Prof. Scott Christopher Chapman Current Address: Dalhousie University Dept
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Publications for Dr. Peter L. Capak 1 of 21 Publication Summary 369
Publications for Dr. Peter L. Capak Publication Summary 369 Publications 319 Refereed Publications Accepted or Submitted 50 Un-refereed Publications Top 1% of Cited Researchers in 2017-2019 >30,000 Citations >1,600 Citations on first author papers 99 papers with >100 citations, 6 as first author. H Index = 99 First Author publications 1) Capak et al., 2015, “Galaxies at redshifts 5 to 6 with systematically low dust content and high [C II] emission”, Nature, 522, 455 2) Capak et al., 2013, “Keck-I MOSFIRE Spectroscopy of the z ~ 12 Candidate Galaxy UDFj-39546284”, ApJL, 733, 14 3) Capak et al., 2011, “A massive protocluster of galaxies at a redshift of z~5.3” , Nature, 470, 233 4) Capak et al., 2010, “Spectroscopy and Imaging of three bright z>7 candidates in the COSMOS survey”, ApJ, 730, 68 5) Capak et al., 2008, "Spectroscopic Confirmation Of An Extreme Starburst At Redshift 4.547", ApJL, 681, 53 6) Capak et. al., 2007, "The effects of environment on morphological evolution between 0<z<1.2 in the COSMOS Survey", ApJS, 172, 284 7) Capak et. al., 2007, "The First Release COSMOS Optical and Near-IR Data and Catalog", ApJS, 172, 99 8) Capak, 2004, “Probing global star and galaxy formation using deep multi-wavelength surveys”, Ph.D. Thesis 9) Capak et. al., 2004, "A Deep Wide-Field, Optical, and Near-Infrared Catalog of a Large Area around the Hubble Deep Field North", AJ, 127, 180 Other Publications (P. Capak was a leading author in bolded entries) 10) Faisst et al., 2020, “The ALPINE-ALMA [CII] survey: Multi-Wavelength Ancillary Data. -
Highlights and Discoveries from the Chandra X-Ray Observatory1
Highlights and Discoveries from the Chandra X-ray Observatory1 H Tananbaum1, M C Weisskopf2, W Tucker1, B Wilkes1 and P Edmonds1 1Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138. 2 NASA/Marshall Space Flight Center, ZP12, 320 Sparkman Drive, Huntsville, AL 35805. Abstract. Within 40 years of the detection of the first extrasolar X-ray source in 1962, NASA’s Chandra X-ray Observatory has achieved an increase in sensitivity of 10 orders of magnitude, comparable to the gain in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. Chandra is unique in its capabilities for producing sub-arcsecond X-ray images with 100-200 eV energy resolution for energies in the range 0.08<E<10 keV, locating X-ray sources to high precision, detecting extremely faint sources, and obtaining high resolution spectra of selected cosmic phenomena. The extended Chandra mission provides a long observing baseline with stable and well-calibrated instruments, enabling temporal studies over time-scales from milliseconds to years. In this report we present a selection of highlights that illustrate how observations using Chandra, sometimes alone, but often in conjunction with other telescopes, have deepened, and in some instances revolutionized, our understanding of topics as diverse as protoplanetary nebulae; massive stars; supernova explosions; pulsar wind nebulae; the superfluid interior of neutron stars; accretion flows around black holes; the growth of supermassive black holes and their role in the regulation of star formation and growth of galaxies; impacts of collisions, mergers, and feedback on growth and evolution of groups and clusters of galaxies; and properties of dark matter and dark energy. -
The James Webb Space Telescope: Mission Overview and Status
