leaves a performance gap between small expendable launch vehicles, such as the Pegasus and Taurus, and large vehicles, such as the Delta IV and Atlas V families • This performance gap may lead to a variety of progressions including – large satellites that utilize the full capability of the larger launch vehicles, – medium size satellites that would require dual manifesting on the larger vehicles or – smaller satellites missions that would require a large number of smaller launch vehicles • This paper offers some comparative costs of co-manifesting single- instrument missions on a Delta IV/Atlas V, versus placing several instruments on a larger bus and using a Delta IV/Atlas V, as well as considering smaller, single instrument missions launched on a Minotaur or Taurus • This paper presents the results of a parametric study investigating the cost- effectiveness of different alternatives and their effect on future NASA missions that fall into the Small Explorer (SMEX), Medium Explorer (MIDEX), Earth System Science Pathfinder (ESSP), Discovery,
    [Show full text]
  • Russian and Chinese Responses to U.S. Military Plans in Space
    Russian and Chinese Responses to U.S. Military Plans in Space Pavel Podvig and Hui Zhang © 2008 by the American Academy of Arts and Sciences All rights reserved. ISBN: 0-87724-068-X The views expressed in this volume are those held by each contributor and are not necessarily those of the Officers and Fellows of the American Academy of Arts and Sciences. Please direct inquiries to: American Academy of Arts and Sciences 136 Irving Street Cambridge, MA 02138-1996 Telephone: (617) 576-5000 Fax: (617) 576-5050 Email: [email protected] Visit our website at www.amacad.org Contents v PREFACE vii ACRONYMS 1 CHAPTER 1 Russia and Military Uses of Space Pavel Podvig 31 CHAPTER 2 Chinese Perspectives on Space Weapons Hui Zhang 79 CONTRIBUTORS Preface In recent years, Russia and China have urged the negotiation of an interna - tional treaty to prevent an arms race in outer space. The United States has responded by insisting that existing treaties and rules governing the use of space are sufficient. The standoff has produced a six-year deadlock in Geneva at the United Nations Conference on Disarmament, but the parties have not been inactive. Russia and China have much to lose if the United States were to pursue the programs laid out in its planning documents. This makes prob - able the eventual formulation of responses that are adverse to a broad range of U.S. interests in space. The Chinese anti-satellite test in January 2007 was prelude to an unfolding drama in which the main act is still subject to revi - sion.
    [Show full text]
  • TABLE of CONTENTS SECTION PAGE Executive Summary 02
    TABLE OF CONTENTS SECTION PAGE Executive Summary 02 Acronym Listing 04 I. Authority and Purpose 05 II. Summary of Facts 06 III. Statement of Opinion 19 IV. Index of Tabs 26 LIST OF FIGURES FIGURE TITLE PAGE 1. Titan IV B 07 2. Centaur Upper Stage 07 3. Milstar Satellite 08 4. Intended vs. Actual Orbit 10 5. Software Process Flow Diagram 13 6. Pitch, Roll, & Yaw Errors 16 7. Titan IV B/Centaur Configuration 25 EXECUTIVE SUMMARY On 30 April 1999, at 12:30 hours EDT, a Lockheed Martin Astronautics Titan IV B configuration vehicle (Titan IV B-32), with a Titan Centaur upper stage (TC-14), launched from Space Launch Complex 40, at Cape Canaveral Air Station, Florida. The mission was to place a Milstar satellite in geosynchronous orbit. The flight performance of the Titan solid rocket motor upgrades and core vehicle was nominal. The Centaur separated from the Titan IV B approximately nine minutes and twelve seconds after lift-off. The vehicle began experiencing instability about the roll axis during the first burn. That instability was greatly magnified during Centaur’s second main engine burn, coupling each time into yaw and pitch, and resulting in uncontrolled vehicle tumbling. The Centaur attempted to compensate for those attitude errors by using its Reaction Control System, which ultimately depleted available propellant during the transfer orbit coast phase. The third engine burn terminated early due to the tumbling vehicle motion. As a result of the anomalous events, the Milstar satellite was placed in a low elliptical final orbit, as opposed to the intended geosynchronous orbit.