The James Webb Space Telescope: Mission Overview and Status Matthew A. Greenhouse and the JWST Science Working Group' Goddard Space Flight Center Code 443.2 Greenbelt, MD 20771 USA Abstract- The James Webb Space Telescope (JWST) is the Infrared The lWST architecture is prinuirily shaped by successor to tbe Hubble Space Telescope. It is a cryogenic infrared 2 requirements associated with answering the above questions. space observatory with • 25 m aperture (6 m class) telescope In contrast to the Hubble Space Telescope (HST), the lWST yielding diffraction limited IIDgular resolution at a wave1engtll of :z is designed as an infrared optimized telescope to observe um. The science instrument payload includes three passively cooled near-infrared instruments providing broad- and narrow-band the redshifted ultraviolet radiation from the first galaxies imagery, coronagraphy, as well as mulu-Gbject and Integral-field and supernovae of the flfSt stars. To achieve the nly spectroscopy over the 0.6 <).. < 5.0 um spectrum. An actively cooled sensitivity needed to observe this era (z - 6-20), the mid..fnfrared instrument provides broad-band imagery, observatory must have a telescope aperture that is larger in ooronagrapby, and integral-field spectroscopy over the 5.0 < A. < 29 diameter than the largest rocket faring, and the entire optical um spectrum. The JWST is being developed by NASA, in system must be cooled to -40-50 K. Finally, the resulting partRership with the European and Canadian Space Agencies, al a large deployable cryogenic telescope must achieve HST-like general user facility with science observations to be proposed by the angular resolution across the SWIR spectrum. -
FY13 High-Level Deliverables
National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2013 (1 October 2012 – 30 September 2013) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 13 December 2013 Revised 18 September 2014 Contents NOAO MISSION PROFILE .................................................................................................... 1 1 EXECUTIVE SUMMARY ................................................................................................ 2 2 NOAO ACCOMPLISHMENTS ....................................................................................... 4 2.1 Achievements ..................................................................................................... 4 2.2 Status of Vision and Goals ................................................................................. 5 2.2.1 Status of FY13 High-Level Deliverables ............................................ 5 2.2.2 FY13 Planned vs. Actual Spending and Revenues .............................. 8 2.3 Challenges and Their Impacts ............................................................................ 9 3 SCIENTIFIC ACTIVITIES AND FINDINGS .............................................................. 11 3.1 Cerro Tololo Inter-American Observatory ....................................................... 11 3.2 Kitt Peak National Observatory ....................................................................... 14 3.3 Gemini Observatory ........................................................................................ -
Enhancing LSST Science with Euclid Synergy Arxiv:1904.10439V1 [Astro
Enhancing LSST Science with Euclid Synergy P. Capak, J-C. Cuillandre, F. Bernardeau, F. Castander, R. Bowler, C. Chang, C. Grillmair, P. Gris, T. Eifler, C. Hirata, I. Hook, B. Jain, K. Kuijken, M. Lochner, P. Oesch, S. Paltani, J. Rhodes, B. Robertson, D. Rubin, R. Scaramella, C. Scarlata, D. Scolnic, J. Silverman, S. Wachter, Y. Wang, The Tri-Agency Working Group November, 30, 2018 Abstract This white paper is the result of the Tri-Agency Working Group (TAG) appointed to develop synergies between missions and is intended to clarify what LSST observations are needed in order to maximally enhance the combined science output of LSST and Euclid. To facilitate LSST planning we provide a range of possible LSST surveys with clear metrics based on the improvement in the Dark Energy figure of merit (FOM). To provide a quantifiable metric we present five survey options using only between 0.3 and 3.8% of the LSST 10 year survey. We also provide information so that the LSST DDF cadence can possibly be matched to those of Euclid in common deep fields, SXDS, COSMOS, CDFS, and a proposed new LSST deep field (near the Akari Deep Field South). Co-coordination of observations from the Large Synoptic Survey Telescope (LSST) and Euclid will lead to a significant number of synergies. The combination of optical multi-band imaging from LSST with high resolution optical and near-infrared photom- etry and spectroscopy from Euclid will not only improve constraints on Dark Energy, but provide a wealth of science on the Milky Way, local group, local large scale struc- ture, and even on first galaxies during the epoch of reionization. -
Astro2020 Science White Paper: JWST GTO/ERS Deep Surveys
Astro2020 Science White Paper: JWST GTO/ERS Deep Surveys Thematic Areas: ☐ Planetary Systems ☐ Star and Planet Formation ☐Formation and Evolution of Compact Objects ☒ Cosmology and Fundamental Physics ☐Stars and Stellar Evolution ☐Resolved Stellar Populations and their Environments ☒Galaxy Evolution ☐Multi-Messenger Astronomy and Astrophysics Principal Author: Marcia Rieke University of Arizona [email protected] 520-621-2731 Co-authors: Santiago Arribas Centro de Astrobiología, Madrid Andrew Bunker University of Oxford Stephané Charlot Sorbonne Université Institut d ’Astrophysique de Paris Steve Finkelstein University of Texas Austin Roberto Maiolino University of Cambridge Brant Robertson UC Santa Cruz and Institute for Advanced Study Chris Willott Hertzberg Institute of Astrophysics Rogier Windhorst Arizona State University Harvard-Smithsonian Center for Astrophysics: Daniel Eisenstein Erica Nelson Sandro Tacchella University of Arizona: Eiichi Egami Ryan Endsley Brenda Frye Kevin Hainline Raphael Hviding George Rieke Christina Williams Christopher Willmer Charity Woodrum Abstract : Discovering and characterizing the first galaxies to form in the early Universe is one of the prime reasons for building a large, cold telescope in space, the James Webb Space Telescope (JWST). This white paper describes an integrated Guaranteed Time Observer program using 800 hours of prime time and 800 hours of parallel time to study the formation and evolution of galaxies from z ~2 to z~14, combining NIRSpec, NIRCam, and MIRI data in a coordinated -
Durham Research Online
Durham Research Online Deposited in DRO: 16 March 2017 Version of attached le: Published Version Peer-review status of attached le: Peer-reviewed Citation for published item: Lansbury, G. B. and Stern, D. and Aird, J. and Alexander, D. M. and Fuentes, C. and Harrison, F. A. and Treister, E. and Bauer, F. E. and Tomsick, J. A. and Balokovic, M. and Del Moro, A. and Gandhi, P. and Ajello, M. and Annuar, A. and Ballantyne, D. R. and Boggs, S. E. and Brandt, N. and Brightman, M. and Chen, C. J. and Christensen, F. E. and Civano, F. and Comastri, A. and Craig, W. W. and Forster, K. and Grefenstette, B. W. and Hailey, C. J. and Hickox, R. and Jiang, B. and Jun, H. and Koss, M. and Marchesi, S. and Melo, A. D. and Mullaney, J. R. and Noirot, G. and Schulze, S. and Walton, D. J. and Zappacosta, L. and Zhang, W. (2017) 'The NuSTAR serendipitous survey : the 40-month catalog and the properties of the distant high-energy X-ray source population.', Astrophysical journal., 836 (1). p. 99. Further information on publisher's website: https://doi.org/10.3847/1538-4357/836/1/99 Publisher's copyright statement: c 2017. The American Astronomical Society. All rights reserved. Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. -
The James Webb Space Telescope the First Light Machine Dr