    [Show full text]
  • N AS a Facts
    National Aeronautics and Space Administration NASA’s Launch Services Program he Launch Services Program (LSP) manufacturing, launch operations and rockets for launching Earth-orbit and Twas established at Kennedy Space countdown management, and providing interplanetary missions. Center for NASA’s acquisition and added quality and mission assurance in In September 2010, NASA’s Launch program management of expendable lieu of the requirement for the launch Services (NLS) contract was extended launch vehicle (ELV) missions. A skillful service provider to obtain a commercial by the agency for 10 years, through NASA/contractor team is in place to launch license. 2020, with the award of four indefinite meet the mission of the Launch Ser- Primary launch sites are Cape Canav- delivery/indefinite quantity contracts. The vices Program, which exists to provide eral Air Force Station (CCAFS) in Florida, expendable launch vehicles that NASA leadership, expertise and cost-effective and Vandenberg Air Force Base (VAFB) has available for its science, Earth-orbit services in the commercial arena to in California. and interplanetary missions are United satisfy agencywide space transporta- Other launch locations are NASA’s Launch Alliance’s (ULA) Atlas V and tion requirements and maximize the Wallops Flight Facility in Virginia, the Delta II, Space X’s Falcon 1 and 9, opportunity for mission success. Kwajalein Atoll in the South Pacific’s Orbital Sciences Corp.’s Pegasus and facts The principal objectives of the LSP Republic of the Marshall Islands, and Taurus XL, and Lockheed Martin Space are to provide safe, reliable, cost-effec- Kodiak Island in Alaska. Systems Co.’s Athena I and II.
    [Show full text]
  • Space Launch Vehicles: Government Activities, Commercial Competition, and Satellite Exports
    Order Code IB93062 CRS Issue Brief for Congress Received through the CRS Web Space Launch Vehicles: Government Activities, Commercial Competition, and Satellite Exports Updated March 22, 2002 Marcia S. Smith Resources, Science, and Industry Division Congressional Research Service The Library of Congress CONTENTS SUMMARY MOST RECENT DEVELOPMENTS BACKGROUND AND ANALYSIS U.S. Launch Vehicle Policy From “Shuttle-Only” to “Mixed Fleet” Clinton Administration Policy U.S. Launch Vehicle Programs and Issues NASA’s Space Shuttle Program Future Launch Vehicle Development Programs DOD’s Evolved Expendable Launch Vehicle (EELV) Program Government-Led Reusable Launch Vehicle (RLV) Programs Private Sector RLV Development Efforts U.S. Commercial Launch Services Industry Congressional Interest Foreign Competition (Including Satellite Export Issues) Europe China Russia Ukraine India Japan LEGISLATION IB93062 03-22-02 Space Launch Vehicles: Government Activities, Commercial Competition, and Satellite Exports SUMMARY Launching satellites into orbit, once the Since 1999, projections for launch services exclusive domain of the U.S. and Soviet gov- demand have decreased dramatically, however. ernments, today is an industry in which compa- At the same time, NASA’s main RLV nies in the United States, Europe, China, Rus- program, X-33, suffered delays. NASA termi- sia, Ukraine, Japan, and India compete. In the nated the program in March 2001. Companies United States, the National Aeronautics and developing new launch vehicles are reassessing Space Administration (NASA) continues to be their plans, and NASA has initiated a new responsible for launches of its space shuttle, and “Space Launch Initiative” (SLI) to broaden the the Air Force has responsibility for launches choices from which it can choose a new RLV associated with U.S.
    [Show full text]
  • Third Quarter 2003 Quarterly Launch Report 1
    Third Quarter 2003 Quarterly Launch Report 1 Introduction The Third Quarter 2003 Quarterly Launch Report features launch results from the second quarter of 2003 (April-June 2003) and launch forecasts for the third quarter of 2003 (July-September 2003) and fourth quarter of 2003 (October-December 2003). This report contains information on worldwide commercial, civil, and military orbital space launch events. Projected launches have been identified from open sources, including industry references, company manifests, periodicals, and government sources. Projected launches are subject to change. This report highlights commercial launch activities, classifying commercial launches as one or both of the following: • Internationally-competed launch events (i.e., launch opportunities considered available in principle to competitors in the international launch services market) • Any launches licensed by the Associate Administrator for Commercial Space Transportation of the Federal Aviation Administration under 49 United States Code Subtitle IX, Chapter 701 (formerly the Commercial Space Launch Act) Contents Second Quarter 2003 Highlights . .2 Vehicle Use . .3 Commercial Launch Events by Country . .4 Commercial vs. Non-commercial Launch Events . .4 Payload Use . .5 Payload Mass Class . .5 Commercial Launch Trends . .6 Appendix A: Second Quarter 2003 Orbital Launch Events . .A-1 Appendix B: Third Quarter 2003 Projected Orbital Launch Events . .B-1 Appendix C: Fourth Quarter 2003 Projected Orbital Launch Events . .C-1 Cover: A Zenit 3SL, marketed by Boeing Launch Services and launched by the multina­ tional consortium Sea Launch, sends Thuraya 2 on its way to geosynchronous orbit on June 10, 2003 from the central Pacific Ocean. Third Quarter 2003 Quarterly Launch Report 2 Second Quarter 2003 Highlights U.S.-based Scaled Composites unveiled its entry for the X PRIZE competition during the second quarter of 2003.
    [Show full text]