the James Webb SPACE TELESCOPE THE FIRST LIGHT MACHINE Dr. H. Philip Stahl is the James Webb Space Presentation by Telescope Optical Telescope Element Mirror Optics Lead, Dr. H. Philip Stahl responsible for its primary, secondary and tertiary mirrors. Tuesday, March 12th He is a Senior Optical 8:00 pm Physicist at NASA Marshall Space Flight Center. 1200 EECS Bldg, U of M, North Campus Scheduled to begin its 10 year mission after 2018, the James Webb Space Telescope (JWST) will search for the first luminous objects of the Universe to help answer fun- damental questions about how the Universe came to look like it does today. At 6.5 meters in diameter, JWST will be the world’s largest space telescope. This talk reviews science objectives for JWST and how they drive the JWST architecture, e.g. aperture, wavelength range and operating temperature. Additionally, the talk provides an over- view of the JWST primary mirror technology development and fabrication status. 2/13/2013 James Webb Space Telescope (JWST) JWST Summary • Mission Objective – Study origin & evolution of galaxies, stars & planetary systems – Optimized for near infrared wavelength (0.6 –28 µm) – 5 year Mission Life (10 year Goal) • Organization – Mission Lead: Goddard Space Flight Center – International collaboration with ESA & CSA – Prime Contractor: Northrop Grumman Space Technology – Instruments: – Near Infrared Camera (NIRCam) – Univ. of Arizona – Near Infrared Spectrometer (NIRSpec) – ESA – Mid-Infrared Instrument (MIRI) – JPL/ESA – Fine Guidance Sensor (FGS) – CSA – Operations: -
1 I Articles Dans Des Revues Avec Comité De Lecture
1 I Articles dans des revues avec comité de lecture (ACL) internationales II Articles dans des revues sans comité de lecture (SCL) NB : La liste des publications est donnée de façon exhautive par équipe, ce qui signifie qu’il existe des redondances chaque fois qu’une publication est cosignée pas des membres dépendant d’équipes différentes. Par contre, certains chercheurs sont à cheval sur deux équipes, dans ce cas il leur a été demandé de rattacher leurs publications seulement à l’une ou à l’autre équipe en fonction de la nature de la publication et la raison de leur rattachement à deux équipes. I Articles dans des revues avec comité de lecture (ACL) internationales ANNÉE 2006 A / Equipe « Physique des galaxies » 1. Aguilar, J.A. et al. (the ANTARES collaboration, 214 auteurs). First results of the Instrumentation Line for the deep- sea ANTARES neturino telescope Astroparticle Physic 26, 314 2. Auld, R.; Minchin, R. F.; Davies, J. I.; Catinella, B.; van Driel, W.; Henning, P. A.; Linder, S.; Momjian, E.; Muller, E.; O'Neil, K.; Boselli, A.; et 18 coauteurs. The Arecibo Galaxy Environment Survey: precursor observations of the NGC 628 group, 2006, MNRAS,.371,1617A 3. Boselli, A.; Boissier, S.; Cortese, L.; Gil de Paz, A.; Seibert, M.; Madore, B. F.; Buat, V.; Martin, D. C. The Fate of Spiral Galaxies in Clusters: The Star Formation History of the Anemic Virgo Cluster Galaxy NGC 4569, 2006, ApJ, 651, 811B 4. Boselli, A.; Gavazzi, G. Environmental Effects on Late-Type Galaxies in Nearby Clusters -2006, PASP, 118, 517 5. -
Science Briefing 8/8/2019
Science Briefing 8/8/2019 Dr. Garth Illingworth (UC Santa Cruz) Deep Fields: Chandra and Hubble Uncover the Dr. Belinda Wilkes (CXC Director, CfA | Growth of Early Galaxies Harvard & SAO) Dr. Rutuparna Das (CfA | Harvard & SAO) Facilitator: Dr. Chris Britt Outline of this Science Briefing 1. Dr. Garth Illingworth (UC Santa Cruz) Exploring the Realm of the First Galaxies with Hubble and JWST 2. Dr. Belinda Wilkes (CXC Director, CfA | Harvard & SAO) NASA’s Chandra X-ray Observatory: Celebrating 20 years 3. Q&A 4. Dr. Rutuparna Das (CfA | Harvard & SAO) Resources on Deep Fields, galaxy growth, and Chandra’s 20th anniversary 5. Q & A 2 XDF eXtreme Deep Field NASA’s Universe of Learning Science Briefing Exploring the Realm of the First Galaxies with Hubble and JWST Garth Illingworth University of California Santa Cruz firstgalaxies.org 3 gdi Hubble Wide Field Camera 3 (infrared light) 2009 4 gdi 2009 our last (close) view of Hubble 5 gdi Chandra Hubble NASA’s Great Observatories Spitzer 6 gdi telescopes are “time machines” looking back through time XDF: deepest ever Hubble image – in 2012 from 10 years of Hubble data 7 gdi this image is a “history book” the story of how galaxies formed and grew through nearly all of time from a few hundred million years after the Big Bang through 13 billion years 8 gdi Hubble Legacy Field 2019 each of the three Great Observatories – Chandra, Hubble and Spitzer – have contributed about 6-7 million seconds (about 75-80 days) of exposure on this field over the last 15-20 years NASA, ESA, GDI, Magee + HLF Team -
President's Column
March/AprilAAS 2011, Issue 157 - TheNewsletter Online Publication for the members of the American Astronomical Society CONTENTS President's Column Debra Meloy Elmegreen, [email protected] 3 From the Seattle was the scene for a grand, fast-paced and entertaining Executive Officer 217th meeting, filled with exciting new results presented by our wonderful AAS members. We set a record for the West Coast and achieved the largest AAS meeting ever, outside of DC, with over 5 2900 participants, including over 600 junior members. As usual, Council Actions the hard work of AAS Executive Officer Kevin Marvel and his staff resulted in a smooth meeting experience for us. We were captivated by plenary sessions covering the gamut from exoplanets to the 6 early universe. The inaugural Lancelot Berkeley prizewinners, Bill Borucki and David Koch, gave Boston Meeting inspiring talks about the exciting Kepler results, and the first Kavli Prize lecturer, Dr. Carolyn Porco, 22-26 May described the Cassini mission. Our Warner prizewinner Scott Ransom expounded on exotic pulsars, while Pierce prizewinner Tommaso Treu discussed the growth of black holes and galaxy evolution, 8 and Cannon prizewinner Anna Frebel explored the oldest known stars. Rossi prizewinners Felix Committee News Aharonian, Werner Hoffmann, and Heinz Voelk described the successful H.E.S.S collaboration, while Heineman awardees Michael Turner and Rocky Kolb entertained us with a lively cosmology and particle astrophysics lecture. 10 With these prizewinners and so many other exciting talks still fresh in mind, I exhort you to nominate Seattle Meeting your colleagues for the next round of AAS prizes. -
Existing Large Observing Programs
Major Programs using the Great Observatories The following tables collect major science programs undertaken by the three Great Observatories. Most of these programs are drawn from the following proposal subsets: HST Large Programs: >100 orbits or > 100 snapshot targets; HST Treasury Programs: major science programs that include distributing data products to the science community; see http://archive.stsci.edu/hst/tall.html Chandra Large Programs: > 300 ksecs Chandra Very Large Programs: > 1 Megasecs see http://asc.harvard.edu/target_lists/index.html Spitzer Legacy Programs: see http://ssc.spitzer.caltech.edu/legacy/ The individual programs have been grouped under broad subject headings, and similar programs are as far as possible, listed together. Solar System & Extrasolar Planets Program PI Title Comments HST 8267 Gilliland Taking the Measure of Planets in Deep ACS imaging the Globular Cluster 47 Tuc at multiple epochs HST 8583 Storrs Imaging snapshots of asteroids WFPC2 HST 8699 Lamy The origin of short-period comets WFPC2 CXC6 Lisse Comet 9P/Tempel 1 during the ACIS-S Deep Impact encounter HST 9060, Noll Imaging of Kuiper belt asteroids ACS & NICMOS 9386, 10801 HST 9433 Bernstein The size distribution of KBOs ACS HST 10862 Clarke Comprehensive Auroral Imaging of ACS/SBC Jupiter and Saturn during the International Heliophysical Year Stellar Programs Program PI Title Comments HST 6119 Bond Snapshot survey for companions to WFPC2 Planetary-Nebula nuclei CXC6 Kastner The X-ray spectrum of a planetary ACIS-S/LETG nebula at high resolution